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Abstract. Several effective methods have been developed recently for improving predictive performance by
generating and combining multiple learned models. The general approach is to create a set of learned models
either by applying an algorithm repeatedly to different versions of the training data, or by applying different
learning algorithms to the same data. The predictions of the models are then combined according to a voting
scheme. This paper focuses on the task of combining the predictions of a set of learned models. The method
described uses the strategies of stacking and Correspondence Analysis to model the relationship between the
learning examples and their classification by a collection of learned models. A nearest neighbor method is then
applied within the resulting representation to classify previously unseen examples. The new algorithm does not
perform worse than, and frequently performs significantly better than other combining techniques on a suite of
data sets.
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1. Introduction

The machine learning and neural network communities have recently placed considerable
attention on the task of generating and combining multiple learned models with the goal
of forming an improved estimate. The learned models may be decision/regression trees,
rule lists, neural networks, etc. The problem is to decide which models to rely upon for
prediction and how much weight to give each. The goal of combining learned models is to
obtain a more accurate prediction than can be obtained from any single source alone.

Techniques using multiple models consist of two phases: model generation and model
combination. It is important to generate a set of models that are diverse in the sense that
they make errors in different ways. On the other hand, the types of errors made by the
model set directly determine the appropriate combining strategy (Perrone, 1994). When
the errors are uncorrelated, the optimal approach is to take the majority vote (also referred
to as plurality voting). However, when patterns exist in the errors of the learned models, a
more elaborate combining scheme is necessary.

The focus of this research is on model combination. A general technique is presented
for combining the predictions of a set of learned models, independent of how they are
generated. Section 2 defines the problem and explores the caveats of solving it in more
detail. The approach taken, called SCANN (Section 3), uses the strategies of stacking
(Wolpert, 1992) and correspondence analysis (Greenacre, 1984) to model the relationship
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between the learning examples and the way in which they are classified by a collection of
learned models. The new representation is captured in a space of uncorrelated dimensions.
A nearest neighbor method is then applied within the resulting representation to classify
unseen examples.

Section 5 demonstrates the properties of SCANN by applying it to two artificially gen-
erated model sets. In an empirical evaluation on a suite of data sets (Section 6), the naive
approach of taking the plurality vote (PV) frequently exceeds the performance of the con-
stituent learners. SCANN, in turn, typically exceeds the performance of PV and several
other stacking-based approaches. The analysis reveals that SCANN is not sensitive to
having many poor constituent learned models, and it is not prone to overfit by reacting to
insignificant fluctuations in the predictions of the learned models. Related work, limita-
tions, and future work are discussed in Sections 7 and 8. Concluding remarks are given in
Section 9. An expanded version of this work may be found in (Merz, 1998).

2. Problem definition and motivation

The problem of generating a set of learned models is defined as follows. Suppose two sets
of data are given: a training set

L = {(xm, ym),m= 1, . . . ,M},

and a test set

T = {(xt , yt ), t = 1, . . . , T}.

Each set is a sample of the true underlying functionf (x). xi is a vector of input values
which are either nominal or numeric, andyi ∈ Y = {C1, . . . , C|Y|} where|Y| is the number
of classes. Now supposeL is used to build a set of functions,F = { f̂i (x), i = 1, . . . , N},
each element of which approximatesf (x). The goal is to find the best approximation of
f (x) usingF .

One approach is to use a particular learning algorithm and a data resampling technique
to create a set of learned models and then combine their predictions according to a voting
scheme. The idea behind data resampling is that models generated from different samples
of the training data are likely to make errors in different ways. Data resampling techniques
include bootstrapping (Efron & Tibshirani, 1993) and data partitioning (Meir, 1995). In the
combining phase, thei th learned model’s prediction or vote for a given class has a strength
proportional to its assigned weight,αi . The class receiving the most votes is the final class
prediction. This is referred to as aweighted majorityscheme, i.e.,

f̂ (x) = arg max
c∈Y

N∑
i=1

αiπ( f̂i (x), c) (1)

whereπ(a,b) is one ifa is equal tob, and zero otherwise. One example of this approach
is Bagging (Breiman, 1996) where resampling occurs randomly with replacement and all
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models are assigned equal weight. Another example of this approach is Boosting (Freund,
1995) where the training examples are resampled as a function of how well they were
classified by the previously generated model. The models are then weighted according to
their estimated error rate.

Another approach is to use a variety of learning algorithms on all of the training data
and combine their predictions according to a voting scheme. This technique attempts to
achieve diversity in the errors of the learned models by using different learning algorithms
which vary in their method of search and/or representation. The intuition is that the models
generated using different learning biases are more likely to make errors in different ways.
Plurality voting with a model set consisting of a neural networks, decision trees, rule sets,
and other models was shown to be effective in (Merz, 1995). The search strategy of a
learning algorithm may also be modified to diversify the model set. Maclin and Shavlik
(1995) accomplished this by strategically initializing the weights of a neural network. Ali
and Pazzani (1995) generated decision lists (i.e., list of rules) where conditions are added
to a rule stochastically. As with the first approach, the models are typically combined using
variants of the weighted majority strategy or plurality voting.

Though these approaches are effective, they emphasize the model generation and not the
model combination process (e.g., Opitz & Shavlik, 1996). As a result, most combining
methods are rather limited in their ability to identify the unique contributions of each model
and, at the same time, remain insensitive to the inherent redundancy in the model set. For
example, the strategy of taking the majority vote has been shown to be fairly effective (Merz,
1995), however, it may perform poorly in two scenarios: when a subset of redundant and
less accurate models comprise the majority, and when a dissenting vote is not recognized
as an area of specialization for a particular model. An effective combining strategy must
be able to override the majority vote for examples where the dissenting vote is more likely
to be correct.

This paper presents a technique for effectively addressing the issues described above.
First, the relationship between the examples and the way in which the learned models
classify them is represented in a set of uncorrelated dimensions using a technique known
as correspondence analysis (Greenacre, 1984). In each of the resulting dimensions, every
model is assigned one weight per possible class label:αi,c,k denotes the weight of thei th
model for thecth class in thekth dimension. The weighting scheme derived from this
representation may be as simple as the majority vote when the errors of the learned models
are uncorrelated. However, more elaborate weighting schemes are produced when the errors
of the models have patterns of correlation.

