';=‘ Machine Learning 36, 33-58 (1999)

(© 1999 Kluwer Academic Publishers. Manufactured in The Netherlands.

Using Correspondence Analysis
to Combine Classifiers

CHRISTOPHER J. MERZ cmerz@uci.edu
Department of Information and Computer Science, University of California, Irvine, CA 92697-3425

Editors: Salvatore Stolfo, Philip Chan and David Wolpert

Abstract. Several effective methods have been developed recently for improving predictive performance by
generating and combining multiple learned models. The general approach is to create a set of learned models
either by applying an algorithm repeatedly to different versions of the training data, or by applying different
learning algorithms to the same data. The predictions of the models are then combined according to a voting
scheme. This paper focuses on the task of combining the predictions of a set of learned models. The method
described uses the strategies of stacking and Correspondence Analysis to model the relationship between the
learning examples and their classification by a collection of learned models. A nearest neighbor method is then
applied within the resulting representation to classify previously unseen examples. The new algorithm does not
perform worse than, and frequently performs significantly better than other combining techniques on a suite of
data sets.

Keywords: classification, correspondence analysis, multiple models, combining estimates

1. Introduction

The machine learning and neural network communities have recently placed considerable
attention on the task of generating and combining multiple learned models with the goal
of forming an improved estimate. The learned models may be decision/regression trees,
rule lists, neural networks, etc. The problem is to decide which models to rely upon for
prediction and how much weight to give each. The goal of combining learned models is to
obtain a more accurate prediction than can be obtained from any single source alone.

Techniques using multiple models consist of two phases: model generation and model
combination. It is important to generate a set of models that are diverse in the sense that
they make errors in different ways. On the other hand, the types of errors made by the
model set directly determine the appropriate combining strategy (Perrone, 1994). When
the errors are uncorrelated, the optimal approach is to take the majority vote (also referred
to as plurality voting). However, when patterns exist in the errors of the learned models, a
more elaborate combining scheme is necessary.

The focus of this research is on model combination. A general technique is presented
for combining the predictions of a set of learned models, independent of how they are
generated. Section 2 defines the problem and explores the caveats of solving it in more
detail. The approach taken, called SCANN (Section 3), uses the strategies of stacking
(Wolpert, 1992) and correspondence analysis (Greenacre, 1984) to model the relationship

34 C.J. MERZ

between the learning examples and the way in which they are classified by a collection of
learned models. The new representation is captured in a space of uncorrelated dimensions.
A nearest neighbor method is then applied within the resulting representation to classify
unseen examples.

Section 5 demonstrates the properties of SCANN by applying it to two artificially gen-
erated model sets. In an empirical evaluation on a suite of data sets (Section 6), the naive
approach of taking the plurality vote (PV) frequently exceeds the performance of the con-
stituent learners. SCANN, in turn, typically exceeds the performance of PV and several
other stacking-based approaches. The analysis reveals that SCANN is not sensitive to
having many poor constituent learned models, and it is not prone to overfit by reacting to
insignificant fluctuations in the predictions of the learned models. Related work, limita-
tions, and future work are discussed in Sections 7 and 8. Concluding remarks are given in
Section 9. An expanded version of this work may be found in (Merz, 1998).

2. Problem definition and motivation

The problem of generating a set of learned models is defined as follows. Suppose two sets
of data are given: a training set

L= {(Xm, Yym).m=1,..., M},
and a test set
T={(x Yy, t=1..., T}

Each set is a sample of the true underlying functiaw). x; is a vector of input values
which are either nominal or numeric, agde Y = {C1, ..., C)v} where|Y] is the number
of classes. Now suppogkis used to build a set of functiong, = (fix),i =1,...,N},
each element of which approximatégx). The goal is to find the best approximation of
f (x) usingF.

One approach is to use a particular learning algorithm and a data resampling technique
to create a set of learned models and then combine their predictions according to a voting
scheme. The idea behind data resampling is that models generated from different samples
of the training data are likely to make errors in different ways. Data resampling techniques
include bootstrapping (Efron & Tibshirani, 1993) and data partitioning (Meir, 1995). In the
combining phase, thigh learned model’s prediction or vote for a given class has a strength
proportional to its assigned weigly;,. The class receiving the most votes is the final class
prediction. This is referred to asneighted majorityscheme, i.e.,

N

f(x) = arg maxZ ain(fi(x), c) (1)

ceY i—1

wherern (a, b) is one ifa is equal tob, and zero otherwise. One example of this approach
is Bagging (Breiman, 1996) where resampling occurs randomly with replacement and all

COMBINING CLASSIFIERS 35

models are assigned equal weight. Another example of this approach is Boosting (Freund,
1995) where the training examples are resampled as a function of how well they were
classified by the previously generated model. The models are then weighted according to
their estimated error rate.

Another approach is to use a variety of learning algorithms on all of the training data
and combine their predictions according to a voting scheme. This technique attempts to
achieve diversity in the errors of the learned models by using different learning algorithms
which vary in their method of search and/or representation. The intuition is that the models
generated using different learning biases are more likely to make errors in different ways.
Plurality voting with a model set consisting of a neural networks, decision trees, rule sets,
and other models was shown to be effective in (Merz, 1995). The search strategy of a
learning algorithm may also be modified to diversify the model set. Maclin and Shavlik
(1995) accomplished this by strategically initializing the weights of a neural network. Ali
and Pazzani (1995) generated decision lists (i.e., list of rules) where conditions are added
to arule stochastically. As with the first approach, the models are typically combined using
variants of the weighted majority strategy or plurality voting.

Though these approaches are effective, they emphasize the model generation and not the
model combination process (e.g., Opitz & Shavlik, 1996). As a result, most combining
methods are rather limited in their ability to identify the unique contributions of each model
and, at the same time, remain insensitive to the inherent redundancy in the model set. For
example, the strategy of taking the majority vote has been shown to be fairly effective (Merz,
1995), however, it may perform poorly in two scenarios: when a subset of redundant and
less accurate models comprise the majority, and when a dissenting vote is not recognized
as an area of specialization for a particular model. An effective combining strategy must
be able to override the majority vote for examples where the dissenting vote is more likely
to be correct.

This paper presents a technique for effectively addressing the issues described above.
First, the relationship between the examples and the way in which the learned models
classify them is represented in a set of uncorrelated dimensions using a technique known
as correspondence analysis (Greenacre, 1984). In each of the resulting dimensions, every
model is assigned one weight per possible class lakgli denotes the weight of thie¢h
model for thecth class in thekth dimension. The weighting scheme derived from this
representation may be as simple as the majority vote when the errors of the learned models
are uncorrelated. However, more elaborate weighting schemes are produced when the errors
of the models have patterns of correlation.

3. The SCANN algorithm

A learning algorithm can be broken down into four parts: representation, classification,
search, and evaluation. Section 3.1 discusses the first two components by describing how
the predictions of the learned models can be mapped to a new representation using cor-
respondence analysis (Greenacre, 1984), and how test examples can be classified using a
nearest neighbor algorithm. The search and evaluation aspects of SCANN are covered in
Section 3.2. A detailed trace of SCANN on a example problem is given in Section 4.

36 C.J. MERZ

3.1. Representation and classification

The representation used in SCANN is based on the variates derived using correspondence
analysis (Greenacre, 1984). Sections 3.1.1 and 3.1.2 show how stacking and CA are used
to generate the new representation. A nearest neighbor strategy is then used to locate and
classify test examples using the new representation (Section 3.1.3). Together, Stacking,
Correspondence Analysis, and Nearest Neighbor make up the core of the SCANN algorithm
which is summarized in Section 3.1.4.

