
Using Continuous Biometric Verification to Protect Interactive Login Sessions

Sandeep Kumar Terence Sim Rajkumar Janakiraman Sheng Zhang

School of Computing, National University of Singapore

3 Science Drive 2, Singapore 117543

{skumar, tsim, janakira, zhangshe}@comp.nus.edu.sg

Abstract

In this paper we describe the theory, architecture, imple-

mentation, and performance of a multi-modal passive bio-

metric verification system that continually verifies the pres-

ence/participation of a logged-in user. We assume that

the user logged in using strong authentication prior to the

starting of the continuous verification process. While the

implementation described in the paper combines a digital

camera-based face verification with a mouse-based finger-

print reader, the architecture is generic enough to accom-

modate additional biometric devices with different accu-

racy of classifying a given user from an imposter. The main

thrust of our work is to build a multi-modal biometric feed-

back mechanism into the operating system so that verifica-

tion failure can automatically lock up the computer within

some estimate of the time it takes to subvert the computer.

This must be done with low false positives in order to real-

ize a usable system. We show through experimental results

that combining multiple suitably chosen modalities in our

theoretical framework can effectively do that with currently

available off-the-shelf components.

1. Introduction

By continuous verification we mean that the identity of the

human operating the computer is continually verified. Ver-

ification is computationally simpler than identification and

attempts to determine how “close” an observation is to a

known value, rather than finding the closest match in a set

of known values. Verification is a realistic operation in the

normal usage of a computer system because we can assume

that the user’s identity has been incontrovertibly established

by a preceding strong authentication mechanism. It is also

appealing because it can conceivably be offloaded to a hard-

ware device that is properly initialized with user specific

data upon successful login.

The sense in which we are using identity verification is

weaker than the ultimate aim of techniques such as intrusion

detection [4] which even attempt to detect misuse by the au-

thorized user who would clearly pass the biometric verifi-

cation test. However, host-based intrusion detection has not

quite been successful in practice, either because of the com-

putational requirements of handling voluminous amounts of

low level trace, or because of the large number of false posi-

tives that result from an attempt to sharply characterize user

behavior based on observed low-level traces. We believe

that continuous verification, if realized efficiently with low

false positives, can be important in high risk environments

where the cost of unauthorized use is high. This can be true

for computer driven airline cockpit control, computers in

banks, defense establishments, and other areas whose use

directly affects the security and safety of human lives.

Biometric verification is appealing because several of

them that are easy to incorporate in ordinary computer use

are passive, and they obviate the need to carry extra de-

vices for authentication. In a sense, they are always on

one’s “person”, and perhaps a little safer than using exter-

nal devices which can be separated from their carrier more

easily. However, biometric verification can be construed

as a matching problem and usually makes a probabilistic

judgment in its classification. This makes it error prone.

Furthermore, when used passively like we are attempting

to do, it can result in time periods with no samples or poor

quality samples; for example, when the user is not looking

directly into the camera, or when the surrounding light is

poor. To avoid both these pitfalls, researchers have used

multiple modalities, say, fingerprint and face images simul-

taneously. This makes classification more robust and is also

the approach that we have taken in this work. Even when

some modalities may be very accurate, they might be in-

herently limited in their sampling rate, so combining them

with faster (albeit less accurate) modalities helps to fill gaps

between successive samples of the better modality. How-

ever, the use of multiple modalities presupposes indepen-

dent sampling so that not all modalities fail to generate a

valid sample at the same time.1

Building an effective reactive biometric verifi cation sys-

tem consists of many aspects. Not only must the verifi ca-

tion results be integrated into the operating system, it can

be critical to balance several conflicting metrics: namely,

accuracy of detection, system overhead incurred during the

verifi cation, and reaction time i.e., the vulnerability window

within which the system must respond when it detects that

the authorized user is no longer present. This relationship is

especially important when all these aspects are performed in

software on the same machine that is being protected from

unauthorized use.

In the rest of the paper we describe the theoretical under-

pinnings of our multi-modal biometric verifi cation system,

our implementation architecture, the OS kernel changes

needed to make the system reactive to verifi cation failures,

and the performance impact of such a system on ordinary

computer use. The goal is to render a computer system in-

effective within a certain time period of verifi cation failure.

This time should be a conservative estimate of the time it

would take someone to cause information loss (confi den-

tiality, integrity, or availability [11]) on the system.

2. Biometrics in Brief

We begin with a brief introduction of some of the important

concepts in biometrics and verifi cation. Readers familiar

with these concepts may skip ahead; while readers wanting

more details can refer to [5].

2.1. Basic concepts

Biometrics is generally taken to mean the measurement of

some physical characteristic of the human body for the pur-

pose of identifying the person. Common types of biomet-

rics include fi ngerprint, face image, and iris/retina pattern.