3. The SCANN algorithm

A learning algorithm can be broken down into four parts: representation, classification,
search, and evaluation. Section 3.1 discusses the first two components by describing how
the predictions of the learned models can be mapped to a new representation using cor-
respondence analysis (Greenacre, 1984), and how test examples can be classified using a
nearest neighbor algorithm. The search and evaluation aspects of SCANN are covered in
Section 3.2. A detailed trace of SCANN on a example problem is given in Section 4.
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3.1. Representation and classification

The representation used in SCANN is based on the variates derived using correspondence
analysis (Greenacre, 1984). Sections 3.1.1 and 3.1.2 show how stacking and CA are used
to generate the new representation. A nearest neighbor strategy is then used to locate and
classify test examples using the new representation (Section 3.1.3). Together, Stacking,
Correspondence Analysis, and Nearest Neighbor make up the core of the SCANN algorithm
which is summarized in Section 3.1.4.

3.1.1. Stacking. Once a diverse set of models has been generated, the issue of how to
combine them arises. Wolpert (1992) provided a general framework for doing so called
stacked generalizationor stacking. The goal of stacking is to combine the members ofF
based on information learned about their particular biases with respect toL.1

The basic premise of stacking is that this problem can be cast as another induction problem
where the input space is the (approximated) outputs of the learned models, and the output
space is the same as before, i.e.,

L1 = {(( f̂1(xi ), f̂2(xi ), . . . , f̂N(xi )), yi ), i = 1, . . . , I }

The approximated outputs of each learned model, represented asf̂n(xi ), are generated
using the following in-sample/out-of-sample approach:

1. Divide theL0 data intoV partitions.
2. For each partition,v,

• Train each algorithm on all but partitionv to get{ f̂ −vn }.
• Test each learned model in{ f̂ −vn } on partitionv.
• Pair the predictions on each example in partitionv (i.e., the newinput space) with the

corresponding output, and append the new examples toL1.

3. ReturnL1

3.1.2. Correspondence analysis.Correspondence analysis (CA) (Greenacre, 1984) is a
method for geometrically modeling the relationship between the rows and columns of a
matrix whose entries are categorical. The goal here is to explore the relationship between
the training examples and their classification by the learned models. To do this, a model is
built using the prediction matrix,M , whereM i,n = f̂n(xi ) (1≤ i ≤ I , and 1≤ n ≤ N). It
is also important to see how the predictions for the training examples relate to their true class
labels, so the class labels are appended to formM ′, an(I × J)matrix (whereJ = N + 1).
For proper application of CA,M ′ must be converted to an(I × (J · |Y|)) indicator matrix,
N, whereni,( j ·J+c) is a one exactly whenmi j = Cc, and zero otherwise.

The calculations of CA may be broken down into three stages (see Table 1). Stage one
consists of some preprocessing calculations performed onN which lead to thestandard-
ized residual matrix, A. In the second stage, a singular value decomposition (SVD) is per-
formed onA to redefine it in terms of three matrices:U(I×K ), 0(K×K ), andV(K×J), where
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Table 1. Correspondence analysis calculations.

Stage Symbol Definition Description

1 N (I × (J · |Y|)) indicator matrix Records votes of learned models

n
∑I

i=1
∑J

j=1 Ni, j Grand total of tableN

r r i = Ni+/n Row masses

c cj = N+ j /n Column masses

P (1/n)N Correspondence matrix

Dc (J × J) diagonal matrix Massesc on diagonal

Dr (I × I ) diagonal matrix Massesr on diagonal

A D−1/2
r (P− rcT )Dc

−1/2 Standardized residuals

2 A UΓVT SVD of A

3 F D−1/2
r UΓ Principal coordinates of rows

G D−1/2
c VΓ Principal coordinates of columns

K = min(I −1, J−1). These matrices are used in the third stage to determineF(I×K ) and
G(J×K ), the coordinates of the rows and columns ofN, respectively, in the new space. Note
that not allK dimensions are necessary. Section 3.1.4, describes how the final number of
dimensions,K∗, is determined.

In the new geometric representation, rowsf p∗ andfq∗ in F, corresponding to rowsp and
q in N, will lie close to one another when examplesp andq receive similar predictions
from the collection of learned models. Likewise, rowsgs∗ andgt∗ in G, corresponding to
columnss andt in N, will lie close to one another when the learned models corresponding
tosandt make similar predictions for the set of examples. Finally, the relationship between
a row and column inN is captured as follows. Each column,s, in N records when a learned
model, j ′, predicts a particular class label,c′. An example,p, with the associated pointf p∗
will lie closer togs∗ when modelj ′ predicts classc′. An example illuminating the entire
SCANN algorithm will be given in Section 4.

3.1.3. Nearest neighbor.The nearest neighbor algorithm is used to classify points in a
weighted Euclidean space. In this scenario, each possible class will be assigned coordinates
in the space derived by correspondence analysis. Unclassified examples will be mapped
into the new space (as described below), and the class label corresponding to the closest
class point is assigned to the example.

Since the actual class assignments for each example reside in the last|Y| columns ofN,
their coordinates in the new space can be found by looking in the last|Y| rowsof G. For
convenience, these class points will be calledC1, . . . ,C|Y|.

To classify an unseen example,xTest, the predictions of the learned models onxTest must
be converted to arow profile, r̃ , of lengthJ ·C, wherer̃( j ·J+c) is 1/J exactly whenM i j = Cc,
and zero otherwise. However, since the example is unclassified,xTest is of length(J − 1)
and can only be used to fill the first((J − 1) · C) entries inr̃ . For this reason,C different
versions are generated, i.e.,r̃1, . . . , r̃C, where each one “hypothesizes” thatxTest belongs
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Figure 1. Sample classification of a test example,xTest, in two dimensions.C1, C2, andC3 denote the true class
points as extracted fromG. The pointsf1, f2, andf3 are the hypothesized locations ofxTest for each possible class.

to one of theC classes (by putting 1/J in the appropriate column). Locating these profiles
in the scaled space is a matter of simple matrix multiplication, i.e.,fc = r̃ cGΓ−1. The fc

which lies closest to a class point, Classc′ , is considered the “correct” class, andxTest is
assigned the class labelc′.