3.1.1. Stacking. Once a diverse set of models has been generated, the issue of how to
combine them arises. Wolpert (1992) provided a general framework for doing so called
stacked generalizatioar stacking The goal of stacking is to combine the membersof
based on information learned about their particular biases with respéct to

The basic premise of stacking is that this problem can be cast as another induction problem
where the input space is the (approximated) outputs of the learned models, and the output
space is the same as before, i.e.,

L1 = {((f2x), f200), .., fnGi)), ¥, i =1,...,1)

The approximated outputs of each learned model, representbdxas are generated
using the following in-sample/out-of-sample approach:

1. Divide theL data intoV partitions.
2. For each partitiony,

e Train each algorithm on all but partitianto get{ fAn‘”}.

e Test each learned model{rfn*”} on partitionv.

e Pair the predictions on each example in partitiqine., the newnput spacg¢with the
corresponding output, and append the new examplé€s.to

3. Return’,

3.1.2. Correspondence analysisCorrespondence analysis (CA) (Greenacre, 1984) is a
method for geometrically modeling the relationship between the rows and columns of a
matrix whose entries are categorical. The goal here is to explore the relationship between
the training examples and their classification by the learned models. To do this, a model is
built using the prediction matrixvl, whereM; , = fr (%) (I<i=zl,andl<zn=<N). It
is also important to see how the predictions for the training examples relate to their true class
labels, so the class labels are appended to Mdfan(l x J) matrix (whereJ = N + 1).
For proper application of CAVYI’ must be converted to ai x (J - |Y])) indicator matrix
N, wheren; (j.;1¢) is @ one exactly whem;; = C¢, and zero otherwise.

The calculations of CA may be broken down into three stages (see Table 1). Stage one
consists of some preprocessing calculations performel aich lead to thestandard-
ized residual matrixA. In the second stage, a singular value decomposition (SVD) is per-
formed onA to redefine it in terms of three matricedy k), 'k xk), andV « 3, where

COMBINING CLASSIFIERS 37

Table 1 Correspondence analysis calculations.

Stage Symbol Definition Description
1 N (I x (J -1Y])) indicator matrix Records votes of learned models
n M Zle Ni,j Grand total of tabléN
r ri =Njy/n Row masses
c ¢ =Nyj/n Column masses
P (1/n)N Correspondence matrix
D¢ (J x J) diagonal matrix Masseason diagonal
D, (I x I') diagonal matrix Masseson diagonal
A D Y2(P — rcT)D, /2 Standardized residuals
2 A urvT SVD of A
3 F Dy Y2ur Principal coordinates of rows
G Dgl/ZVF Principal coordinates of columns

K = min(l —1, J—1). These matrices are used in the third stage to deterfijng, and
Gxk), the coordinates of the rows and column$ofespectively, in the new space. Note
that not allK dimensions are necessary. Section 3.1.4, describes how the final number of
dimensionsK %, is determined.

In the new geometric representation, rdysandfg. in F, corresponding to rowp and
g in N, will lie close to one another when examplpsandq receive similar predictions
from the collection of learned models. Likewise, rogés andg;. in G, corresponding to
columnss andt in N, will lie close to one another when the learned models corresponding
tosandt make similar predictions for the set of examples. Finally, the relationship between
arow and column il is captured as follows. Each colunsjn N records when a learned
model, j’, predicts a particular class label, An examplep, with the associated poifi,
will lie closer togs, when modelj’ predicts clasg’. An example illuminating the entire
SCANN algorithm will be given in Section 4.

3.1.3. Nearest neighbor. The nearest neighbor algorithm is used to classify points in a
weighted Euclidean space. In this scenario, each possible class will be assigned coordinates
in the space derived by correspondence analysis. Unclassified examples will be mapped
into the new space (as described below), and the class label corresponding to the closest
class point is assigned to the example.

Since the actual class assignments for each example reside in th¥¢ lestumns ofiN,
their coordinates in the new space can be found by looking in theYasows of G. For
convenience, these class points will be callad. . ., Cyy,.

To classify an unseen examplges;, the predictions of the learned models)ags; must
be converted to w profile, 7, of lengthJ -C, wheref ;.51 is 1/ J exactly whervl;j = Ce,
and zero otherwise. However, since the example is unclassifigglis of length(J — 1)
and can only be used to fill the firgt — 1) - C) entries inf'. For this reasonC different
versions are generated, i.8y, ..., fc, where each one “hypothesizes” thats; belongs

38 C.J. MERZ

Cl
1_
0.5t
g £
5
-
[=)
o CS f3
&
|3
|75}
05t £,
1B
C2
'1-5 1 1 1 1 1 1 1 1 1 1
i 08 06 -04 02 0 02 04 06 08 1

First Dimension

Figure 1L Sample classification of a test exampdsss, in two dimensionsCy, Cz, andCz denote the true class
points as extracted fro@. The pointd,, f2, andfs are the hypothesized locationsxatsi for each possible class.

to one of theC classes (by putting/1] in the appropriate column). Locating these profiles
in the scaled space is a matter of simple matrix multiplication, fes f.GL 1. Thef,
which lies closest to a class point, Classs considered the “correct” class, arglg; is
assigned the class lab&|

Figure 1 shows a test example as it is mapped into the first two dimensions of the scaled
space. In this case the point is classified as class 2 beéaliss closest to the point
associated with class Z;,, in the space. A complete example of SCANN is given in
Section 4.

3.1.4. The SCANN algorithm. Now that the three main parts of the approach have been
described, a summary of the SCANN algorithm can be given as a functhn 6§ and the
constituent learning algorithmg|, (see Table 2). The first step is to udgand.A to generate

the stacking data;,, capturing the approximated predictions of each learned model. Next,
L1 is used to form the indicator matrifl. A correspondence analysis is performed\bn

to derive the scaled spaok,= UT'V'T. The number of dimensions retained from this new
representationK x, is the value which optimizes classification ga (see Section 3.2).

The resulting scaled space is used to derive the row/column coordiraed G, thus
geometrically capturing the relationships between the examples, the way in which they are
classified, and their position relative to the true class labels. Finally, the nearest neighbor
strategy exploits the new representation by predicting which class is most likely according
to the predictions made on a novel example.

COMBINING CLASSIFIERS 39

Table 2 The SCANN algorithm.

SCANNWM, Lo, A)
Input

M: The matrix of predictions of the models i
Lo: The Level-0 learning data
A: A set of learning algorithms

Begin

1. UseLp and.A to generate stacking datd;

2. UseL; to form indicator matrixN
3. Perform CA orN to derive scaled spaca, = UT'VT
4. Choose number of dimensions to retd{r, as the value which optimizes

classification onC;
5. Derive row/column coordinatésandG
6. Return:U, T, VT, F andG

End

3.2. Search procedure for finding+K

The search aspect of SCANN is to choose the number of compoients) retain from the

set derived by the correspondence analysis component. The procedure begins by including
only the first component (i.eKx = 1) of the scaled space. Then the nearest neighbor
classification algorithm is used to classify the exampleaiirand the error rate fdx = 1

is recorded. The procedure continues by increakiagintil all the components are used in
classifying the examples. The valuelof with the lowest associated error rate is chosen.

4. An example of SCANN

This section provides a simple example to illustrate the SCANN algorithm on an atrtificial
data set. The predictions and truth values were artificially generated in a fashion similar to
the data set described later in Section 5.1. The procedure begins with the prediction matrix,
M’. Table 3 shows a collection of three models making predictions for 15 examples in a
3-class problem. The columns labelléd f,, and f3, contain the predictions of the learned
models for each example,. The “Truth” column contains the actual class values for each
example.

