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Abstract

Objective. Nearly all hospital-specific comparative analyses, based on administrative data, are presented using cross-sectional
displays. In this paper, we compare cross-sectional analyses with sequential monitoring using control charts.

Design. Analysis of administrative data to compare cross-sectional funnel plots with one type of control chart: the risk-
adjusted, expected-minus-observed plot.

Setting. Eighteen tertiary and base hospitals in Queensland, Australia, for the two financial years 2003–04 and 2004–05.

Participants. Patients admitted with acute myocardial infarction.

Main outcome measure. Risk-adjusted, 30-day, in-hospital, mortality rates.

Results. There were no outliers on the cross-sectional funnel plots for either of the 2 years using three-sigma limits and three
low-outliers and one high-outlier using two-sigma limits. One reasonable interpretation of these plots is that most of the vari-
ations are due to statistical noise and there is little to be learnt by seeking to understand the reasons for variation across hos-
pitals. In contrast, for the control charts, 28% of hospitals signalled for a relative increase of 75% above that for all hospitals
combined.

Conclusion. If the aim of clinical indicators based on administrative data is to provide a starting point for learning, then
control charting provides potentially more useful information than the more commonly used cross-sectional analyses. Control
charts provide an understandable and up-to-date overview that allows early detection of runs of good or bad outcomes that
can help hospitals identify areas for more in-depth self-monitoring and learning.

Keywords: control charting, data interpretation, information dissemination, quality indicators

By definition, hospital administrative data are primarily
collected for funding and other administrative purposes, not
for assessing quality-of-care. However, such data are increas-
ingly being used to derive hospital-specific clinical indicators.
The secondary nature of these analyses means that there are
particular concerns about residual confounding and measure-
ment error, with several commentators arguing that such
analyses should not be used to make definitive judgements
about performance. Instead they should be used to help hos-
pitals identify areas for more in-depth self-monitoring [1–3].
In spite of the limitations, it is likely that funding, purchas-

ing or coordinating agencies will continue to conduct
hospital-specific, comparative analyses based on administra-
tive data. There are a variety of reasons for this, some associ-
ated with value judgements about the need for accountability
and the lack of alternative data [4], and others related to the
perceived failure of hospital-based audit processes [5]. The
main issues now are not so much about whether such data
should be used, but about how to present them in a way that
conveys the most information [4].

Nearly all programs that use administrative data for
hospital-specific comparative analyses present cross-sectional
analyses [6]. That is, risk-adjusted hospital-specific outcomes
(e.g. mortality, length-of-stay) for particular conditions (e.g.
acute myocardial infarction, pneumonia) or procedures (e.g.
cardiac bypass surgery) are aggregated over a set period,
often 12 months. This paper compares cross-sectional ana-
lyses with sequential monitoring using control charts. The
aim is to illustrate the characteristics of control charts, which
are particularly good at detecting short runs of unusual out-
comes and providing opportunities for learning that might
be missed in cross-sectional analyses.

Methods

Data

Data were obtained from the Queensland Hospital Admitted
Patients Data Collection (QHAPDC), which contains, inter
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alia, the demographic characteristics of the patients, the
principal diagnosis, other conditions treated and the pro-
cedures performed. Queensland is the north-eastern state of
Australia with a population of 4.0 million, or 18% of the
total Australian population. QHAPDC is similar to adminis-
trative hospital databases in the other states and territories of
Australia and the USA, the UK and Canada.
We chose the 30-day, in-hospital mortality rate following

admission for acute myocardial infarction to conduct this
comparison of methods because it is a commonly used clini-
cal indicator derived from administrative data [7]. Patients
with acute myocardial infarction were identified using the
‘International Classification of Diseases’ International
Classification of Diseasesversion 10 codes I21x–I22x [8].
The data analysed were from 18 tertiary and base hospitals
in Queensland, for the two financial years 2003–04 and
2004–05.
In the Queensland Quality Measurement Program, the

clinical indicator for acute myocardial infarction has three
inclusion criteria: admitted through the emergency depart-
ment of the hospital, age between 30 and 89 years, and died
or discharge status of alive with length-of-stay greater than
3 days. The aim of these criteria is to reduce the number of
false-positive diagnoses of acute myocardial infarction in
administrative data [9].