Figure 1 shows a test example as it is mapped into the first two dimensions of the scaled
space. In this case the point is classified as class 2 becausef2 lies closest to the point
associated with class 2,C2, in the space. A complete example of SCANN is given in
Section 4.

3.1.4. The SCANN algorithm. Now that the three main parts of the approach have been
described, a summary of the SCANN algorithm can be given as a function ofM ,L0 and the
constituent learning algorithms,A (see Table 2). The first step is to useL0 andA to generate
the stacking data,L1, capturing the approximated predictions of each learned model. Next,
L1 is used to form the indicator matrix,N. A correspondence analysis is performed onN
to derive the scaled space,A = UΓVT . The number of dimensions retained from this new
representation,K∗, is the value which optimizes classification onL1 (see Section 3.2).
The resulting scaled space is used to derive the row/column coordinatesF and G, thus
geometrically capturing the relationships between the examples, the way in which they are
classified, and their position relative to the true class labels. Finally, the nearest neighbor
strategy exploits the new representation by predicting which class is most likely according
to the predictions made on a novel example.



COMBINING CLASSIFIERS 39

Table 2. The SCANN algorithm.

SCANN(M , L0,A)
Input

M : The matrix of predictions of the models inF
L0: The Level-0 learning data

A: A set of learning algorithms

Begin

1. UseL0 andA to generate stacking data,L1

2. UseL1 to form indicator matrix,N

3. Perform CA onN to derive scaled space,A = UΓVT

4. Choose number of dimensions to retain,K∗, as the value which optimizes
classification onL1

5. Derive row/column coordinatesF andG

6. Return:U, Γ, VT , F andG

End

3.2. Search procedure for finding K∗

The search aspect of SCANN is to choose the number of components,K∗, to retain from the
set derived by the correspondence analysis component. The procedure begins by including
only the first component (i.e.,K∗ = 1) of the scaled space. Then the nearest neighbor
classification algorithm is used to classify the examples inL1, and the error rate forK∗ = 1
is recorded. The procedure continues by increasingK∗ until all the components are used in
classifying the examples. The value ofK∗ with the lowest associated error rate is chosen.

4. An example of SCANN

This section provides a simple example to illustrate the SCANN algorithm on an artificial
data set. The predictions and truth values were artificially generated in a fashion similar to
the data set described later in Section 5.1. The procedure begins with the prediction matrix,
M ′. Table 3 shows a collection of three models making predictions for 15 examples in a
3-class problem. The columns labelledf1, f2, and f3, contain the predictions of the learned
models for each example,xi . The “Truth” column contains the actual class values for each
example.

Table 4 shows the indicator matrix,N, generated fromM ′. Note that each column inM ′

is expanded into one column for each possible class value. Columnj in N is associated
with a particular learned model,2 fh, and a particular class label,cl . A 1 appearing inNi, j

indicates thatfh(xi ) = cl . Otherwise,Ni, j = 0.
The probability matrix,P, follows directly fromN by dividing by the grand total ofN,

i.e.,n = 60.
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Table 3. The prediction matrix,M ′, for 15 examples and 3 learned models.

Prediction

Example f1 f2 f3 Truth

x1 c1 c1 c1 c1

x2 c2 c2 c2 c2

x3 c2 c2 c2 c2

x4 c2 c2 c1 c1

x5 c3 c1 c3 c3

x6 c3 c3 c3 c3

x7 c1 c1 c3 c1

x8 c2 c3 c3 c3

x9 c2 c2 c2 c2

x10 c1 c2 c3 c3

x11 c3 c3 c3 c3

x12 c2 c1 c1 c1

x13 c3 c3 c2 c3

x14 c2 c2 c3 c2

x15 c3 c3 c3 c3

Table 4. Excerpts from the indicator matrix,N, associated with the prediction matrix,M ′.

Prediction

f1 f2 f3 Truth

Example c1 c2 c3 c1 c2 c3 c1 c2 c3 c1 c2 c3

x1 1 0 0 1 0 0 1 0 0 1 0 0

x2 0 1 0 0 1 0 0 1 0 0 1 0

. . .

x15 0 0 1 0 0 1 0 0 1 0 0 1

The row and column masses,r andc, are calculated by summing each row/column inN
and dividing byn. Since each row inN has four 1s,r i = 4/60= 0.067, fori = 1, . . . ,15.
The column masses all differ as a function of how often each class is predicted by each
model (see Table 5). The vectorsr andc are used to form the diagonal matrices,Dr andDc.

The calculations from above are now used to finish the first stage of CA (see Table 1) by
computing the standardized residual matrix (see Table 6),

A = D−1/2
r (P− rcT )D−1/2

c
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Table 5. Column masses,c, for model prediction columns inN.

f1 f2 f3 Truth

c1 c2 c3 c1 c2 c3 c1 c2 c3 c1 c2 c3

.050 .117 .083 .067 .100 .083 .050 .067 .133 .067 .067 .117

Table 6. Excerpts from the standardized residual matrix,A.

f1 . . . Truth

Example c1 c2 c3 . . . c1 c2 c3

x1 0.2309 −0.0882 −0.0745 0.1833 −0.0667 −0.0882

x2 −0.0577 0.1008 −0.0745 −0.0667 0.1833 −0.0882

. . .

x15 −0.0577 −0.0882 0.1491 −0.0667 −0.0667 0.1008

Stage two of the calculations of CA consists of a singular value decomposition ofA:

A = U6VT

Only eight singular values were found on the diagonal of6, indicating thatK = 8:

diag(6) = [ 0.8488 0.8111 0.4858 0.395 0.3353 0.2488 0.1897 0.1393]

Stage three of the CA calculations in Table 1 may now be completed by deriving the
principal coordinates of the rows and columns, respectively:

F = D−1/2
r U6

G = D−1/2
c V6

Table 7 shows the first three dimensions of the principal coordinates ofG in the scaled
space. These numbers represent the weights for each model, for each class, for the first
three dimensions.