A more inclusive notion of biometrics also includes the be-

havioral characteristics, such as gait, speech pattern, and

keyboard typing dynamics.

When a biometric is used to verify a person, the typi-

cal process is as shown in Figure 1. The user fi rst presents

her biometric (e.g. the thumb) to the sensor device, which

captures it as raw biometric data (for example a fi ngerprint

image). This data is then preprocessed to reduce noise, en-

hance image contrast, etc. Features are then extracted from

the raw data. In the case of fi ngerprints, these would typ-

ically be minutiae and bifurcations in the ridge patterns.

These features are then used to match against the corre-

sponding user’s features taken from the database (retrieved

based on the claimed identity of the user). The result of the

1Face and fi ngerprint may not be totally uncorrelated in that sense.

However, that’s not the thrust of this paper; rather this paper focuses on

integrating multiple biometrics within an OS.

User

presents

biometric
Sensor

Pre-processing,

Feature extraction

Matching

Decision

Enrollment

Database

Raw biometric

data Features

Score

Accept or Reject

User�s features

Claimed identity
Claimed

identity�s

features

Figure 1. A typical biometric verification pro

cess.

match is called a Score, S, typically a real number between

0 and 1, where 0 means “most dissimilar” and 1 means

“most similar”. The fi nal step is to compare S to a pre-

defi ned thresholdT , and output:

• a decision of “Accept” (when S ≥ T), meaning the

Verifi er considers the user as legitimate, or

• “Reject” (when S < T), meaning the Verifi er thinks

that the user is an imposter.

Some verifi cation systems also output “Unsure”, to indicate

that the sample cannot be reliably classifi ed one way or the

other. In this case, the user may be asked to re-present her

biometric.

Of course, the user’s biometric features must fi rst be en-

tered into the database. This is done in an earlier one-off

phase called enrollment. The process of enrollment is usu-

ally similar, consisting also of biometric data capture, pre-

processing, and feature extraction. However, to increase ro-

bustness, multiple biometric samples are usually acquired

(e.g. multiple images of the same fi nger), so that the ver-

ifi er can “learn” the natural variation present in the user’s

biometric.

How accurate is biometric verifi cation? There are two

types of errors that a Verifi er can make: aFalse Accept, or a

False Reject. The False Accept Rate (FAR) is the probability

that the Verifi er incorrectly classifi es an imposter as a legit-

imate user. This is a security breach. On the other hand, the

False Reject Rate (FRR) is the probability that the Verifi er

incorrectly decides that the true user is an imposter. This

is an inconvenience to the user, since she must usually re-

sort to another means of verifying herself. In general, while

a small FRR can be accepted as an inconvenience, a large

FRR value can impact availability and may be construed as

indirectly impacting the security of the system [11].

In an ideal Verifi er, both theFAR and FRR are zero. In

practice, there is usually a tradeoff between the FAR and

FRR : a lower rate for one type of error is achievable only

at the expense of a higher rate for the other. This tradeoff

is usually described using the Receiver Operating Charac-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FAR

1
 -

 F
R

R

45
o
 line

Ideal ROC
Typical ROC

Figure 2. ROC Curves.

teristic (ROC) Curve (Figure 2), which plots (1 − FRR)
versus FAR. For any given Verifi er, one can determine its

ROC simply by varying its decision threshold T , running

the Verifi er on test data, and calculating theFAR and FRR

for that value of T . The Ideal Verifi er has an inverted-L

shaped ROC curve, while an imperfect Verifi er has a curve

lying somewhere between the Ideal curve and the 45◦ line.2

The Power of a Verifi er is defi ned as the area under its ROC

curve, and that is a useful measure of the Verifi er’s over-

all accuracy in a way that combines both its FAR and FRR.

The greater the area, the better the Verifi er. In general, fi n-

gerprint verifi cation is considered morepowerful than face

verifi cation.

When using multiple biometrics, individual classifi ca-

tion results must be combined into a composite result. Com-

putational overhead related to biometric processing must be

balanced to get the desired tradeoff between usability, secu-

rity and remaining computational power available for useful

work. We describe these issues next.

2.2. Operational issues

① Computational overhead. Generally speaking, for all

biometrics there is a tradeoff between computation and the

Verifi er’sPower. For biometrics with weaker accuracy (less

Power), multiple samples can often be combined to yield

a more accurate composite assessment for that biometric3.

But this requires more computation for a single assessment

output, and for continuous verifi cation it can add a factor

to the computational load. An effective system must strike

2If a Verifi er has an ROC curve below the45
◦ line, simply swap its

“Accept” and “Reject” decisions and the ROC curve will move above this

line.
3There are a plethora of techniques of combining them for e.g., using

the sum, product, minimum, median, and maximum rules [6]. Other

researchers have used decision trees and linear-discriminant based methods

[13].

a balance between load and accuracy, especially when all

biometric related computation is done in software on the

same machine that is used for computing needs.