Risk-adjusted, expected-minus-observed plots

Clinical indicators should be risk-adjusted for potential con-
founders (to the extent that this is possible using administra-
tive data) so that hospitals that treat higher risk patients are
not unfairly penalized. There are several types of risk-
adjusted control charts suitable for use in health applications
[10]. For this comparison, we chose the risk-adjusted,
expected-minus-observed plot. These are also called risk-
adjusted cumulative sum (CUSUM) plots [11], Cumulative
Risk-Adjusted Mortality (CRAM) plots [12], Variable Life
Adjusted Display (VLAD) charts [13] and cumulative excess
mortality charts [14]. We chose this type of control chart
because it gives an intuitive display of net number of ‘actual’
outcomes (e.g. deaths) versus the number ‘expected’ and is
routinely used in some clinical departments [15].
The risk-adjusted, expected-minus-observed plot has the

form:

Cn ¼
Xn

i¼1
Yi �

Xn

i¼1
Xi

(i) Xi is the actual outcome for the ith patient; for this
analysis, 1 if the patient died and 0 if the patient
survived.

(ii) Yi is the ‘expected’ risk (i.e. it takes values between 0
and 1) of the outcome (e.g. death) for the ith patient
assuming he or she has the same risk as the average
for all hospitals combined for his or her age, sex and
co-morbidity pattern. For this analysis, Yi was calcu-
lated from a logistic regression model, which included

five-year age groups as indicator variables, sex and
co-morbidities. The co-morbidities were shock, dys-
rhythmias, congestive heart failure, hypertension, dia-
betes, chronic renal failure, dementia, stroke and
malignancy. These co-morbidities were identified in
other studies [9, 16] (and confirmed in our data) as
predicting short-term mortality for acute myocardial
infarction. The plots are updated each month and the
risk adjustment model is re-calibrated each month
using the latest 12 months of data.

The position on the plot represents the number of outcomes
(e.g. deaths) at that hospital subtracted from the number
expected if that hospital had the same distribution of age,
sex and co-morbidities as all hospitals combined. A plot that
stays near the horizontal zero line indicates that the number
of deaths is similar to that expected. If a point on the plot is
below the horizontal zero line, then the number of deaths at
that time was greater than expected; if the point is above the
horizontal line, then the number of deaths is fewer than
expected. A run of more deaths than expected is represented
by a downward trend and a run of fewer deaths than
expected is represented by an upward trend [15].

Thresholds

The traditional way of describing the statistical characteristics
of a control chart is in terms of average run length to false
alarm and average run length to true alarm because the fam-
iliar Type 1 and Type 2 error rates are not appropriate. With
sequential monitoring the Type 1 error rate is not constant,
but increases with the length of the monitoring period. The
probability of eventually signalling an alarm is 1.0 for all
sequential tests, so that the Type 1 error rate will eventually
be 100% [17].
Ideally, average run length to false alarm should be long

(analogous to a low Type 1 error rate) and the average run
length to true alarm should be short (analogous to high stat-
istical power). In practice, there is a trade-off and a good
choice for a threshold, where the chart is said to signal, is
one where the average run length to true alarm is suitably
short and the average run length to false alarm is not unac-
ceptably short.
Average run lengths for different thresholds can be esti-

mated using simulations, Markov chains, or in certain cir-
cumstances by approximating formulae [18]. In this paper,
we used simulations. Briefly, we specified data sets of 10 000
patients (under the null and various alternative hypotheses)
and iterated 10 000 times to obtain estimates of the median
ARL to true and false alarm.
Alternative hypotheses were pre-specified as relative risk