The first two dimensions ofF are plotted in figure 2. The class pointsC1, C2 andC3 from
G are also included in the plot to show their relationship to the example points. The point
labelledx∗ denotes examplesx6, x11 andx15, and the point labelledx+ denotes examples
x2, x3 andx9. Notice that examples where the models are in total agreement, i.e.,x∗ andx+,
lie closer to the correct class point indicating a higher degree of confidence for examples
with unanimous predictions. On the other, points with mixed predictions lie closer to the
origin, i.e.,x10.
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Table 7. The principal coordinates,G, of the columns ofA. The first three of eight axes are shown. These values
represent the first three dimensions of the combining weights for each model for each class label.

Weight k = 1 k = 2 k = 3

f1 c1 α1,1,k 0.313 1.228 1.355

c2 α1,2,k 0.737 −0.471 −0.332

c3 α1,3,k −1.220 −0.077 −0.348

f2 c1 α2,1,k 0.310 1.315 0.078

c2 α2,2,k 0.784 −0.690 0.330

c3 α2,3,k −1.188 −0.224 −0.458

f3 c1 α3,1,k 1.001 1.270 −0.998

c2 α3,2,k 0.525 −1.153 −0.171

c3 α3,3,k −0.638 0.100 0.460

Truth c1 C1,k 0.821 1.330 −0.336

c2 C2,k 0.932 −1.226 0.271

c3 C3,k −1.002 −0.059 0.037

Figure 2. The first two dimensions of the principal coordinates inF and G. The point labelledx∗ denotes
examplesx6, x11 andx15. The point labelledx+ denotes examplesx2, x3 andx9. A point labelledαi, j denotes
the weight of f̂i on classC j .
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Table 8. The possible values ofK∗ and their associated error rates for classifying the examples inM ′.

K∗ 1 2 3 4 5 6 7 8

Error rate 0.222 0.111 0.111 0.055 0.055 0.055 0.055 0.055

The first two dimensions of the weights inG are also plotted in figure 2. A point labelled
αi, j denotes the weight of̂fi on classC j . Each model’s weight lies close to the appropriate
class. When mapping an example into the space, the weightαi, j serves to project the
example part of the way (from the origin) towardsαi, j . For instance, examplex1 lies close
to C1 because all of the models predicted its class asc1. On the other hand, examplex10

lies close to the origin because the weights cancel each other out when each class receives
one vote.

The search procedure for findingK∗ (described in Section 3.2) returned the values listed
in Table 8. SCANN chooses the first occurrence of the lowest value forK∗, i.e., K∗ = 4.
Note that the error rate need not improve asK∗ grows. The next section will illustrate how
the correlation of the errors of the learned models affect the value ofK∗.

To classify a test example,xTest, where

mxTest = [c2 c1 c2],

the following row vectors are generated to hypothesize each class:

r̃1 = [0 0.25 0 0.25 0 0 0 0.25 0 0.25 0 0],

r̃2 = [0 0.25 0 0.25 0 0 0 0.25 0 0 0.25 0],

r̃3 = [0 0.25 0 0.25 0 0 0 0.25 0 0 0 0.25].

The hypothesized row vectors are mapped into the scaled space according to

fc = r̃ cGΣ−1.

The hypothesized points in the four dimensions used (byK∗) are:

f1 = [0.7047 0.3144 −0.3919 −0.7242] (2)

f2 = [0.7375 − 0.4734 −0.0794 −0.8064] (3)

f3 = [0.1678 −0.1136 −0.1998 −0.6957] (4)

Figure 1 shows a plot of the hypothesized points with respect to the class points in the first
two dimensions. The distance betweenf i andC j ) is minimized wheni = 2 and j = 2.
Thus, the predicted class of examplexTest is c2.
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5. Understanding SCANN analytically

The models sets used by SCANN will have varying degrees of correlation in the errors
committed. When there is no apparent pattern in the errors committed, the errors are said
to be uncorrelated. If distinct patterns occur in the errors, e.g.,f̂i is particularly good at
classifying classc, then the errors are said to be correlated. In the former case, a simple
approach like PV is most effective (Perrone, 1994). In the latter case, a more complex
combining scheme is needed. An effective combining strategy must be able to adjust for
both situations. Sections 5.1 and 5.2 evaluate how SCANN handles these two scenarios.
Finally, Section 5.4 discusses how the scaled space derived using correspondence analysis
enhances the nearest neighbor classification algorithm.

5.1. Handling uncorrelated errors

To see how SCANN handles models sets with uncorrelated errors, an artificial data set,A1,
was generated for a 3-class problem simulating the predictions of ten models. The true
function, f , was represented by 300 examples where each class was equally represented.
Model f̂i (1 ≤ i ≤ 10) was set equal tof for each example with a 10% chance of being
wrong, in which case one of the incorrect classes was selected at random. The examples
were randomly divided into a training (2/3) and test (1/3) partition.

Kappa-Error diagrams (Margineantu & Dietterich, 1997) were used to visualize the
differences between the models (see figure 3). In a Kappa-Error diagram, thex coordinate
is theκ statistic measured between two models,f̂a and f̂b:

κ( f̂a, f̂b) = 21( f̂a, f̂b)−22( f̂a, f̂b)

1−22( f̂a, f̂b)

Figure 3. Kappa-Error diagram for models in theA1 data set.
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where

21( f̂a, f̂b) =
∑|Y|

i=1 Bi,i

M

22( f̂a, f̂b) =
|Y|∑
i=1

( |Y|∑
j=1

Bi, j

M
·
|Y|∑
j=1

B j,i

M

)

andBi, j is the number of examplesx for which f̂a = i and f̂b = j . κ is a value between
zero and one measuring the level of agreement between two models on a set of examples;κ

is zero when the level of agreement between the models is the same as that by chance, and
κ is 1 when the two models agree on every example. They coordinate in a Kappa-Error
diagram is the average error of two models, i.e.,

error( fi )+ error( f j )

2
.