Table 4 shows the indicator matriX, generated fronV’. Note that each column i’
is expanded into one column for each possible class value. CojuimiN is associated
with a particular learned modélfy,, and a particular class label, A 1 appearing ilN;
indicates thatf,(x;) = ¢. OtherwiseN; ; = 0.

The probability matrixP, follows directly fromN by dividing by the grand total dfl,
i.e.,n = 60.

40 C.J. MERZ
Table 3 The prediction matrixM’, for 15 examples and 3 learned models.
Prediction

Example fq fa fa Truth

X1 C1 C1 C1 C1

X2 C2 C2 C2 C2

X3 C2 C2 C2 C2

X4 Co C2 C1 C1

X5 C3 C1 C3 C3

X6 C3 C3 C3 C3

X7 C1 C1 C3 C1

Xg C2 C3 C3 C3

X9 C2 C2 C2 C2

X10 C1 C2 C3 C3

X11 C3 C3 C3 C3

X12 C2 C1 C1 C1

X13 C3 C3 C2 C3

X14 C2 C2 C3 C2

X15 C3 C3 C3 C3
Table 4 Excerpts from the indicator matrii, associated with the prediction matri\, .

Prediction
f1 fa f3 Truth

Exam pI e C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3
X1 1 0 0 0 0 0
X2 0 0 0
X15 0 0 1 0 0 1 0 1 0 0 1

The row and column massesandc, are calculated by summing each row/columiNin
and dividing byn. Since each row il has four 1sf; = 4/60= 0.067, fori =1, ..., 15.
The column masses all differ as a function of how often each class is predicted by each
model (see Table 5). The vectarandc are used to form the diagonal matricBg,andD.

The calculations from above are now used to finish the first stage of CA (see Table 1) by

computing the standardized residual matrix (see Table 6),

A =D (P —rcT)D;Y?

COMBINING CLASSIFIERS 41

Table 5 Column masses, for model prediction columns iN.

f1 fa f3 Truth

C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3

.050 .117 083 .067 .100 .083 .050 .067 .133 .067 .067 .117

Table 6 Excerpts from the standardized residual mathix,

f1 .. Truth
Example C1 Co C3 - C1 Co C3
X1 0.2309 —0.0882 —0.0745 0.1833 —0.0667 —0.0882
X2 —0.0577 0.1008 —0.0745 —0.0667 0.1833 —0.0882
X15 —0.0577 —0.0882 0.1491 —0.0667 —0.0667 0.1008

Stage two of the calculations of CA consists of a singular value decompositin of
A=UxVT
Only eight singular values were found on the diagonalofndicating thatK = 8:
diag(z) =[0.8488 08111 04858 0395 03353 02488 01897 01393]

Stage three of the CA calculations in Table 1 may now be completed by deriving the
principal coordinates of the rows and columns, respectively:

F =D, Y?Ux
G =D.Y?vx

Table 7 shows the first three dimensions of the principal coordinatésinfthe scaled
space. These numbers represent the weights for each model, for each class, for the first
three dimensions.

The first two dimensions d¥ are plotted in figure 2. The class poifitg, C, andC3 from
G are also included in the plot to show their relationship to the example points. The point
labelledx, denotes examples;, X1; andxis, and the point labelles, denotes examples
X2, X3 andxg. Notice that examples where the models are in total agreement,.iaadx ., ,
lie closer to the correct class point indicating a higher degree of confidence for examples
with unanimous predictions. On the other, points with mixed predictions lie closer to the
origin, i.e.,X1o.

42 C.J. MERZ

Table 7 The principal coordinate&, of the columns oA. The first three of eight axes are shown. These values
represent the first three dimensions of the combining weights for each model for each class label.

Weight k=1 k=2 k=3
f1 a a11k 0.313 1.228 1.355
C a12k 0737 -0471 -0.332
cs a13k -1.220 -0.077 -0.348
fo C1 2,1k 0.310 1.315 0.078
C a2k 0.784 —0.690 0.330
C3 2,3k —1.188 —0.224 —0.458
fa C1 31k 1.001 1.270 —0.998
C @32k 0525 -1.153 —0.171
C3 33k —0.638 0.100 0.460
Truth C1 Cik 0.821 1.330 —0.336
C2 Cok 0.932 —1.226 0.271
C3 Csk —1.002 —0.059 0.037
2 -
X
1.5¢ 1
Q. C
21 1 o
X, o 3,1
1k ’ x12
£
g 051
g % E
a X
i %3 10
§ ofr XOCL3 C3
271 * xg
%3
05 X3 P
X4 %2
-1 X
o
32 C2
-1.5 1 1 L 1 1 t
s -1 05 0 0.5 1 1.5

First Dimension

Figure 2 The first two dimensions of the principal coordinatesFimnd G. The point labelledk, denotes
examples<s, X11 andxis. The point labellec, denotes exampleg, x3 andxg. A point labelledw; ; denotes
the weight off; on clas’;.

COMBINING CLASSIFIERS 43

Table 8 The possible values df x and their associated error rates for classifying the exampleis.in

K 1 2 3 4 5 6 7 8

Errorrate 0.222 0.111 0.111 0.055 0.055 0.055 0.055 0.055

The first two dimensions of the weights@are also plotted in figure 2. A point labelled
i j denotes the weight of on clas<;. Each model's weight lies close to the appropriate
class. When mapping an example into the space, the wejghserves to project the
example part of the way (from the origin) towargs;. For instance, exampleg lies close
to C; because all of the models predicted its class;asOn the other hand, exampieg
lies close to the origin because the weights cancel each other out when each class receives
one vote.

The search procedure for findifg« (described in Section 3.2) returned the values listed
in Table 8. SCANN chooses the first occurrence of the lowest valuk fgi.e., Kx = 4.
Note that the error rate need not improvekasgrows. The next section will illustrate how
the correlation of the errors of the learned models affect the valtexof

To classify a test examplg;ges, Where

mxTest — [C2 Cl C2]a
the following row vectors are generated to hypothesize each class:
f1=[00250 02500 00250 0250 0]
f,=[00250 02500 0 025 0 0 025 0]
f3=[00250 Q2500 0 025 0 O 0 025]
The hypothesized row vectors are mapped into the scaled space according to

fc = FcGE_l.

The hypothesized points in the four dimensions used{by are:

f, = [0.7047 03144 —0.3919 —0.7242] @)
f, = [0.7375 —0.4734 —0.0794 —0.8064] ©)
fy = [0.1678 —0.1136 —0.1998 —0.6957])

Figure 1 shows a plot of the hypothesized points with respect to the class points in the first
two dimensions. The distance betwdemndC;) is minimized wheri = 2 andj = 2.
Thus, the predicted class of exampigg:is C;.

44 C.J. MERZ

5. Understanding SCANN analytically

The models sets used by SCANN will have varying degrees of correlation in the errors
committed. When there is no apparent pattern in the errors committed, the errors are said
to be uncorrelated. If distinct patterns occur in the errors, é}gs particularly good at
classifying clas, then the errors are said to be correlated. In the former case, a simple
approach like PV is most effective (Perrone, 1994). In the latter case, a more complex
combining scheme is needed. An effective combining strategy must be able to adjust for
both situations. Sections 5.1 and 5.2 evaluate how SCANN handles these two scenarios.
Finally, Section 5.4 discusses how the scaled space derived using correspondence analysis
enhances the nearest neighbor classification algorithm.

5.1. Handling uncorrelated errors

To see how SCANN handles models sets with uncorrelated errors, an artificial daa,set,
was generated for a 3-class problem simulating the predictions of ten models. The true
function, f, was represented by 300 examples where each class was equally represented.
Model f; (1 <i < 10) was set equal té for each example with a 10% chance of being
wrong, in which case one of the incorrect classes was selected at random. The examples
were randomly divided into a training (2) and test (13) partition.