For example, in one set of measurements that we took for

face verifi cation, the CPU needed for our operating environ-

ment was nearly .2s per image, mostly incurred in locating

the face in the whole image. This fi gure could be reduced

to .1s by employing heuristics such as remembering the lo-

cation of the face in the image, and using that as the starting

point of face detection for the next image. The upshot is that

processing about 10 frames per second would saturate the

CPU. Adding multiple samples to increase accuracy of this

biometric would seriously impact performance (about 10%

for each extra frame rate). The alternative is to combine

face verifi cation with another, different biometric which has

much higher accuracy.

② Usability versus Security. We consider the FRR of a

biometric system as a measure of the system’s usability,

and its FAR as a measure of its security. With a higher

false reject rate, the verifi cation system deduces more fre-

quently (but incorrectly) that the system is under attack and

reacts by freezing or delaying the currently logged-in user’s

processes. This would unnecessarily delay the user’s time-

to-completion of ordinary tasks and may make the system

frustrating to use. There is evidence that system response

time is correlated to user productivity [7].

False rejects can be reduced by adjusting the decision

threshold T of a biometric Verifi er, but with a concomitant

increase in the false accept rate. This could be disastrous

from a security perspective. A usable system must balance

its FAR against its FRR. Using at least one biometric with

high accuracy can sharply distinguish a valid user from an

imposter and can strike a good balance between the two

choices. Higher accuracy can also be achieved at the cost

of more samples but that increases the computational over-

head, which impacts usability.

③ Choice of biometrics. For our

Figure 3. Sec

ureGen mou

se.

design objective we need biomet-

rics that are both passive and ac-

curate. Passive biometrics do not

require active participation by the

user, (as opposed to active ones,

such as those that use speech) and

therefore do not intrude into the

normal activity of the user by re-

quiring them to periodically per-

form biometric related tasks that

are not part of their normal activ-

ity. Such a requirement can be

distracting and result in low system usability. Recently

available computer peripherals such as the Secugen mouse

[15] incorporates an optical fi ngerprint scanner at the place

Fingerprint

a

d

b

e

c

gf

time

B
IO
M
E
T
R
IC

t1 t2 t3 t4

Face

Figure 4. Combining multiple biometric

modalities.

where a user would normally place their thumb (Figure 3).

This device effectively turns fi ngerprint, a normally active

biometric, into a passive one. Our other passive biometric is

the face image, which can be acquired at a distance without

the user’s active cooperation.

④ Using multiple modalities. There is general agreement

in the biometric research community, also supported by the-

ory, see for example [13], that using multiple types (modal-

ities) of biometrics (with an appropriate combination rule)

can yield a higher classifi cation accuracy than using only a

single modality. In the context of our work here, combining

face and fi ngerprint modalities is useful because there are

frequent situations in which one modality is missing, e.g.

when the user is looking away from the camera, or when the

user is not using the mouse. Finally, attempting to thwart a

multi-modal system is a much harder task than fooling a

single-modality system.

There are two general ways of combining biometric data

samples that are coming from different biometric modalities

at different times [1]:

1. (Time-fi rst) Combining samples of each modality fi rst

across time, and then combining them across modal-

ities. In Figure 4, this scheme would fi rst combine

samples a, b, c (= u) for face, and d, e, f, g (= v) for

fi ngerprint, then combineu and v.

2. (Modality-fi rst) Combinining across modality fi rst,

then across time. This would fi rst combine samples

in the order a, d at the end of t1, b, e at the end of t2
etc., and then combine across the different times.

Recently we proposed a technique that combines the two

approaches in whatever order the biometric data is made

available [19]. This paper presents performance results us-

ing that technique of multi-modal fusion. The technique is

based on Bayesian probability (see Section 3.3) and models

the computer system as being in one of two states: Safe or

Fingerprint
verifier

Face
verifier

Integrator

Fingerprint

image

Face

image

Face score
Fingerprint

score

P(system is safe | biometric observ.)

Other

modality

Figure 5. Integration scheme

Attacked. A Safe state implies that the logged-in user is still

present at the computer console, while Attacked means that

an imposter has taken over control.4 The result of the fusion

is the calculation of Psafe, the probability that the system is

still in the Safe state. This value can then be compared to a

pre-defi ned thresholdTsafe set by the security administrator,

below which appropriate action may be taken. A key fea-

ture of our method is that we can compute Psafe at any point

in time, whether or not there are biometric observations. In

the absence of observations, there is a built-in mechanism

to decay Psafe reflecting the increasing uncertainty that the

system is still Safe.

In the following section we describe our use of face and

fi ngerprint biometrics in detail, as well as our technique for

combining them.