A point in the diagram reports the level of similarity and average error for two classifiers.
Figure 3 is a Kappa-Error diagram for all pairs of models inA1 where bothκ and the error

rates are calculated on the training set. Models in the lower right corner are very accurate
but very similar. Models in the upper left are dissimilar but have higher error rates. The
points in this diagram indicate that the models are evenly dispersed with respect to their
level of agreement and error. In this case, one would expect plurality voting (PV) to do
well.

SCANN and PV were run on the train/test partition from above, and both reported a test
error of zero (and akappastatistic of 1). Similar results were obtained for different random
partitions. This indicates that SCANN behaves in the same way as PV when the errors are
uncorrelated.

5.2. Discovering unique contributions

Combining strategies must also be able to handle model sets which make errors in a patterned
way. For example, some models in the set may have a particularly low error rate in certain
parts of the example space. An effective combiner will be able to isolate those areas of
expertise and use them to form an improved estimate. To test SCANN’s ability to handle
this problem, a second artificial data set,A2, was created where three of the models have
particular areas of expertise.

A2, is generated in the same way asA1 but the examples are exposed to another round of
corruption. Each example has a 25% chance of being misclassified by every model except
one, otherwise it remains unmodified. In the modified examples, the single correct model is
chosen according to the correct class of the example, i.e., modelsf̂1, f̂2, and f̂3 are always
correct for classes 1, 2, and 3, respectively. The challenge for a combiner is to capitalize on
the areas of (relative) expertise for those three models. PV should not do well here because
the plurality vote is incorrect for approximately 25% of the examples.
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Figure 4. Kappa-Error diagram for models in theA2 data set.

Figure 4 shows the Kappa-Error diagram for the models on the training data. The diagram
shows little uniformity between models for either error rate orκ. This indicates that the
models do not make errors in an uncorrelated fashion. In fact, the three points in the lower
left corner correspond to the pairings of modelsf̂1- f̂2, f̂2- f̂3, and f̂1- f̂3. These three points
indicate that modelŝf1, f̂2, and f̂3 are fairly different in the predictions they make, but have
similar and low error rates.

SCANN and PV were run on the corresponding test partition to obtain error rates of 0.158
and 0.225, respectively. Theκ statistic echoes the difference between SCANN and PV with
a value of 0.88 on the test data. All of the examples which the two methods disagreed on
were cases where SCANN relied upon the only correct model.

5.3. Computational complexity

The time complexity analysis begins by assuming thatN models have been built fromM
examples with|Y| possible classes (see Table 2). The time complexity for SCANN is
broken down according to the three stages of the algorithm:

1. Stacking. To generate theL1 data, each learning algorithm must be runV times (see
Section 3.1.1). Therefore, the time complexity of this stage is a function of the constituent
learning algorithms,A, i.e.,

O
(

arg max
n∈N

O(An)V

)
.

2. Correspondence analysis. The dominating computation of this stage is the Singular
Value Decomposition ofA which takesO(max(M, N|Y|)3) time (Press, 1992). This
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computation may be prohibitive for data sets with many examples. However, SCANN
does not make use of the left singular vectors contained inU which provide the coordi-
nates of the training examples in the scaled space. Therefore, for larger data sets, only
the right singular vectors need to be computed, thus reducing this stage toO((N|Y|)3)
time. The SVD package used in this research (Dongarra & Grosse, 1998) allowed the
user to specify which singular vectors were to be computed.

3. Nearest neighbor. The process of mapping an unclassified example into the scaled space
has low time complexity; the|Y| hypothesized points are each compared to the|Y| actual
class points, takingO(|Y|2) time.

The overall time complexity of SCANN is determined by the stacking and correspondence
analysis components of the algorithm, i.e.,

O
(

max

(
arg max

n∈N
O(An)V, N2 max(M, N|Y|)

))
.

This can be reduced toO((N|Y|)3) if low complexity learning algorithms are used inA
(such as decision trees and naive Bayesian classifiers) and only the right singular vectors are
calculated in the correspondence analysis stage. Also, the stacking stage may be skipped
andL1 can be determined using the predictions of the learned models built from all ofL0.

5.4. Other aspects of SCANN

The properties of the correspondence analysis and nearest neighbor components of SCANN
mix together well to produce an effective combining strategy for the following reasons:

1. The parameterK∗ marks the last dimension of import, discarding the remaining ir-
relevant dimensions. This benefits nearest neighbor algorithms which are sensitive to
irrelevant or noisy dimensions in their attribute space.

2. Nearest neighbor strategies work better when the attribute space chosen is compact, i.e.,
the dimensions used are filled with examples and not sparsely populated or irrelevant.
Again, the choice of dimensionality,K∗, will help to ensure that the dimensions retained
contain relevant information about the predictions of the learned models.

3. The nearest neighbor algorithm is stable. Breiman (1994) defines the stability of an
algorithm as its sensitivity to minor changes in the training data. Stable algorithms are
not sensitive to small changes in the training data, unstable algorithms are. A general
heuristic is to have the Level-0 learners be unstable, thus producing model set likely
to make uncorrelated errors. However, instability is not a desired trait for a combining
algorithm because one does not want the final prediction to be likely to change with
small variations in the Level-1 data. Breiman’s study revealed that the nearest neighbor
algorithm is stable making it a desirable combining strategy.
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6. Empirical evaluation of SCANN

This section contains the results of two experiments comparing SCANN to several other
combining strategies on a collection of data sets. In the first experiment, the model set was
generated using multiple learning algorithms. The goal here was to achieve diversity in
the errors of the models by using completely different learning algorithms which vary in
their method of search and/or representation. The model set in the second experiment was
generated using Boosting (described in Section 7.1). Boosting generates a diverse model set
by strategically resampling the training data. The second experiment has taken the typical
Boosting approach of applying the same learning algorithm to all the data samples. Thus,
the first experiment is an evaluation of SCANN’s ability to combine a small set of models
generated from a diverse collection of learning biases, whereas the second experiment is an
evaluation of SCANN on a larger collection of models with the same learning bias.

6.1. Classification data sets

The data sets used were taken from the UCI Machine Learning Database Repository (Merz
& Murphy, 1996), except for the unreleased medical data sets:retardationanddementia. A
description of the data sets used is given in Table 9. The data sets with missing values were
run only on the constituent learners capable of handling missing values (see Section 6.2).