reductions of 30, 50 or 75% or relative risk increases of 30,
50 or 75%. These were converted to odds ratios for use in
the simulations to calculate thresholds (usually denoted as h).
As others have done, we used the log-likelihood-ratio form
of the CUSUM to obtain the thresholds because of it is more
mathematically convenient than the expected-minus-observed
plot [15]. A description of the log-likelihood-ratio CUSUM is
given by Grigg et al. [11].
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Having thresholds for relative risk reduction as well as
relative risk increase emphasizes that we want to learn from
runs of both good and bad outcomes. Having three
thresholds for each emphasizes that the plot is not intended
to make definitive yes/no judgements, rather it is to be used
to identify when local investigation is warranted.
Control charts should be linked to specific learning

actions [19]. The plan in Queensland is to implement a
system such that if the chart signals for a relative risk increase
of 30%, then the hospital would be advised to investigate. If
the chart signals at a relative risk increase of 50%, then the
Area Health Service would be advised to investigate. If the
chart signals at 75%, then the Patient Safety and Quality
Board would be notified.
Table 1 shows the results of the simulations to obtain

thresholds (h) for the pre-specified relative risk reductions
(and increases) of 30, 50 and 75% and a pre-specified
average run length to true alarm of 100 patients. After
obtaining these thresholds (Table 1, row 1) we then used
them in subsequent simulations to obtain average run
lengths to false alarm (row 2).

Starting and reset values

In industry, the starting value for a control chart is usually
set at zero because the machine or process is known to be in
control (i.e. the machine has been recently calibrated) at the
start of monitoring. This is not usually the case in health
applications, where, before monitoring starts, there is no
reason to believe the process is either in-control or
out-of-control. We therefore set the initial log-likelihood-ratio
CUSUM value at h/2; that is, half the threshold value. As
Grigg et al. state, this makes sense intuitively because it
reflects uncertainty as to whether the process is in-control at
the start of monitoring. It avoids the problem of missing
early runs of poor outcomes [11].
Similar comments apply to resetting: in industrial appli-

cation, the machine or process is monitored until it is
out-of-control. Monitoring then stops, the machine is recali-
brated, and therefore known to be in-control, and monitoring
restarts with a log-likelihood-ratio CUSUM value of zero. In
health applications, there is usually no reason to believe the

process will be in-control after a signal and, as with the start-
ing value, it is probably better to start the monitoring again at
h/2, rather than zero.

Cross-sectional analyses

The aim of this paper is to compare cross-sectional analyses
and sequential monitoring using control charts. A common
method of cross-sectional analysis is to calculate the
risk-adjusted mortality ratio for each hospital over a set
period, say 12 months. Using the previous notation, the
risk-adjusted mortality ratio can be written as

P
Xn/

P
Yn.

To communicate this information, one option is the caterpil-
lar plot where three-sigma limits (equivalent to 99.8% confi-
dence intervals) are plotted for each hospital. If the
three-sigma limits for a particular hospital do not include the
average for all hospitals combined (1.0), then the hospital is
flagged as an outlier and suitable for further investigation.
An outlying hospital can either be a high-outlier (risk-
adjusted mortality rates greater than the average for all hospi-
tals combined), or a low-outlier (risk-adjusted mortality rates
less than the average for all hospitals combined). Another
option is to use two-sigma limits (equivalent to 95% confi-
dence intervals), but these carry with them the concern that
too many hospitals might be flagged as outliers because of
the problem of multiple statistical comparisons.
One problem with caterpillar plots is that they lead the

user to focus on a spurious rank ordering of hospitals [20].
A better way of presenting such data is the funnel plot in
which hospital-specific measures are plotted against their
statistical precision, so that the confidence limits funnel
around the average for all hospitals combined (1.0). For this
paper, we used funnel plots with two- and three-sigma limits
as defined by formulae given by Spieleghalter [21].