3. Multimodal Biometrics

We use two modalities of observations: fi ngerprint and face

images. The challenge is to integrate these observations

across modality and over time. To do this, we devised the

integration scheme shown in Figure 5. Our system currently

uses the face verifi er and a fi ngerprint verifi er; other modal-

ities are possible in the future. Each verifi er computes a

score from its input biometric data (fi ngerprint or face im-

ages), which is then integrated (fused) by the Integrator. In

the following sections, we describe in turn how we com-

pute the score for each modality and how we fuse them into

a single estimate.

3.1. Fingerprint Verifier

We acquire fi ngerprint images using the SecureGenTM

mouse (Figure 3). The mouse comes with a software de-

velopment kit (SDK) that matches fi ngerprints, i.e., given

two images, it computes a similarity score between 0 (very

4There is a possible Absent state, to model the situation in which the

user has left the console but has not logged out. Because we are assuming

a high-risk environment, it is justifi able to makeAbsent ≡ Attacked.

dissimilar) and 199 (identical). Unfortunately, the matching

algorithm is proprietary and is not disclosed by the vendor.

Nevertheless, we’ve obtained good results using the score

generated by this algorithm.

First we collect 1000 training fi ngerprint images from

each of four users. Then, for each user we divide the train-

ing images into two sets: those belonging to the user (intra-

class images), and those belonging to others (inter-class im-

ages). For each set, we calculate the pairwise image sim-

ilarity using the proprietary algorithm, and determine the

histogram of the resulting scores. That is, for each user,

we compute two probability density functions (pdf) – the

intra-class and inter-class pdfs (represented by histograms).

Figure 6(a) shows the pairwise pdfs for a typical user. If we

denote the similarity score by s, the intra-class set by ΩU ,

and the inter-class set by ΩI , then these pdfs are P (s | ΩU)
and P (s | ΩI). Note that the pdfs do not overlap much,

indicating that fi ngerprint verifi cation is reliable (high veri-

fi cation accuracy).

Given a new fi ngerprint image and a claimed identity,

the image is matched against the claimed identity’s tem-

plate (captured at enrollment time) to produce a score s.

From this we compute P (s | ΩU) and P (s | ΩI). These

values are then used by the Integrator to arrive at the overall

decision. Section 3.3 has more details.

3.2. Face Verification

To train the face Verifi er, we fi rst capture500 images of

each of the four users under different head poses using a

Canon VCC4 video camera and applying the Viola-Jones

face detector on the image [18]. About 1200 face images

are also collected of sundry students on campus to model as

imposters. For each user, we construct training images from

two sets: those belonging to the user, and those belonging

to the imposter. All face images are resized to 28 × 35 pix-

els. For each set we calculate the pairwise image distance

using the Lp norm (described below). This constitutes the

biometric feature that we extract from the image and is sim-

ilar to the ARENA method [14]. If we denote the similarity

score by s, the set of legitimate users by ΩU , and the set

of imposters by ΩI , then these pdfs are P (s | ΩU) and

P (s | ΩI). We can now determine the histogram of the

resulting scores. Figure 6(b) shows a pair of pdfs for one

user.

The Lp norm is defi ned asLp(a) ≡ (
∑

|ai|
p)

1

p , where

the sum is taken over all pixels of the image a. Thus the dis-

tance between images u and v is Lp(u−v). As in ARENA,

we found that p = 0.5 works better than p = 2 (Euclidean).

Given a new face image and a claimed identity, we compute

the smallest Lp distance between the image and the intra-

class set of the claimed identity. This distance is then used

as a score s to compute P (s | ΩU) and P (s | ΩI), which in

X1

Z1

State:

Observ.:

Time

X2

Z2

X3

Z3

X4

Z4

face fingerprint face

(a)

Safe Attacked

1-p
p 1

0

(b)

Figure 7. Holistic integration: (a) Hidden

Markov Model; (b) State transition model.

turn is used in the holistic fusion step.

3.3. Holistic Fusion

The heart of our technique is in the integration of biometric

observations across modalities and time. This is done using

a Hidden Markov Model (HMM) (Figure 7 (a)), which is

a sequence of states xt that “emit” observations zt (face or

fi ngerprint), for timet = 1, 2, . . .Each state can assume one

of two values: {Safe, Attacked}. The goal is now to infer

the state from the observations.