Table 9. Data sets used in the empirical evaluation. The columns are, in order: name of data set; number of
examples; number of attributes; number of numeric attributes; number of classes; and whether missing values exist.

Data set Exs. Atts. Num. Class Missing

abalone 4177 8 7 3 No

balance 625 4 4 3 No

breast 286 9 4 2 Yes

credit 690 15 6 2 Yes

dementia 118 26 26 3 No

glass 214 10 10 7 No

heart 303 13 6 2 Yes

ionosphere 351 34 34 2 No

iris 150 4 4 3 No

krk 827 36 0 2 No

liver 345 6 6 2 No

lymphography 148 18 3 4 No

musk 476 168 168 2 No

retardation 700 20 0 2 No

sonar 208 60 60 2 No

vote 435 16 0 2 Yes

wave 300 40 40 3 No

wdbc 569 30 30 2 No
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6.2. Constituent learners

The constituent learning algorithms,A, spanned a variety of search and/or representation
techniques. A standard implementation of Error Backpropagation (BP) (Rumelhart, Hinton,
& Williams, 1986) was used to generate neural network models. All networks consisted of
an input layer, a single hidden layer, and an output layer. For the input layer, a single input
node was assigned to each numeric attribute. Nominal attributes were allocated one input
node for each possible attribute value. When thei th value of a nominal attribute occurred
in an example, thei th input node assigned to that attribute was assigned a value of one;
the other input nodes assigned to that attribute were assigned a value of zero. The training
examples were normalized to values between zero and one. Test patterns were normalized
by the same transformation used on the training set. The initial weights of the networks were
random values uniformly distributed in the interval [−0.3,0.3]. A preliminary experiment
was conducted for each data set (using only the training data) to determine the number
of hidden units. Twenty percent of the training data was set aside as a validation set for
determining when to stop training.

The CN2 algorithm (Clark & Niblett, 1989) was used to generate rule lists. Clark and
Niblett’s version 6.1 was used with the default parameters.

Decision trees were generated using C4.5 (Quinlan, 1993) and OC1 (Murthy et al., 1993).
The default parameters were used for both algorithms. A second version of OC1 was run
allowing only axis-parallel splits.

Two nearest neighbor approaches were used: PEBLS (Cost & Salzberg, 1993) and the
first nearest neighbor (1-NN). For PEBLS, numeric attributes were discretized into ten bins
spanning the range of possible values.

A naive Bayesian classifier (Duda & Hart, 1973) was also used. Numeric attributes were
discretized in the same fashion as for PEBLS.

Depending on the data set, anywhere from five to eight algorithms were applied. OC1
and 1-NN were run only on data sets with all numeric attributes and no missing values (see
Table 9). CN2 was not run on data sets with nominal attributes exceeding the maximum
number of possible values.

6.3. Other combining methods

In addition to PV and SCANN, two other learners were evaluated using the stacking
data,L1:

1. Stacking with Backpropagation (S-BP) is a good straw man because it is capable of
capturing non-linear relationships in the predictions of the learned models.

2. Stacking with naive Bayesian classification (S-Bayes) is also a worthy straw man because
it has proven to be a simple and effective Level-0 learner.

6.4. Experiment 1

Thirty runs per data set were conducted using a training/test partition of 70/30 percent.
Table 10 contains comparisons of the combining strategies to the baseline combiner, PV.
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Table 10. Comparison of combining strategies to PV.

PV SCANN vs. PV S-BP vs. PV S-Bayes vs. PV

Data set Error Error w-l Ratio Error w-l Ratio Error w-l Ratio

abalone 80.35 39.38 30-0 .490 40.08 30-0 .499 39.11 30-0 .487

bal 13.81 12.43 22-4 .900 11.86 21-2 .859 13.71 14-12 .992

breast 4.31 3.82 15-2 .886 3.97 16-7 .920 3.80 16-2 .881

credit 13.99 13.98 10-8 .999 14.16 9-14 1.012 14.01 8-9 1.001

dementia 32.78 32.41 12-12 .989 33.98 11-14 1.037 30.56 16-9 .932

glass 31.44 31.69 11-15 1.008 36.41 3-25 1.158 38.21 2-26 1.215

heart 18.17 17.51 12-4 .964 18.13 12-15 .998 17.66 12-3 .972

ion 3.05 2.11 30-0 .691 3.93 1-29 1.289 3.96 0-29 1.299

iris 4.44 4.52 1-2 1.017 4.59 5-6 1.033 6.52 1-18 1.467

krk 6.67 6.87 3-10 1.030 7.20 7-20 1.080 7.66 5-23 1.149

liver 29.33 30.35 12-14 1.035 31.57 9-19 1.077 30.03 2-16 1.024

lymph 17.78 18.07 9-10 1.017 20.67 6-21 1.162 19.56 8-18 1.100

musk 13.51 10.97 19-1 .812 12.02 14-8 .889 11.28 20-2 .835

retard 32.64 31.66 24-0 .970 31.34 21-3 .960 32.30 14-0 .990

sonar 23.02 22.78 5-5 .990 24.84 5-12 1.079 23.17 1-2 1.007

vote 5.24 4.73 19-3 .903 4.76 16-7 .908 4.68 20-5 .893

wave 21.94 22.11 5-10 1.008 24.33 3-14 1.109 22.11 7-8 1.008

wdbc 4.27 4.27 0-0 1.000 4.71 3-11 1.103 4.30 2-3 1.007

The first column gives the mean error rate of PV. The next three columns compare SCANN
to PV using the measures of error rate (“error”), wins and losses (“w-l ”), and the error ratio
of SCANN to PV (“ratio”). A ratio value less than 1 in the “a vs. b” columns represents
an improvement by methoda over methodb. The remaining columns report the same
measures for S-BP versus PV and S-Bayes versus PV. Table entries comparing methoda to
methodb are reported in boldface when the difference between the methods is significant
at least at the .01 level using a two-tailed sign test.3

SCANN posts seven statistically significant wins over PV which are echoed by the
measure of wins and losses, and the error ratio comparisons. On average, SCANN re-
duces error by 7.1% with reductions between 3 to 50%. S-BP has three significant wins
over PV and four significant losses. S-BP has an average increase in error over PV by
2.6%. S-Bayes scores five significant wins and losses with an average increase in error
of 3.95%.