Results

After applying the inclusion criteria, there were 4158 admis-
sions for acute myocardial infarction to the 18 tertiary and
base hospitals in Queensland for the 2-year study period
(2079 admissions per year). The median number of admis-
sions per hospital, per year was 103; range (40–265); inter-
quartile range (74–154). The average 30-day, in-hospital,
mortality rate for all hospitals combined was 12.4%.
On the basis of the three-sigma criterion, no hospital

flagged in either financial year, either as a high or low-outlier
(Fig. 1). In 2003–04, the three hospitals that were low-
outliers on the two-sigma criterion might have been scruti-
nized further, so that all hospitals could potentially learn
from their lower than average rates. The hospital with the
highest risk-adjusted mortality rate in 2003–04 (labelled A in
Fig. 1) just failed to signal at the two-sigma limit. In 2004–
05, one hospital was a high-outlier based on the two-sigma
criterion (labelled B in Fig. 1) and further investigation of
this hospital might have been useful.
In short, the overall impression from the funnel plots is

that most of the hospitals lie within two-sigma limits. In

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Thresholds (h) and average run length to false alarm
for an average run length to true alarm of 100 and
pre-specified relative risk reductions and relative risk
increases

Relative risk
reduction

Relative risk increase

30% 50% 75% 30% 50% 75%

h 2.6 3.6 4.9 2.8 3.7 5.0
Average run
length to
false alarm

229 682 2447 264 834 3118

Control charts to monitor quality of hospital care
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contrast, there were several signals from the control charts; 5
of the 18 hospitals (28%) flagged for a relative risk increase
of 75% (Table 2).
Figs 2–5 show the risk-adjusted, expected-minus-

observed plots for four of the hospitals. In September 2003,
Hospital A (Fig. 2) signalled once at a relative risk increase of
75% and twice at relative risk of 50 and 30% (signals at 30%
not shown if they coincided with the 50% signals). The
signals draw attention to the difference between the seven
deaths that occurred during August and September 2003 and
the 1.7 that were expected.
For the entire financial year 2003–04, Hospital A had 95

admissions for acute myocardial infarction and 15 deaths.
The expected number of deaths was 8.2 which gave a

risk-adjusted mortality ratio of 1.83 (95% confidence inter-
val: 0.99–3.11). That is, for 2003–04 this hospital just failed
to signal at the two-sigma limit on the funnel plot. During
2004–05, there were 91 admissions and the control chart
was roughly horizontal, with only one signal at a relative risk
increase of 30%. For that financial year, 12 deaths were
observed when 8.0 were expected; risk-adjusted mortality
ratio: 1.50; 95% confidence interval: 0.78–2.62.
The number of deaths at Hospital B (Fig. 3) was similar

to the number expected from July 2003 to August 2004, but
for the 8-month period September 2004–April 2005, there
were 20 deaths, when only 10 were expected. The hospital
signalled at the 30% threshold on 3 November 2004 and 10
March 2005, at the 50% threshold on 7 February 2005 and

Figure 1 Cross-sectional funnel plots. Labels A–D refer to particular hospitals whose control charts are shown in Figs 2–5.

M. Coory et al.

34

D
ow

nloaded from
 https://academ

ic.oup.com
/intqhc/article/20/1/31/1786764 by guest on 21 August 2022



at the 75% threshold on 23 April 2005. This hospital sig-
nalled at the two-sigma level on the funnel plot for financial
year 2004–05, but not at the three-sigma level (observed: 24;

expected: 13.4; risk-adjusted mortality ratio: 1.79; 95% confi-
dence interval: 1.15–2.67). For the previous financial year
2003–04, when the control chart was flat, the observed
number of deaths was 15 and the expected number was 14.9
(risk-adjusted mortality ratio: 1.01). This hospital had 96
admissions for acute myocardial infarction in 2003–04 and
100 in 2004–05.
Fig. 4 shows the plot for one of the hospitals that signalled

as a low-outlier at the two-sigma level in the 2003–04 funnel
plot. As a final example, the risk-adjusted case-fatality rate
for Hospital D (Fig. 5) was about the state average for the
entire 2-year period.