Let Zt = {z1, . . . , zt} denote the history of obser-

vations up to time t. From a Bayesian perspective, we

want to determine the state xt that maximizes the poste-

rior probability P (xt | Zt). Our decision is the greater of

P (xt = Safe | Zt) and P (xt = Attacked | Zt). Using a

little algebra, we may write:

P (xt|Zt) ∝ P (zt|xt,Zt−1) · P (xt|Zt−1) (1)

and

P (xt|Zt−1) =
∑

xt−1

P (xt|xt−1,Zt−1)·P (xt−1|Zt−1) (2)

This is a recursive formulation that leads to effi cient com-

putation. The base case is P (x0 = Safe) = 1, because

we know that the system is Safe immediately upon suc-

cessful login. Observe that the state variable xt has the ef-

fect of summarizing all previous observations. Because of

our Markov assumptions, we note that P (zt | xt,Zt−1) =

(a)

1000 2000 3000 4000 5000 6000 7000 8000
0

50

100

150

200

250

Lp distance (p=0.5)

F
re

q
u

e
n

c
y

Intra class

Inter calss

(b)

Figure 6. (a) Fingerprint intra-class and inter-class histograms for a typical user. (b) Face intra-class

and inter-class histograms for a typical user. There is greater overlap in these histograms than in

fingerprint, indicating that face verification is less reliable than fingerprint verification.

P (zt | xt), and that P (xt | xt−1,Zt−1) = P (xt | xt−1).
Also, P (zt | xt) is determined from the pdf-pair (Fig-

ure 6(b) for face, and an analogous one for fi ngerprint). As

for P (xt | xt−1), this is described by the state transition

model shown in Figure 7 (b). In the Safe state, the proba-

bility of staying put is p, while the probability of transition

to Attacked is (1− p). Once in the Attacked state, however,

the system remains there and never transitions back to Safe.

Finally, note that Eq. 1 is used to compute Psafe when there

is a biometric observation, while Eq. 2 is used when there

is no observation.

The value of p is governed by domain knowledge: if

there is no observation for a long period of time, we would

like p to be small, indicating that we are less certain that

the user is still safe (and thus more likely to have been at-

tacked). To achieve this effect, we defi nep = ek∆t, where

∆t is the time interval between the current time and the last

observation, and k is a free parameter that controls the rate

of decay, which the security administrator can defi ne. In

general, any decay function may be used to specify p, with

a suitable rate of decay.

4. Integrating biometric feedback into the OS

Having considered some issues in the use of biometrics for

security, we now consider design issues relating to its in-

tegration into the operating system to make the whole sys-

tem reactive. We consider two mechanisms for reaction:

delaying processes when Psafe < Tsafe, or suspending them

entirely, as in Somayaji’s work [16].

Our model of protection is intended for single computer

use to which users login through a bitmapped display (usu-

ally the console) that is directly connected to it. We also

assume that biometric sensors feed data directly to the com-

puter thereby insuring the integrity of both capturing and

forwarding of the data for processing. Our current design

affords continuous authentication protection to the “interac-

tive”processes started by the user after logging in. This al-

lows processes started upon system boot to be exempt from

monitoring, and for privileged processes started after user

login (such as executing setuid programs) to remain within

the purview of continuous authentication.

We consider the following design choices.

① Identifying interactive sessions. For us, an interac-

tive session consists of all processes derived from the ini-

tial console login. In Unix-based operating systems, there

is usually a focal point in the form of a display manager

(akin to getty), such as the KDE kdm program, that col-

lects the user name and password for authentication before

starting the user’s X session. By tagging this process and

every process derived from it through a fork()-like inheri-

tance mechanism, we can tag all processes belonging to a

session.

However, it is possible for the same user to login more

than once (at different times, therefore different sessions)

and still have processes from an earlier session running, so

we must decide whether later logins also authenticate pro-

cesses started in earlier interactive sessions, or whether each

login session is considered as distinct. The former choice

can be easily implemented by using a user id-based mech-

anism for process monitoring. In such a mechanism, only

a process’s uid fi eld is examined to determine whether it

is subject to continuous authentication. This would necessi-

tate that the same uid not be used for both login sessions and

for doing background activity because user logout would re-

sult in delaying or freezing such processes. An example of

a useful service that would be impacted is the use of cron

and at job processing which may happen at any time, even

when the user is not currently logged in.

A more general approach would be to identify the entire

process tree derived from the initial display manager as be-

longing to a session. This would enable daemons such as

cron and at to work without being subjected to continuous

authentication.

② When to enforce verification on processes. A simple

way to implement this is to make the check upon system call

entry. However, for compute bound tasks that do not make

frequent system calls, it might be better to also check them

before starting their time slice. It is not immediately clear

whether the latter mechanism would be useful in practice,

and that the former would not suffi ce.

③ Policies for controlling the monitored processes.

How should we penalize processes when Psafe<Tsafe? Do

we delay or freeze a process, and if we delay it, for how

long? Freezing a process may be considered as the extreme

form of penalty. In some sense, the penalty charged to a pro-

cess should depend on the “severity” of the action i.e., the

potential damage that can result if the action was permitted.

The study of Bernaschi et. al [2] is useful in that determina-

tion at the syscall level. They divide the Linux 2.2 system

call set into four threat levels with level one being the most

critical and level four being harmless. One possibility is to

use their classifi cation to assign penalty to a system call.

Our implementation (Section 5) provides a mechanism that

permits this specifi cation for individual system calls.