The most dramatic improvement of the combiners over PV came in theabalonedata
set. A closer analysis of the results revealed that 7 of the 8 learned models were very
poor classifiers with error rates around 80%, and the errors of the poor models were highly
correlated. This empirically demonstrates PV’s known sensitivity to learned models with
highly correlated errors. The other combining strategies were able to identify that two of
the classes labels were frequently confused. The resulting weighting schemes reversed this
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Table 11. Comparison of SCANN to the best individual model and the other combining strategies.

SCANN Best Ind. vs. SCANN S-BP vs. SCANN S-Bayes vs. SCANN

Data set Error Error w-l Ratio Error w-l Ratio Error w-l Ratio

abalone 39.38 42.97 2-28 1.091 40.08 8-22 1.018 39.11 19-10 0.993

bal 12.43 12.59 10-16 1.013 11.86 20-7 0.954 13.71 7-21 1.103

breast 3.82 4.04 7-15 1.058 3.97 6-8 1.038 3.80 1-0 0.994

credit 13.98 14.75 7-22 1.055 14.16 9-13 1.013 14.01 6-8 1.002

dementia 32.41 34.35 9-17 1.060 33.98 9-15 1.049 30.56 16-10 0.943

glass 31.69 36.31 6-22 1.146 36.41 0-25 1.149 38.21 1-29 1.206

heart 17.51 17.47 10-17 0.998 18.13 7-15 1.036 17.66 5-7 1.008

ion 2.11 6.64 1-29 3.149 3.93 0-29 1.866 3.96 0-30 1.881

iris 4.52 5.11 11-12 1.131 4.59 4-5 1.016 6.52 1-18 1.443

krk 6.87 7.72 6-16 1.125 7.20 5-14 1.049 7.66 5-22 1.115

liver 30.35 33.37 6-21 1.099 31.57 7-16 1.040 30.03 13-14 0.989

lymph 18.07 17.48 13-10 0.967 20.67 6-19 1.143 19.56 6-15 1.082

musk 10.97 15.03 0-21 1.371 12.02 7-12 1.096 11.28 5-11 1.029

retard 31.66 30.57 24-2 0.965 31.34 15-9 0.990 32.30 6-16 1.020

sonar 22.78 24.13 6-11 1.059 24.84 3-12 1.091 23.17 4-6 1.017

vote 4.73 4.86 10-16 1.027 4.76 9-8 1.005 4.68 4-2 0.989

wave 22.11 26.33 3-18 1.191 24.33 3-15 1.101 22.11 8-10 1.000

wdbc 4.27 4.97 5-15 1.164 4.71 3-11 1.103 4.30 2-3 1.007

effect by counting a vote for one of the confused classes as a vote for the other, and vice
versa. PV performs well on theglass, lymphandwavedata sets where the errors of the
learned models are measured (using theκ statistic) to be fairly uncorrelated. Here, SCANN
performs similarly to PV, but S-BP and S-Bayes (except forwave) appear to be overfitting
by making erroneous predictions based on insignificant variations on the predictions of the
learned models. This demonstrates SCANN’s ability to perform like PV when the errors
of the models are less correlated.

Table 11 compares SCANN to the best individual model for each data set, as well as the
combining strategies S-BP and S-Bayes. The best individual model was chosen based on
the test results and represents the best that an oracle model selection strategy could do. The
same measures as in Table 10 are used.

SCANN has seven significant wins and one significant loss (onretardation) with respect
to the best individual model. This demonstrates SCANN’s ability to exceed the performance
of any individual model, even when selected via an oracle strategy.

Comparing the other combining strategies to SCANN reveals that S-BP outperforms
SCANN on one data set but has five significant losses. Similarly, S-Bayes posts no wins but
has five losses. The wins by SCANN are typically on data sets where the most appropriate
weighting strategy is plurality voting. SCANN’s ability to discard superfluous fluctuations
in the models’ predictions makes it less sensitive to overfitting than S-BP and S-Bayes.
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Table 12. Summary of Section 6.5.

PV SCANN vs. PV Boosting vs. PV SCANN vs. Boosting

Data set Error Error w-l Ratio Error w-l Ratio w-l Ratio

abalone 88.29 38.75 30-0 0.439 88.41 11-18 1.001 30-0 0.438

bal 19.06 14.96 29-0 0.785 19.15 9-13 1.005 29-0 0.781

breast 4.36 4.34 5-4 0.994 4.41 7-7 1.011 5-5 0.983

credit 14.04 14.04 10-11 1.000 14.15 12-12 1.008 15-8 0.992

dementia 32.22 32.13 11-11 0.997 32.13 7-7 0.997 10-10 1.000

glass 27.03 27.03 13-12 1.000 27.13 11-13 1.004 14-11 0.996

heart 22.64 22.16 11-7 0.979 22.53 10-12 0.995 13-8 0.984

ionosphere 6.29 6.13 9-3 0.975 6.51 7-9 1.035 11-6 0.942

iris 5.33 5.11 4-1 0.958 5.56 1-4 1.042 7-1 0.920

krk 7.86 9.58 5-22 1.219 8.68 3-22 1.104 7-22 1.104

liver 30.83 28.62 19-5 0.928 29.87 16-5 0.969 18-8 0.958

lymph 17.19 16.89 9-8 0.983 17.19 8-8 1.000 10-12 0.983

musk 9.88 10.44 11-17 1.057 10.72 5-19 1.085 15-12 0.974

retard 36.18 35.31 21-6 0.976 37.50 2-27 1.034 28-1 0.944

sonar 22.49 22.80 9-13 1.014 23.60 7-17 1.049 14-12 0.966

vote 4.48 4.53 5-8 1.011 4.27 11-5 0.955 4-9 1.060

wave 19.78 19.85 10-16 1.004 19.67 12-8 0.994 11-16 1.009

wdbc 3.29 3.33 9-9 1.012 3.43 5-8 1.041 10-7 0.972

6.5. Experiment 2

Using the same train/test partitions as in Section 6.4, a model set was generated using
Boosting and the C4.5 decision tree algorithm. A total of 50 trees were built. SCANN was
compared to the standard Boosting combining scheme where each model is assigned a
single weight as a function of its performance on its respective training sample.