Kappa-Error diagrams (Margineantu & Dietterich, 1997) were used to visualize the
differences between the models (see figure 3). In a Kappa-Error diagramctioedinate
is thex statistic measured between two moddisand fy:

f oo O(fa, fp) — Oa(fa, fo)
K(fa, fb) = ~ ~
1 - ®2(fa, fb)

0141

o1zl o
o
AR @

0.1 o

efror rate

o.09F
[+]

0.08} o ©9¢°

o

0.07

0.06 s L L s . L L s
0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.8
kappa

Figure 3 Kappa-Error diagram for models in tidd data set.

COMBINING CLASSIFIERS 45

where

[Y]
R MR
O1(fa, fp) = #

o Y (Mg B,
Oz(fa, fo) = jzlﬁ';V

i=1

andB; ; is the number of examplesfor which f, =i and f, = j. « is a value between

zero and one measuring the level of agreement between two models on a set of examples;

is zero when the level of agreement between the models is the same as that by chance, and
k is 1 when the two models agree on every example. Yheordinate in a Kappa-Error
diagram is the average error of two models, i.e.,

error(f;) + error(f;)
5)

A point in the diagram reports the level of similarity and average error for two classifiers.

Figure 3 is a Kappa-Error diagram for all pairs of model81nwvhere bothx and the error
rates are calculated on the training set. Models in the lower right corner are very accurate
but very similar. Models in the upper left are dissimilar but have higher error rates. The
points in this diagram indicate that the models are evenly dispersed with respect to their
level of agreement and error. In this case, one would expect plurality voting (PV) to do
well.

SCANN and PV were run on the train/test partition from above, and both reported a test
error of zero (and Bappastatistic of 1). Similar results were obtained for different random
partitions. This indicates that SCANN behaves in the same way as PV when the errors are
uncorrelated.

5.2. Discovering unique contributions

Combining strategies must also be able to handle model sets which make errorsin a patterned
way. For example, some models in the set may have a particularly low error rate in certain
parts of the example space. An effective combiner will be able to isolate those areas of
expertise and use them to form an improved estimate. To test SCANN's ability to handle
this problem, a second artificial data s&®, was created where three of the models have
particular areas of expertise.

A2, is generated in the same wayAdsbut the examples are exposed to another round of
corruption. Each example has a 25% chance of being misclassified by every model except
one, otherwise it remains unmodified. In the modified examples, the single correct model is
chosen according to the correct class of the example, i.e., mégefs, and f3 are always
correct for classes 1, 2, and 3, respectively. The challenge for a combiner is to capitalize on
the areas of (relative) expertise for those three models. PV should not do well here because
the plurality vote is incorrect for approximately 25% of the examples.

46 C.J. MERZ

o)
=] (o] o o 8
03}
o] [e]
028}
[e]
[e] o
.g o OOOO o0!3
0.26
§ °© 6% o <)
@ (o)
Q
o0
0.24t ° o
o
0.22
°]

0.2 " " . " " " " s . s
05 052 054 0568 058 0.6 062 064 0866 068 0.7

kappa

Figure 4 Kappa-Error diagram for models in th data set.

Figure 4 shows the Kappa-Error diagram for the models on the training data. The diagram
shows little uniformity between models for either error ratecorThis indicates that the
models do not make errors in an uncorrelated fashion. In fact, the three points in the lower
left corner correspond to the pairings of modélsf,, - f3, and fi- f5. These three points
indicate that models$;, f,, and f5 are fairly different in the predictions they make, but have
similar and low error rates.

SCANN and PV were run on the corresponding test partition to obtain error rates of 0.158
and 0.225, respectively. Thestatistic echoes the difference between SCANN and PV with
a value of 0.88 on the test data. All of the examples which the two methods disagreed on
were cases where SCANN relied upon the only correct model.

5.3. Computational complexity

The time complexity analysis begins by assuming thiahodels have been built from
examples with|Y| possible classes (see Table 2). The time complexity for SCANN is
broken down according to the three stages of the algorithm:

1. Stacking To generate th&; data, each learning algorithm must be Mrtimes (see
Section 3.1.1). Therefore, the time complexity of this stage is a function of the constituent
learning algorithmsd, i.e.,

@ <arg ma)(?(An)V> .

neN

2. Correspondence analysi¥he dominating computation of this stage is the Singular
Value Decomposition oA which takes®(max(M, N|Y|)%) time (Press, 1992). This

COMBINING CLASSIFIERS 47

computation may be prohibitive for data sets with many examples. However, SCANN
does not make use of the left singular vectors containéthirnich provide the coordi-
nates of the training examples in the scaled space. Therefore, for larger data sets, only
the right singular vectors need to be computed, thus reducing this staygNqY |))
time. The SVD package used in this research (Dongarra & Grosse, 1998) allowed the
user to specify which singular vectors were to be computed.

3. Nearest neighborThe process of mapping an unclassified example into the scaled space
has low time complexity; thgY | hypothesized points are each compared toYhactual
class points, takin@(]Y|?) time.

The overalltime complexity of SCANN is determined by the stacking and correspondence
analysis components of the algorithm, i.e.,

O <max(arg maxO(A,)V, NZmax(M, N|Y|)>>)

neN

This can be reduced 1©((N|Y])®) if low complexity learning algorithms are used.i

(such as decision trees and naive Bayesian classifiers) and only the right singular vectors are
calculated in the correspondence analysis stage. Also, the stacking stage may be skipped
and/£; can be determined using the predictions of the learned models built from&jl of

5.4. Other aspects of SCANN

The properties of the correspondence analysis and nearest neighbor components of SCANN
mix together well to produce an effective combining strategy for the following reasons:

1. The parameteK « marks the last dimension of import, discarding the remaining ir-
relevant dimensions. This benefits nearest neighbor algorithms which are sensitive to
irrelevant or noisy dimensions in their attribute space.

2. Nearest neighbor strategies work better when the attribute space chosen is compact, i.e.,
the dimensions used are filled with examples and not sparsely populated or irrelevant.
Again, the choice of dimensionaliti %, will help to ensure that the dimensions retained
contain relevant information about the predictions of the learned models.

3. The nearest neighbor algorithm is stable. Breiman (1994) defines the stability of an
algorithm as its sensitivity to minor changes in the training data. Stable algorithms are
not sensitive to small changes in the training data, unstable algorithms are. A general
heuristic is to have the Level-0 learners be unstable, thus producing model set likely
to make uncorrelated errors. However, instability is not a desired trait for a combining
algorithm because one does not want the final prediction to be likely to change with
small variations in the Level-1 data. Breiman'’s study revealed that the nearest neighbor
algorithm is stable making it a desirable combining strategy.

48 C.J. MERZ

6. Empirical evaluation of SCANN

This section contains the results of two experiments comparing SCANN to several other
combining strategies on a collection of data sets. In the first experiment, the model set was
generated using multiple learning algorithms. The goal here was to achieve diversity in
the errors of the models by using completely different learning algorithms which vary in
their method of search and/or representation. The model set in the second experiment was
generated using Boosting (described in Section 7.1). Boosting generates a diverse model set
by strategically resampling the training data. The second experiment has taken the typical
Boosting approach of applying the same learning algorithm to all the data samples. Thus,
the first experiment is an evaluation of SCANN'’s ability to combine a small set of models
generated from a diverse collection of learning biases, whereas the second experiment is an
evaluation of SCANN on a larger collection of models with the same learning bias.