For non critical actions, we could delay processes. The

delay added to a system call ought to be a (inverse) func-

tion of the probability that the correct user is present at the

console. But this number is readily available: we can sim-

ply treat the Score S (see Section 2.1) as the required prob-

ability. Recall that in making a verifi cation decision, the

Score S is compared against the threshold T (in our case,

S =Psafe, T =Tsafe). We can turn this into a formula for

calculating delay:

δ(S) =

{

0, S ≥ T

e(
1

S
−

1

T) − 1, S < T

where e is the exponential function. δ imposes exponential

delay on the calling process as the probability of classifi ca-

tion is further away from the decision threshold T . Different

functions will result in different tradeoffs between security

and usability. A function that changes more rapidly as a

function of (T − S) will provide better security but likely

be less usable because FRR errors (incorrect classifi cations)

will impose heavy delays on processes.

In general, it is conceivable that process penalty is not

just a function of the system call but is rather a more general

function of the state of the system, the state and history of

the calling process, and the arguments of the system call.

Prior work on sandboxing, for example, that of Niels Provos

[12] is work in that direction. For our purpose, however,

the simpler mechanism of delaying or freezing processes at

system call entry suffi ces.

5. Implementation Architecture

Figure 8 depicts the various elements of our implementa-

tion and how they are integrated into the operating system.

We have implemented this architecture on the Linux 2.4.26

kernel [17] with the KDE graphical environment running on

the Redhat 9.0 distribution. For face image capture, we use

the Euresys Picolo capture card and the Canon VCC4 cam-

era. The captured images have a resolution of 768 × 576
pixels and are 24-bit deep. The fi ngerprint images are cap-

tured using the Secugen OptiMouse III. All experiments

were performed on an Intel Pentium 2.4 Ghz machine with

512MB RAM. The details of the various elements of the ar-

chitecture are described below under task-related groupings

for ease of understanding.

① Starting continuous verification. When a user logs in

at the console using the kdm session manager [3], kdm au-

thenticates the user using a password. Additionally, it starts

the face and fi ngerprint verifi ers and initializes themonitor

with the user-id of the user that has logged in. We achieve

this non-invasively by using PAM [10] to realize the side

effect. To do this we added an entry in /etc/pam.d/kde of

the form

session optional pam_contauth.so

which is invoked during the kdm execution. kdm, being

PAM aware, calls the PAM login authentication routine.

This results in calling pam_contauth which starts the f-

ace, fingerprint and monitor components of Figure 8, and

sets the session number of the kdm process to be the value

of a kernel maintained integer ca_global_session. This is

done through a newly added system call. A “session” con-

ceptualizes an interactive login session, and in order to tag

all the processes started by the user in a given session, we

maintain an integer variable in every process’s task_struct

that denotes its session. Because all the components of the

K Desktop Environment are forked off kdm, the value of

this variable is automatically inherited across process forks

and remains intact across execs. The ca_global_sessio-

n is a counter in the kernel that is incremented after every

successful kdm login.

Once the monitor has the user-id of the logged in user, it

loads the biometric profi le(the biometric features to be used

for verifi cation) corresponding to the user and starts biomet-

ric data capture using the video and fingerprint boxes in

Figure 8. The arrows in the diagram denote the direction of

������

����

�	�
�	�

����

�
������
��

�������������
���
��
���

�����

���

�

�
�

� �

!	���	����	"

�������	"

Figure 8. Architecture of a face verification system integrated with the operating system.

data flow. The monitor is the central coordinating entity in

the architecture that performs the following tasks:

1. it controls the rate at which biometric data is cap-

tured by querying each biometric device and runs

the modality-specifi c verifi er for that sample (Section

3.2).

2. it combines the verifi cation results from different

modalities obtained at different times into Psafe, the

probability that the computer system is still Safe (Sec-

tion 3.3).

3. it periodically communicates Psafe (indirectly, it actu-

ally computes and communicates the delay value in

jiffi es5) to the kernel so that the kernel can appropri-

ately freeze or delay processes.

② Controlling processes. To support the controlling of

processes, we modifi ed the Linux kernel as depicted in Fig-

ure 8. When a user process makes a system call, it traps

into the OS kernel and eventually executes the code that

implements the system call [8]. We introduced control pro-

cessing just before the system call is dispatched. To do this,

we add a kernel global variable (contauth_cb), which is

a function pointer to code that implements the processing.

This allows the processing code to be dynamically added to

a running kernel and also serves to localize kernel changes.

This function is invoked for every process on every system

call.

The total change in the Linux kernel amounts to three

lines of assembly code in arch/i386/kernel/entry.S, about

5A unit of kernel time used by many kernel functions in the Linux op-

erating system.