Discussion

If the aim of clinical indicators, based on administrative data,
is to provide a starting point for learning, then control chart-
ing potentially provides more useful information than the
more commonly used cross-sectional analyses. Control charts
display details of the history of outcomes at a particular hospi-
tal and in many cases, learning actions could be instigated
based on the plot itself without using thresholds; for example,
the abrupt appearance of a downward slope as in Fig. 3.
Lovegrove et al. did not use thresholds for their chart on

cardiac surgery, arguing that this would imply what is, or is
not, acceptable performance [13]. We agree that control
charts should not be used to make definitive judgements, but
thresholds can be useful for simplifying and standardizing
procedures that identify when the data are worth a closer
look. Thresholds should not be used to label poor perform-
ance, but rather to identify when investigation is warranted.
There were several signals from the control charts, but

none from the cross-sectional charts at the three-sigma limits
and four at the two-sigma limits. One sensible interpretation
of the cross-sectional charts is that most of the variation is

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 Signals from control charts for 2 years 2003–04 to
2004–05

Relative risk
reduction

Relative risk
increase

30% 50% 75% 30% 50% 75%

No. of flags over 2
years

10 7 3 16 8 5

Flags per 1000
admissions

2.4 1.7 0.7 3.8 1.9 1.2

No. of hospitals that
flagged at least once
by size
40–74 admissions
per year
(5 hospitals)

2 2 2 1 0 0

75–99 admissions
per year
(4 hospitals)

0 0 0 4 4 4

100–149
admissions per
year (5 hospitals)

2 1 0 2 1 1

159–265
admissions per
year (4 hospitals)

2 2 1 2 1 0

Total no. of hospitals
that flagged at least
once

6 5 3 9 6 5

% of hospitals that
flagged at least once

33 28 17 50 33 28

Figure 2 Risk-adjusted, expected-minus-observed plot, Hospital A.
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due to statistical noise and there is little to be learnt by
seeking to understand the reasons for such variation across
hospitals [21].
We do not think that the signals from the control charts in

this study are ‘statistical’ false alarms. The statistical charac-
teristics of the control charts are summarized in Table 1. For
a relative risk increase of 75% the average run length to false
alarm is 3118 admissions (for a pre-specified average run
length to true alarm of 100 admissions). The median
number of admissions for acute myocardial infarction per
hospital per year was 103; so that for an average hospital a
statistical false alarm would occur once every 30 years
(3118/103). For a relative risk increase of 30%, a statistical
false alarm would occur about once every 2 or 3 years
(average run length to false alarm ¼ 264).

We have been careful to use the term ‘statistical’ false
alarm because even if chance (statistical noise) is an unlikely
explanation for the alarm, this does not necessarily mean
that there is a problem with quality of care. Data problems
and residual confounding are possible reasons for a signal
and could be the cause of a ‘non-statistical’ false alarm.
Local investigations of signals subsequently attributed to

non-statistical false alarms are not necessarily a waste of
time. For example, signals subsequently attributed to data
problems provide opportunities for learning to improve the
quality of data. There is some evidence that identification of
data problems and feedback can improve the quality of data
provided to large databases [22]. Similarly, signals sub-
sequently attributed to residual confounding provide oppor-
tunities to learn about patterns of referral of particular types

Figure 3 Risk-adjusted, expected-minus-observed plot, Hospital B.

Figure 4 Risk-adjusted, expected-minus-observed plot, Hospital C.
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of patients to different hospitals. This is particularly import-
ant in a jurisdiction like the state of Queensland, which has
small, widely dispersed communities outside the major cities.
Most published reports of control charting in health-care

have been based on relatively small clinical data sets [12, 13,
23–25]. There have been a couple of examples of control
charting based on larger data sets. For example, Aylin et al.
demonstrated their use in a pilot study for monitoring mor-
tality rates in primary health-care [26] and Speigelhalter et al.
conducted a retrospective analysis of three longitudinal data-
sets to demonstrate the use of risk-adjusted sequential prob-
ability ratio tests, a type of log-likelihood-ratio CUSUM [27].
Nevertheless, routine reporting, based on administrative
data, is still almost invariably based on cross-sectional
analyses [28].