6.1. Classification data sets

The data sets used were taken from the UCI Machine Learning Database Repository (Merz
& Murphy, 1996), except for the unreleased medical data setardationanddementia A
description of the data sets used is given in Table 9. The data sets with missing values were
run only on the constituent learners capable of handling missing values (see Section 6.2).

Table 9 Data sets used in the empirical evaluation. The columns are, in order: name of data set; number of
examples; number of attributes; number of numeric attributes; number of classes; and whether missing values exist.

Data set Exs. Atts. Num. Class Missing
abalone 4177 8 7 3 No
balance 625 4 3 No
breast 286 9 4 2 Yes
credit 690 15 6 2 Yes
dementia 118 26 26 3 No
glass 214 10 10 7 No
heart 303 13 6 2 Yes
ionosphere 351 34 34 2 No
iris 150 4 4 3 No
krk 827 36 0 2 No
liver 345 6 6 2 No
lymphography 148 18 3 4 No
musk 476 168 168 2 No
retardation 700 20 0 2 No
sonar 208 60 60 2 No
vote 435 16 0 2 Yes
wave 300 40 40 3 No
wdbc 569 30 30 2 No

COMBINING CLASSIFIERS 49

6.2. Constituent learners

The constituent learning algorithmd, spanned a variety of search and/or representation
techniques. A standard implementation of Error Backpropagation (BP) (Rumelhart, Hinton,
& Williams, 1986) was used to generate neural network models. All networks consisted of
an input layer, a single hidden layer, and an output layer. For the input layer, a single input
node was assigned to each numeric attribute. Nominal attributes were allocated one input
node for each possible attribute value. Whenithevalue of a nominal attribute occurred

in an example, théth input node assigned to that attribute was assigned a value of one;
the other input nodes assigned to that attribute were assigned a value of zero. The training
examples were normalized to values between zero and one. Test patterns were normalized
by the same transformation used on the training set. The initial weights of the networks were
random values uniformly distributed in the interval(.3, 0.3]. A preliminary experiment

was conducted for each data set (using only the training data) to determine the number
of hidden units. Twenty percent of the training data was set aside as a validation set for
determining when to stop training.

The CN2 algorithm (Clark & Niblett, 1989) was used to generate rule lists. Clark and
Niblett's version 6.1 was used with the default parameters.

Decision trees were generated using C4.5 (Quinlan, 1993) and OC1 (Murthy et al., 1993).
The default parameters were used for both algorithms. A second version of OC1 was run
allowing only axis-parallel splits.

Two nearest neighbor approaches were used: PEBLS (Cost & Salzberg, 1993) and the
first nearest neighbor (1-NN). For PEBLS, numeric attributes were discretized into ten bins
spanning the range of possible values.

A naive Bayesian classifier (Duda & Hart, 1973) was also used. Numeric attributes were
discretized in the same fashion as for PEBLS.

Depending on the data set, anywhere from five to eight algorithms were applied. OC1
and 1-NN were run only on data sets with all numeric attributes and no missing values (see
Table 9). CN2 was not run on data sets with nominal attributes exceeding the maximum
number of possible values.

6.3. Other combining methods

In addition to PV and SCANN, two other learners were evaluated using the stacking
data,lq:

1. Stacking with Backpropagation (S-BP) is a good straw man because it is capable of
capturing non-linear relationships in the predictions of the learned models.

2. Stacking with naive Bayesian classification (S-Bayes) is also a worthy straw man because
it has proven to be a simple and effective Level-0 learner.

6.4. Experiment 1

Thirty runs per data set were conducted using a training/test partition of 70/30 percent.
Table 10 contains comparisons of the combining strategies to the baseline combiner, PV.

50 C.J. MERZ

Table 10 Comparison of combining strategies to PV.

PV SCANN vs. PV S-BP vs. PV S-Bayes vs. PV

Data set Error Error w-l Ratio Error w-l Ratio Error w-l Ratio
abalone 80.35 39.38 30-0 490 40.08 30-0 499 39.11 30-0 487

bal 13.81 1243 22-4 900 11.86 21-2 .859 1371 14-12 .992
breast 4.31 3.82 15-2 .886 3.97 16-7 .920 3.80 16-2 .881
credit 13.99 1398 10-8 999 14.16 9-14 1.012 14.01 8-9 1.001
dementia 32.78 3241 12-12 989 3398 11-14 1037 30.56 16-9 .932
glass 3144 3169 11-15 1.008 36.41 3-25 1.158 38.21 2-26 1.215
heart 18.17 1751 124 964 18.13 12-15 998 17.66 12-3 972
ion 3.05 211 30-0 .691 3.93 1-29 1.289 3.96 0-29 1.299

iris 4.44 4.52 1-2 1.017 4.59 5-6 1.033 6.52 1-18 1.467

krk 6.67 6.87 3-10 1.030 7.20 7-20 1.080 7.66 5-23 1.149
liver 29.33 30.35 12-14 1.035 31.57 9-19 1.077 30.032-16 1.024
lymph 17.78 18.07 9-10 1.017 20.67 6-21 1.162 19.56 8-18 1.100
musk 1351 10.97 191 812 12.02 14-8 .889 11.28 20-2 .835
retard 32.64 31.66 24-0 970 31.34 21-3 960 32.30 14-0 .990
sonar 23.02 22.78 5-5 990 24.84 5-12 1.079 23.17 1-2 1.007
vote 5.24 473 19-3 .903 476 16-7 .908 4.68 20-5 .893
wave 2194 2211 5-10 1.008 24.33 3-14 1109 22.11 7-8 1.008
wdbc 4.27 4.27 0-0 1.000 4.71 3-11 1.103 4.30 2-3 1.007

The first column gives the mean error rate of PV. The next three columns compare SCANN
to PV using the measures of error rate (“error”), wins and lossed (), and the error ratio

of SCANN to PV (“ratio”). A ratio value less than 1 in th@ ¥/s. b” columns represents

an improvement by method over methodb. The remaining columns report the same
measures for S-BP versus PV and S-Bayes versus PV. Table entries comparingarethod
methodb are reported in boldface when the difference between the methods is significant
at least at the .01 level using a two-tailed sign gest.

SCANN posts seven statistically significant wins over PV which are echoed by the
measure of wins and losses, and the error ratio comparisons. On average, SCANN re-
duces error by 7.1% with reductions between 3 to 50%. S-BP has three significant wins
over PV and four significant losses. S-BP has an average increase in error over PV by
2.6%. S-Bayes scores five significant wins and losses with an average increase in error
of 3.95%.

The most dramatic improvement of the combiners over PV came ialthtonedata
set. A closer analysis of the results revealed that 7 of the 8 learned models were very
poor classifiers with error rates around 80%, and the errors of the poor models were highly
correlated. This empirically demonstrates PV’'s known sensitivity to learned models with
highly correlated errors. The other combining strategies were able to identify that two of
the classes labels were frequently confused. The resulting weighting schemes reversed this

COMBINING CLASSIFIERS 51

Table 11 Comparison of SCANN to the best individual model and the other combining strategies.