100 lines in a newly added C fi lecontauth.c and miscel-

laneous code including adding system calls to get and set

the kernel variable ca_global_session, and to set a pro-

cess’s session_id adding to another 50 lines. Currently we

have only one callback point in the kernel and that is where

a system call is dispatched. In the future we will proba-

bly add more callback points in the kernel for fi ner process

control, for example at the point where a process is con-

text switched. The performance impact of this change is

described in our micro benchmarks in Section 6.1.

The overall pseudo code of the kernel control processing

is as follows.

1 double x = current_biometric_classification;

2 boolean below_thresh = (x < threshold);

3

4 if(current->ca_sessid == 0)

5 do_nothing;

6 else if(current->ca_sessid == ca_global_session)

7 {
8 if(syscall is critical && below_thresh)

9 freeze yourself;

10 else if(syscall is !critical && below_thresh)

11 delay yourself by [e(1/S−1/T) − 1] jiffies

12

13 //!below_thresh ⇒ do_nothing;

14 }
15 else if(current->ca_sessid < ca_global_session)

16 unconditionally freeze yourself;

As used in line 4, each process has a “session id” in its t-

ask_struct denoted by the fi eld ca_sessid. A value of

0 means that the process is not rooted at any interactive

session. Such processes are not controlled in any way as

specifi ed by the action in line5. In the kernel, the variable

ca_global_session identifi es the session id of thecurrent

interactive session if it is in progress, or the session id of

the next interactive session if none is in progress. Line 6

tests whether the progress belongs to the current interac-

tive session and if it does, its activity is controlled. Other-

wise, it may belong to a prior interactive session (line 15)

in which case it is frozen. A utility program similar to ps

can conceivably be written that examines every task_stru-

ct and sends a signal to each process whose session id cor-

responds to a prior interactive session. This would clean out

frozen processes belonging to an earlier interactive session

that will never be executed.

Lines 8-11 specify that critical [2] system calls be

frozen, non-critical ones be left free while the remaining

ones be delayed. The delay value is an exponential function

of how far the current probability estimate of user presence

is from some suitable threshold.

(a) Micro benchmarks

Real User Sys

without contauth verifi cation 276 258 16

with contauth verifi cation 346 263 17

Overhead ≈ 25%

(b) Macro benchmarks

Figure 9. Performance benchmarks.

When Psafe exceeds Tsafe, all frozen processes in the cur-

rent interactive session are “unfrozen”, and delayed pro-

cesses are made runnable. This is practically important and

affects system usability because if the user looks away from

the camera and does not have his fi nger against the mouse,

the system may start delaying his processes. But as soon as

a good sample is obtained, the system ought not to penal-

ize processes that are currently being delayed and wait until

their duration of delay has ended. Because the exponential

function can produce very large delay values as Psafe → 0;

to ensure a rapid recovery once the monitor regains confi -

dence in user presence, the driver issues a wakeup call to

all processes that were delayed.

6. Performance

We describe results of both micro and macro benchmarks.

6.1. Micro benchmarks

To assess the performance impact of our Linux kernel

changes, we ran the lmbench [9] suite to determine the

overhead introduced in the system call path. The results

are shown in Figure 9.

The percent overhead on the y-axis is the percent in-

crease in time for executing a system call with our modifi -

cations for stopping and delaying processes when compared

with a standard 2.4.26 Linux kernel that can be downloaded

from www.kernel.org. The overhead is dependent on the

system call exercised. The overhead is as low as .4% for the

fork+execve combination to a 3.75% overhead for read. We

believe this to be acceptable.

6.2. Macro benchmarks

For macro benchmark tests we assessed the performance

impact on compiling the Linux (2.4.26) kernel. The com-

pilation generates about 1200 object fi les. We chose the

Linux kernel compilation because it pollutes the cache and

its processor utilization is signifi cant. The face biometric is

sampled twice per second while the fi ngerprint biometric is

sampled once in two seconds. The numbers in Figure 9 are

averages over three runs. The overhead is about 25% for

our operating environment.

7. Usability

A standard metric for assessing the usability of a biomet-

ric is its FRR. In our system, false rejects result in process

delays, so one way to measure usability is the delay that or-

dinary tasks suffer in their time-to-completion. If the over-

head (reflected as delay) introduced by the normal use of

biometrics is x% (see Section 6), then we are interested in

determining how much further ordinary tasks are delayed

under normal use of the system. We ran some simple op-

erations that ordinary users might perform in their use of a

computer to assess this difference.

1. ls -R /usr/src/linux-2.4.26 results in a “real” time

overhead of 36%, about an 11% increase.

2. ls -R /usr/local results in a “real” time overhead of

37%.

3. grep -R <key> /usr/src/linux-2.4.26 results in a

“real” time overhead of 44%.

All times are averages of 5 runs. So the impact on usability

of using the system in practice is an extra 10-20% degra-

dation. While the biometric verifi cation can conceivably be

offloaded to extra hardware, the delays resulting from FRR

errors cannot.