Limitations of the comparison

The signals from the two methods that were compared in
this study were not calibrated in the same way. The control
charts were based on average run lengths that depend,
among other things, on likelihood ratios. Using likelihood
has advantages for sequential monitoring and has been used
for control charts in industrial settings since the 1950s [29].
One problem with likelihood methods, in general, is that the
strength of statistical evidence cannot be easily translated into
a probability [30]. This is not an important problem for con-
tinuous sequential monitoring, where it is better to use
average run lengths to true or false alarm, rather than prob-
ability (Type 1 and Type 2 error rates) to describe the charac-
teristics of the plot.
Although, strictly speaking, we did not compare like with

like, we used the method of statistical inference that is most
commonly used for each type of chart: likelihood for the
control charts and frequentist confidence intervals for the
cross-sectional plots.

Another limitation of the comparison is that our study did
not address the question of which one of the two charts is
preferred by hospitals. More work is needed to how best to
engage end-users of clinical indicators [4].

Limitations of control charts

One difficulty with control charts is selecting the value of h
where the chart is said to signal. For clinical trials, the con-
vention, admittedly arbitrary, is to set the Type 1 error rate to
0.05 (or less commonly 0.01) and the Type 2 error rate to
0.20 or 0.10, corresponding to power of 80 or 90%.
Unfortunately, there are no similar conventions to guide the
selection of values for the average run length to true or false
alarm, which might inform the selection of values for h. In
this paper, we specified the average run length to true alarm
to be 100 and found that 50% of hospitals flagged for a rela-
tive risk increase of 30 and 28% for a relative risk increase of
75%. We made an explicit decision in Queensland to have
more rather than fewer flags because we wanted to be sure
of identifying true flags and were tolerant of the costs of
investigating false flags.
There is an inherent trade-off between sensitivity and false

alarms in any monitoring system [31]. Charts with fewer
signals could be obtained by increasing the value of h and
consequently the average run length to both true and false
alarm. Given the incidence and cost of adverse events [32],
we prefer a highly sensitive monitoring system. With time,
some arbitrary conventions are likely to be developed to
guide selection of values for average run length to true and
false alarm, just as they have for P-values and statistical
power in clinical trials.
Another potential problem with control charting is seasonal

variation in the expected risk (Yn) of death. The control charts
in this paper were updated monthly, using a risk adjustment
model based on the data for that month and the previous 11

Figure 5 Risk-adjusted, expected-minus-observed plot, Hospital D.
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months. It might be better to use a risk adjustment model
that adjusts for seasonality. This is another example of possible
residual confounding and the potential effects might be
reduced if the variable ‘season’ was included in the risk-
adjustment model.
The mortality rates for our data on acute myocardial

infarction did show variation by month but it did not follow
any particular seasonal pattern. For example, for the two
financial years studied, the two months with the highest mor-
tality rates were April (15.6%) and August (14.2%); the
2 months with the lowest were July (10.9%) and December
(10.3%). More work is needed on how best to update
expected values in control charts.

Conclusion

Control charts are not confirmatory statistical tools, but
more closely resemble exploratory data analysis [10]. This fits
with methods of learning to improve quality called pragmatic
science, recently promoted by Berwick [33]. Briefly, this
involves tracking effects over time, especially with graphs and
then developing and testing theories for improvement using
small samples and short experimental cycles. This meshes
nicely with a framework where a coordinating agency pro-
duces control charts based on administrative data and then
refers any unusual sequence of outcomes for more in-depth
self-monitoring at a local level.
One strength of control charts is that they can detect pro-

blems early. The sooner a potential problem is flagged, the
easier it is to correct and to limit the risk to patients and pro-
fessional reputations [13]. The uncovering of several months
(or even years) of poor results, as cross-sectional analyses are
designed to do, is potentially distressing for hospitals and
patients and can lead to recriminations and blame, rather
than learning and improvement. Control charts provide an
understandable and up-to-date overview that allows detection
of runs of good or bad outcomes and can encourage local
investigation and learning.
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