SCANN Best Ind. vs. SCANN S-BP vs. SCANN S-Bayes vs. SCANN
Data set Error Error w-l Ratio Error w-l Ratio Error w-l Ratio
abalone 39.38 42,97 2-28 1.091 40.08 8-22 1018 39.11 19-10 0.993
bal 12.43 1259 10-16 1.013 11.86 20-7 0.954 13.71 7-21 1.103
breast 3.82 4.04 7-15 1.058 3.97 6-8 1.038 3.80 1-0 0.994
credit 13.98 1475 7-22 1.055 14.16 9-13 1.013 14.01 6-8 1.002
dementia 32.41 34.35 9-17 1.060 33.98 9-15 1.049 3056 16-10 0.943
glass 31.69 36.31 6-22 1146 36.41 0-25 1149 38.21 1-29 1.206
heart 17.51 17.47 10-17 0.998 18.13 7-15 1.036 17.66 5-7 1.008
ion 2.11 6.64 1-29 3.149 3.93 0-29 1.866 3.96 0-30 1.881
iris 4.52 511 11-12 1.131 4.59 4-5 1.016 6.52 1-18 1.443
krk 6.87 7.72 6-16 1.125 7.20 5-14 1.049 7.66 5-22 1115
liver 30.35 3337 6-21 1.099 3157 7-16 1.040 30.03 13-14 0.989
lymph 18.07 1748 13-10 0.967 20.67 6-19 1.143 19.56 6-15 1.082
musk 10.97 15.03 0-21 1.371 12.02 7-12 1.096 11.28 5-11 1.029
retard 31.66 30.57 24-2 0.965 31.34 159 0.990 32.30 6-16 1.020
sonar 22.78 24.13 6-11 1.059 24.84 3-12 1.091 23.17 4-6 1.017
vote 4.73 486 10-16 1.027 4.76 9-8 1.005 4.68 4-2 0.989
wave 22.11 26.33 3-18 1.191 24.33 3-15 1101 2211 8-10 1.000
wdbc 4.27 4.97 5-15 1.164 4.71 3-11 1103 4.30 2-3 1.007

effect by counting a vote for one of the confused classes as a vote for the other, and vice
versa. PV performs well on thglass lymphandwavedata sets where the errors of the
learned models are measured (usingdlséatistic) to be fairly uncorrelated. Here, SCANN
performs similarly to PV, but S-BP and S-Bayes (exceptfave appear to be overfitting

by making erroneous predictions based on insignificant variations on the predictions of the
learned models. This demonstrates SCANN’s ability to perform like PV when the errors
of the models are less correlated.

Table 11 compares SCANN to the best individual model for each data set, as well as the
combining strategies S-BP and S-Bayes. The best individual model was chosen based on
the test results and represents the best that an oracle model selection strategy could do. The
same measures as in Table 10 are used.

SCANN has seven significant wins and one significant lossdtamdatior) with respect
to the bestindividual model. This demonstrates SCANN'’s ability to exceed the performance
of any individual model, even when selected via an oracle strategy.

Comparing the other combining strategies to SCANN reveals that S-BP outperforms
SCANN on one data set but has five significant losses. Similarly, S-Bayes posts no wins but
has five losses. The wins by SCANN are typically on data sets where the most appropriate
weighting strategy is plurality voting. SCANN’s ability to discard superfluous fluctuations
in the models’ predictions makes it less sensitive to overfitting than S-BP and S-Bayes.

52 C.J. MERZ

Table 12 Summary of Section 6.5.

PV SCANN vs. PV Boosting vs. PV SCANN vs. Boosting
Data set Error Error w-l Ratio Error w-l Ratio w-l Ratio
abalone 88.29 38.75 30-0 0.439 8841 11-18 1.001 30-0 0.438
bal 19.06 1496 29-0 0.785 19.15 9-13 1.005 29-0 0.781
breast 4.36 4.34 5-4 0.994 4.41 7-7 1.011 5-5 0.983
credit 14.04 1404 10-11 1.000 14.15 12-12 1.008 15-8 0.992
dementia 3222 3213 11-11 0.997 32.13 7-7 0.997 10-10 1.000
glass 27.03 27.03 13-12 1000 27.13 11-13 1.004 14-11 0.996
heart 22.64 2216 @ 11-7 0.979 2253 10-12 0.995 13-8 0.984
ionosphere 6.29 6.13 9-3 0.975 6.51 7-9 1.035 11-6 0.942
iris 5.33 5.11 4-1 0.958 5.56 1-4 1.042 7-1 0.920
krk 7.86 9.58 5-22 1.219 8.68 3-22 1.104 7-22 1.104
liver 30.83 2862 195 0.928 29.87 16-5 0.969 18-8 0.958
lymph 17.19 16.89 9-8 0.983 17.19 8-8 1.000 10-12 0.983
musk 9.88 1044 11-17 1.057 10.72 5-19 1.085 15-12 0.974
retard 36.18 35.31 21-6 0.976 37.50 2-27 1.034 28-1 0.944
sonar 2249 2280 9-13 1.014 23.60 7-17 1.049 14-12 0.966
vote 4.48 4.53 5-8 1.011 427 115 0.955 4-9 1.060
wave 19.78 1985 10-16 1.004 19.67 12-8 0.994 11-16 1.009
wdbc 3.29 3.33 9-9 1.012 3.43 5-8 1.041 10-7 0.972

6.5. Experiment 2

Using the same train/test partitions as in Section 6.4, a model set was generated using
Boosting and the C4.5 decision tree algorithm. A total of 50 trees were built. SCANN was
compared to the standard Boosting combining scheme where each model is assigned a
single weight as a function of its performance on its respective training sample.

Thirty trials were conducted using the data sets described above. A summary of the
performances of PV, SCANN and Boosting are reported in Table 12. The error percentages
for PV are contained in the second column. The columns under ‘SCANN vs. PV’ contain
the error percentages, win/loss tallies, and error ratios (i.e., SCANN/PV) for SCANN versus
PV. The same comparisons for Boosting and PV are contained in columns labeled ‘Boosting
vs. PV'. The last two columns contain a direct comparison of SCANN and Boosting.

In general, SCANN performs better than PV or Boosting. SCANN significantly im-
proves upon PV on four of the data sets, and Boosting on three. Boosting posts three
significant losses to PV. As with Section 6.4, thiealonedata set is where the largest
win occurs. The weighting strategies of PV and Boosting do not allow for the identi-
fication of confused classes (as described in the previous section) because the model’s
weight applies to all predictions. On the other hand, orkifielata set, SCANN increases
error by 21.9% over PV and 10.4% over Boosting. This is one case where SCANN'’s

COMBINING CLASSIFIERS 53

weighting scheme was unable to simplify to plurality voting. The overall improvement by
SCANN stems from its ability to simplify to plurality voting when the errors are uncorre-
lated, or to derive a more elaborate combining strategy when the errors contain patterns of
correlation.

7. Related work

Work done in combining classifiers can be broken down into two major categories: those
which assign a fixed weight to each model, and those which allow the weight for each model
to change as a function of the example being classified. Sections 7.1 and 7.2 delineate these
approaches and relate them to SCANN.

7.1. Constant weighting functions

When combining classifiers with fixed weights, a model’s prediction or vote for a given
class has a strength proportional to its assigned weight. The class receiving the most votes
is the final class prediction. This is referred to aseighted majorityscheme, i.e.,

N
foo =argmay aill i) =c|

ceY i1

whereY is the set of possible classes, aa=Db| is one ifa is equal tob, and zero
otherwise.
The simplest way of choosing the weights is giving each model equal weight(i=.,
1/N), and predicting the class with the most frequent vote. This was referred earlier as
the plurality vote (PV) and is also known as the basic ensemble method (BEM) (Perrone
& Cooper, 1993). This approach has frequently been used as a straw man combining
scheme for comparing to other combining schemes (Merz, 1995), or as a simple combining
scheme to evaluate model generation strategies (Breiman, 1996; Maclin & Shavlik, 1995). A
more elaborate weighting scheme derived by Perrone and Cooper (1993) is the general
ensemble method (GEM). GEM is different from SCANN in that models are assigned fixed
weights, and GEM has difficultly dealing with models that make highly correlated errors.
One can also combine learned models using logistic regression. For each,dasste
P(Yc | X) by 7 (X) wherex = {X1, Xa, . .., X} represents whether classifidis 2, . .., fn
chose class. For examplex; = 1 if fA,- predicted class. Using the logistic response
function,

_ exp(y + BiXy + BoXo + - - + BNXN)
1+exply + BiXy + BaXo + - - + BNXN)

7 (X)

and

lo T _ + BiX1 + BoXo + - - - + BnX
gl—n(x)_y BiXy + BaXo + - - - + BNXN

54 C.J. MERZ

wherey and{g;} are constant parameters. Solving for these parameters using a standard
approach (i.e., iterative least squares) enables the calculation of the probability of each
class. Using these probabilities as the weightdhe class with the highest probability is
selected.