For our operating environment, our security goals seem

to be met although that is a qualitative judgment at this

point. We have tried to switch users suddenly and execute

rm /tmp/foo, but the system freezes before the command

is fully typed. A caveat is that key strokes by the imposter

may not be delivered to the application (shell) but only be-

cause it is not executing. When the correct user comes back,

these key strokes would be delivered and damaging action

performed. To be totally secure, the tty/pty driver or the

X server must somehow be made to discard all user input

when a process is delayed or frozen.

8. Conclusion and Future Work

We believe that the reactive system that we set out to build

works reasonably well at this point. Biometric verifi cation

is the main bottleneck in the computation and we are look-

ing into how to offload that into an FPGA-based implemen-

tation. We are also investigating how to derive a mathemat-

ical basis for computing the “sweet spot”of the system that

maximizes a utility function, such as U(u)+S(s) given the

various parameters of the system. u is the raw fractional

delay overhead in using the system and U(·) maps it to a

utility value. Similarly s is a security metric, e.g., the FAR

of the system, and S(·) maps it to a utility value. u and s

in turn are functions of the biometric modalities, their ROC

curves, the number of samples used for each biometric de-

cision, and the multi-modality fusion method.

The thrust of this paper is less towards biometrics per se,

although our multi-modal combination technique is new;

rather it is about how to integrate biometrics as a useful

general abstraction into the operating system so that all pro-

cesses can gain from it, with the aim of enhancing the se-

curity of the system. Now that newer biometric devices are

commonly appearing that can permit passive biometrics to

be integrated into normal computer use, such abstractions

can be useful to investigate at a lower layer so that computer

response can be provided in a more general and encompass-

ing manner.

Acknowledgements

This work was funded by the National University of Singa-

pore, project no. R-252-146-112. The anonymous review-

ers gave excellent feedback that has helped improve the pre-

sentation of the paper.

References

[1] A. Altinok and M. Turk. Temporal Integration for Contin-

uous Multimodal Biometrics. Proceedings of the Workshop

on Multimodal User Authentication, December 2003.

[2] M. Bernaschi, E. Gabrielli, and L. V. Mancini. REMUS:

A Security-Enhanced Operating System. ACM Transactions

on Information and System Security, 5(1):36–61, 2002.

[3] N. Crook. The kdm Handbook. Available at http://docs.k-

de.org/en/3.1/kdebase/kdm/.
[4] D. E. Denning. An Intrusion-Detection Model. IEEE Trans-

actions on Software Engineering, 13(2), February 1987.

[5] R. Duda, P. Hart, and D. Stork. Pattern Classifi cation, 2nd

edition. John Wiley and Sons, 2000.

[6] J. Kittler, M. Hatef, R. P. W. Duin, and J. Matas. On combin-

ing classifi ers. IEEE Trans. on PAMI, 20(3):226–239, Mar.

1998.

[7] G. N. Lambert. A comparative study of system response

time on program developer productivity. IBM Systems Jour-

nal, 23(1):36–43, 1984.

[8] R. Love. Linux Kernel Development. SAMS, 2003.

[9] L. McVoy and C. Staelin. lmbench: Portable Tools for Per-

formance Analysis. USENIX 1996 Annual Technical Con-

ference, January 1996.

[10] A. G. Morgan. The Linux-PAM System Administrators’

Guide. Documentation distributed with Linux-PAM. Avail-

able at http://www.kernel.org/pub/linux/libs/pam/pre/lib-

rary/.
[11] C. P. Pfleeger. Security in Computing. Prentice Hall, 2

nd

edition, 1996.

[12] N. Provos. Improving Host Security with System Call Poli-

cies. 12th USENIX Security Symposium, August 2003.

[13] A. Ross and A. K. Jain. Information fusion in biometrics.

Pattern Recognition Letters, 24(13):2115–2125, 2003.

[14] T. Sim, R. Sukthankar, M. Mullin, and S. Baluja. Memory-

based Face Recognition for Visitor Identifi cation. In Pro-

ceedings of the IEEE International Conference on Automatic

Face and Gesture Recognition, 2000.

[15] S. B. Solutions. Secugen optimouse iii. http://www.secug-

en.com/products/po.htm.

[16] A. Somayaji. Operating System Stability and Security

through Process Homeostasis. PhD thesis, University of

New Mexico, Department of Computer Science, July 2002.

[17] The Linux Kernel Archives. http://www.kernel.org/.
[18] P. Viola and M. Jones. Robust real-time object detection.

International Journal of Computer Vision, 2002.

[19] S. Zhang, R. Janakiraman, T. Sim, and S. Kumar. Continu-

ous Verifi cation Using Multimodal Biometrics. InThe 2nd

International Conference on Biometrics, 2006.