To date, logistic regression has not been applied to learned models with class label output
(versus class probabilities). However, Ho, Hull, and Srihari (1994) have successfully
applied it to learned models with class rankings with positive results. Due to the large
number of free parameters (i.&(M + 1)), this approach is only good for a small number
of learned models and classes with plenty of training data.

More ambitious methods incorporate the estimated accuracy of a learned model in choos-
ing its weight. Opitz and Shavlik (1996) do so as follows,

. (A-E)
Z;\Ll(l_ Ej)

Qi
where E; the estimate of modeéls accuracy based on performance on a validation set.
Intuitively, modeli gets more weight as its estimated performance increases relative to the
estimated cumulative performance of the other models. The weight assignment scheme in
this work is limited in that it handles redundancy in the model set poorly, i.e., several very
similar models will receive the same weight, possibly overpowering the vote of another
model making a unique contribution.

Two other methods for assigning fixed weights to each model are Bagging (Breiman,
1994) and Boosting (Schapire, 1990). These methods are tightly coupled to the model
generation phase rather than being general combining techniques. The goal is to generate a
set of models which are likely to make uncorrelated errors (or to have higher variance) thus
increasing the potential payoffs in the combining stage. Each model is generated using the
same algorithm, but different training data. The data for a particular model is obtained by
sampling from the original training examples according to a probability distribution. The
probability distribution is defined by the particular approach.

Bagging exploits the variance of a learning algorithm by applying it to various version
of the data set, and averaging the predictions of the models produced uniformly to reduce
prediction error due to variance in the models. Variations on the training data are obtained
by sampling from the original training data with replacement. The probability of an example
being drawn is uniform, and the number of examples drawn is the same as the size of the
original training set. The underlying theory of this approach indicates that the models should
be weighted uniformly. This approach appears to be effective (Freund & Schapire, 1996;
Quinlan, 1996), but may be limited by the particular algorithm being bagged. SCANN is
more broadly applicable because it can work with multiple learning algorithms at the same
time.

Another resampling method has its roots in what is known as Boosting, initially developed
by Schapire (1990). Boosting is based on the idea that a set of moderately inaccurate rules-
of-thumb (i.e., learned models) can be generated and combined to form a very accurate
prediction rule. Freund and Schapire (1995, 1996) have developed several algorithms
for Boosting. This technique assigns a weight to each example in the training data and

COMBINING CLASSIFIERS 55

adjusts it after learning each model. Initially, the examples are weighted uniformly. For
learning subsequent models, examples are reweighted as follows: “easy” examples which
are predicted with low error by previously learned hypotheses (i.e., learned models) getlower
weight, and “hard” examples that are frequently misclassified are given higher weight. The
data sets for each learned model are resampled with replacement according to the weight
distribution of the examples.

A combining strategy for Boosting is described in (Freund & Schapire, 1995) Ada-
Boost.M1 algorithm. Théth model’s vote for a given class is a function of its eregrj.e.,

1-¢€)

€

aj = log

In this scheme, learned models which make fewer errors (on the distribution of examples
they see) get higher weights. Like Bagging, Boosting places more emphasis on generating
a diverse model set. Itis possible that a more elaborate non-constant weighting scheme like
SCANN could improve upon the combining approach above.

Several other resampling techniques have been explored in the literature (Meir, 1995;
Krogh & Vedelshy, 1995; Chan & Stolfo, 1995). However, they are not discussed in detail
because the emphasis here is on the combining stage.

7.2. Non-constant weighting functions

The most prevalent method in the literature for dynamically deciding how to weight a
collection of classifiers is the “mixture of experts” approach (Jacobs et al., 1991) which
consists of several different expert learned models (i.e., multilayer perceptrons) plus a gat-
ing network that decides which of the experts should be used for each case. Each expert
reports a class probability distribution for a given example. The gating network selects
one or a few experts which appear to have the most appropriate class distribution for the
example. During training, the weight changes are localized to the chosen experts (and the
gating network). Experts which classify the example Welle given more responsibil-

ity for that example and experts which do not classify the example well are given less
responsibility. The weights of other experts which specialize in quite different cases are
unmodified. The experts become localized because their weights are decoupled from the
weights of other experts, and they will end up specializing on a small portion of the input
space.

Jordan and Jacobs (1994) expanded on this approach allowing the learned models/experts
to be generalized linear models. The experts are leaves in a tree-structured architecture
whose internal nodes are gating functions. These gating functions make soft splits allowing
data to lie simultaneously in multiple regions. The mixture of experts approach is different
than SCANN in that it is more involved in the model generation phase. SCANN deals with
the models after they have been learned.

Tresp and Taniguchi (1995) derived a collection of non-constant weighting functions
which can be used to combine regressors or classifiers. The proposed methods weigh a
learned model according to its reliability in the region of the given example. Reliability
is defined in terms of either the model's accuracy in the region of the given example, or

56 C.J. MERZ

the amount of variability of the model’s predictions in that region. All of the approaches
require that the weights be positive and sum to one. The methods proposed have not been
evaluated empirically, but may prove useful in extending methods like SCANN to allow for
more elaborate non-constant weighting functions.

8. Limitations and future work

The most significant limitation of SCANN is that the final combining scheme results in a
loss of interpretability. One of the biggest advantages of using a single symboalic learning
algorithm is that an interpretable result is produced, such as a decision tree or a rule list.
This limitation is common to all approaches to model combination to date. Shannon and
Banks (1997) have developed a technique for producing a single interpretable tree from a
set of trees, but the technique is limited to decision trees. Producing a single model from a
homogeneous model set is a logical place to start working on the interpretability problem.
A more ambitious approach would be to try to identify the most reliable rule, decision tree
path, etc., from a model set for a given example.

The SCANN algorithm may be extended in several ways. The nearest neighbor compo-
nent of SCANN could be replaced. A possible substitute combining strategy would be to
fit a set of Gaussians functions (Duda & Hart, 1973) (i.e., one per class) to the intermediate
representation derived by the correspondence analysis stage. The space derived by CA
serves as a good set of attributes for Gaussian models because it is compact and fairly free
of noise. This extension could provide class probability output, as opposed to simple class
label output, even if all of the constituent models produced class label output.

SCANN is a non-constant weighting scheme in the sense that each model has one weight
per class. A more dynamic extension would be to incorporate some of the proposed non-
constant weighting schemes of Tresp and Taniguchi (1995) which derive weights according
to the example being classified.

In this work SCANN is only applied to learned models which report class labels. The
analysis needs to be extended to model sets which report class probabilities and class rank-
ings. The inclusion of probabilistic models may lead to a more robust combining scheme,
e.g., as class probabilities more accurately reflect the confidence a learned model has in its
predictions. Class probabilities could easily be used by SCANN by filling the indicator ma-
trix with the probabilities instead of a single ‘1’ for the predicted class. Applying SCANN
to model sets that report class rankings may also be fruitful for tasks such as character
recognition (Ho, Hull, & Srihari, 1994) and information retrieval.

9. Conclusion

A novel method has been introduced for combining the predictions of heterogeneous or
homogeneous classifiers. It draws upon the methods of stacking, correspondence analysis
and nearest neighbor. In an empirical analysis, the method proves to be insensitive to poor
learned models and matches the performance of plurality voting as the errors of the learned
models become less correlated.

COMBINING CLASSIFIERS 57

Acknowledgment

This research was supported by AFOSR grant F49620-96-1-0224.

Notes

1. HenceforthZ will be referred to aLg for clarity.

. Note thatj may also be associated the Truth column.

3. The author realizes that significance tests on resampled data have a higher probability of falsely detecting
significant differences (Type | error) (Dietterich, 1996; Salzberg, 1997). To guard against this, a high confidence
level was used in conjunction with multiple evaluation measures.

4. Note that this resampling technique can be replaced by a reweighting technigue when the learning algorithm
is capable of directly acceptingveeightedset of examples.

5. Here, to classify an example well means to have less error than the weighted average of the errors of all the
experts (using the outputs of the gating network to decide how to weight each expert’s error). To not classify
an example well means to have more error than the weighted average.

N

References

Ali, K., & Pazzani, M. (1995). Learning multiple relational rule-based models. In D. Fisher & H. Lenz (Eds.),
Learning from data: Artificial intelligence and statisti¢gol. 5). Fort Lauderdale, FL: Springer-Verlag.

Breiman, L. (1994)Heuristics of instability in model selectigffechnical Report). Department of Statistics,
University of California at Berkeley.

Breiman, L. (1996). Bagging predictofdlachine Learning24(2), 123-140.

Chan, P., & Stolfo, S. (1995). A comparative evaluation of voting and meta-learning on partitionefdrdated-
ings of the 12th International Conference on Machine Learripmy 90-98). Morgan Kaufmann.

Clark, P., & Niblett, T. (1989). The CN2 induction algorithiiachine Learning3(4), 261-283.

Cost, S., & Salzberg, S. (1993). A weighted nearest neighbor algorithm for learning with symbolic features.
Machine Learning10(1), 57-78.

Dietterich, T.G. (1996). Statistical tests for comparing supervised classification learning algorithms (Technical
Report). Corvallis, OR: Dept. of Computer Science, Oregeon Statue University.

Dongarra, J., & Grosse, E. (1998). Netlib repository.. http://www.netlib.org/.

Duda, R., & Hart, P. (1973Rattern classification and scene analy#sldison-Wesley.

Efron, B., & Tibshirani, R. (1993)An introduction to the bootstraj.ondon and New York: Chapman and Hall.

Freund, VY. (1995). Boosting a weak learning algorithm by majohitiprmation and Computatiqri21(2), 256—

285. Also appeared in COLT90.

Freund, Y., & Schapire, R.E. (1995). A decision-theoretic generalization of on-line learning and an application
to boosting Proceedings of the Second European Conference on Computational Learning Tired&$-37).
Springer-Verlag.

Freund, VY., & Schapire, R.E. (1996). Experiments with a new boosting algoriioteedings of the 13th
International Conference on Machine Learnidorgan Kaufmann.

Greenacre, M.J. (1984yheory and application of correspondence analysandon: Academic Press.

Ho, K., Hull, J.J., & Srihari, S.N. (1994). Decision combination in multiple classifier syst&&& Transactions
on Pattern Analysis and Machine Intelligen&AMI-16(1), 66—75.

Jacobs, R.A., Jordan, M.l., Nowlan, S.J., & Hinton, G.E. (1991). Adaptive mixtures of local exidertsal
Computation3(1), 79-87.

Jordan, M.1., & Jacobs, R.A. (1994). Hierarchical mixtures of experts and the EM algoNgumal Computation
6, 181-214.

Krogh, A., & Vedelshy, J. (1995). Neural network ensembles, cross validation, and active learning. In G. Tesauro,
D. Touretzky, & T. Leen (Eds.Advances in neural information processing systévos 7, pp. 231-238). MIT
Press.

58 C.J. MERZ

Maclin, R., & Shavlik, J.W. (1995). Combining the predictions of multiple classifiers: Using competitive learning
to initialize neural networksProceedings of the 14th International Joint Conference on Atrtificial Intelligence

Margineantu, D.D., & Dietterich, T.G. (1997). Pruning adaptive boostigceedings of the 14th International
Conference on Machine Learniniglorgan Kaufmann.

Meir, R. (1995). Bias, variance and the combination of least squares estimators. In G. Tesauro, D. Touretzky, &
T. Leen (Eds.)Advances in neural information processing systéviat 7, pp. 295-302). MIT Press.

Merz, C.J. (1995). Dynamical selection of learning algorithms. In D. Fisher & H. Lenz (Hd=ajning from
data: Artificial intelligence and statistic®/ol. 2). Springer Verlag.

Merz, C. (1998)Classification and regression by combining models.D. thesis, University of California, Irvine.

Merz, C., & Murphy, P. (1996). UCI repository of machine learning databases. http://www.ics.uci.edu/mlearn/
MLRepository.html.

Murthy, S., Kasif, S., Salzberg, S., & Beigel, R. (1993). OC1: Randomized induction of oblique decision trees.
Proceedings of AAAI-QRAAI Pres.

Opitz, D.W., & Shavlik, J.W. (1996). Generating accurate and diverse members of a neural-network ensemble.
In D.S. Touretzky, M.C. Mozer, & M.E. Hasselmo (Eds\dvances in neural information processing systems
(Vol. 8, pp. 535-541). MIT Press.

Perrone, M.P. (1994). Putting it all together: Methods for combining neural networks. In J.D. Cowan, G. Tesauro,
& J. Alspector (Eds.)Advances in neural information processing systéwu. 6, pp. 1188-1189). Morgan
Kaufmann Publishers.

Perrone, M.P., & Cooper, L.N. (1993). When networks disagree: Ensemble methods for hybrid neural networks.
In R.J. Mammone (Ed.Artificial neural networks for speech and visi@up. 126—142). London: Chapman &

Hall.

Press, W.H. (1992Numerical recipes in C: The art of scientific computifpg. 59—70). Cambridge University
Press.

Quinlan, R. (1993)C4.5 programs for machine learningan Mateo, CA: Morgan Kaufmann.

Quinlan, J.R. (1996). Bagging, boosting, and CRrdceedings of the Fourteenth National Conference on Artificial
Intelligence

Rumelhart, D.E., Hinton, G.E., & Williams, R.J. (1986). Learning internal representations by error propaga-
tion. In D.E. Rumelhart, J.L. McClelland, & the PDP research group (EBargllel distributed processing:
Explorations in the microstructure of cognitigol. 1: Foundations). MIT Press.

Salzberg, S. (1997). On comparing classifiers: Pitfalls to avoid and a recommended appetadilining and
Knowledge Discoveryi(3).

Schapire, R.E. (1990). The strength of weak learnabMgchine Learning5(2), 197-227.

Shannon, W., & Banks, D. (1997). A distance metric for classification tf@esiminary Papers of the Sixth
International Workshop on Artificial Intelligence and Statisti&eciety for Artificial Intelligence and Statistics,

Fort Lauderdale, FL.

Tresp, V., & Taniguchi, M. (1995). Combining estimators using non-constant weighting functions. In G. Tesauro,
D. Touretzky, & T. Leen (Eds.Advances in neural information processing systévos 7, pp. 419-426). MIT
Press.

Wolpert, D.H. (1992). Stacked generalizatidieural Networksb, 241-259.

Received October 3, 1997
Accepted April 21, 1998