Thirty trials were conducted using the data sets described above. A summary of the
performances of PV, SCANN and Boosting are reported in Table 12. The error percentages
for PV are contained in the second column. The columns under ‘SCANN vs. PV’ contain
the error percentages, win/loss tallies, and error ratios (i.e., SCANN/PV) for SCANN versus
PV. The same comparisons for Boosting and PV are contained in columns labeled ‘Boosting
vs. PV’. The last two columns contain a direct comparison of SCANN and Boosting.

In general, SCANN performs better than PV or Boosting. SCANN significantly im-
proves upon PV on four of the data sets, and Boosting on three. Boosting posts three
significant losses to PV. As with Section 6.4, theabalonedata set is where the largest
win occurs. The weighting strategies of PV and Boosting do not allow for the identi-
fication of confused classes (as described in the previous section) because the model’s
weight applies to all predictions. On the other hand, on thekrk data set, SCANN increases
error by 21.9% over PV and 10.4% over Boosting. This is one case where SCANN’s
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weighting scheme was unable to simplify to plurality voting. The overall improvement by
SCANN stems from its ability to simplify to plurality voting when the errors are uncorre-
lated, or to derive a more elaborate combining strategy when the errors contain patterns of
correlation.

7. Related work

Work done in combining classifiers can be broken down into two major categories: those
which assign a fixed weight to each model, and those which allow the weight for each model
to change as a function of the example being classified. Sections 7.1 and 7.2 delineate these
approaches and relate them to SCANN.

7.1. Constant weighting functions

When combining classifiers with fixed weights, a model’s prediction or vote for a given
class has a strength proportional to its assigned weight. The class receiving the most votes
is the final class prediction. This is referred to as aweighted majorityscheme, i.e.,

f̂ (x) = arg max
c∈Y

N∑
i=1

αi ‖ f̂i (x) = c‖

whereY is the set of possible classes, and‖a=b‖ is one if a is equal tob, and zero
otherwise.

The simplest way of choosing the weights is giving each model equal weight (i.e.,αi =
1/N), and predicting the class with the most frequent vote. This was referred earlier as
the plurality vote (PV) and is also known as the basic ensemble method (BEM) (Perrone
& Cooper, 1993). This approach has frequently been used as a straw man combining
scheme for comparing to other combining schemes (Merz, 1995), or as a simple combining
scheme to evaluate model generation strategies (Breiman, 1996; Maclin & Shavlik, 1995). A
more elaborate weighting scheme derived by Perrone and Cooper (1993) is the general
ensemble method (GEM). GEM is different from SCANN in that models are assigned fixed
weights, and GEM has difficultly dealing with models that make highly correlated errors.

One can also combine learned models using logistic regression. For each class,c, denote
P(Yc | x) byπ(x)wherex = {x1, x2, . . . , xN} represents whether classifiersf̂1, f̂2, . . . , f̂N

chose classc. For example,xj = 1 if f̂ j predicted classc. Using the logistic response
function,

π(x) = exp(γ + β1x1+ β2x2+ · · · + βN xN)

1+ exp(γ + β1x1+ β2x2+ · · · + βN xN)

and

log
π(x)

1− π(x) = γ + β1x1+ β2x2+ · · · + βN xN
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whereγ and{βi } are constant parameters. Solving for these parameters using a standard
approach (i.e., iterative least squares) enables the calculation of the probability of each
class. Using these probabilities as the weights,α, the class with the highest probability is
selected.

To date, logistic regression has not been applied to learned models with class label output
(versus class probabilities). However, Ho, Hull, and Srihari (1994) have successfully
applied it to learned models with class rankings with positive results. Due to the large
number of free parameters (i.e.,N(M + 1)), this approach is only good for a small number
of learned models and classes with plenty of training data.

More ambitious methods incorporate the estimated accuracy of a learned model in choos-
ing its weight. Opitz and Shavlik (1996) do so as follows,

αi = (1− Ei )∑N
j=1(1− Ej )

where Ei the estimate of modeli ’s accuracy based on performance on a validation set.
Intuitively, modeli gets more weight as its estimated performance increases relative to the
estimated cumulative performance of the other models. The weight assignment scheme in
this work is limited in that it handles redundancy in the model set poorly, i.e., several very
similar models will receive the same weight, possibly overpowering the vote of another
model making a unique contribution.

Two other methods for assigning fixed weights to each model are Bagging (Breiman,
1994) and Boosting (Schapire, 1990). These methods are tightly coupled to the model
generation phase rather than being general combining techniques. The goal is to generate a
set of models which are likely to make uncorrelated errors (or to have higher variance) thus
increasing the potential payoffs in the combining stage. Each model is generated using the
same algorithm, but different training data. The data for a particular model is obtained by
sampling from the original training examples according to a probability distribution. The
probability distribution is defined by the particular approach.

Bagging exploits the variance of a learning algorithm by applying it to various version
of the data set, and averaging the predictions of the models produced uniformly to reduce
prediction error due to variance in the models. Variations on the training data are obtained
by sampling from the original training data with replacement. The probability of an example
being drawn is uniform, and the number of examples drawn is the same as the size of the
original training set. The underlying theory of this approach indicates that the models should
be weighted uniformly. This approach appears to be effective (Freund & Schapire, 1996;
Quinlan, 1996), but may be limited by the particular algorithm being bagged. SCANN is
more broadly applicable because it can work with multiple learning algorithms at the same
time.

Another resampling method has its roots in what is known as Boosting, initially developed
by Schapire (1990). Boosting is based on the idea that a set of moderately inaccurate rules-
of-thumb (i.e., learned models) can be generated and combined to form a very accurate
prediction rule. Freund and Schapire (1995, 1996) have developed several algorithms
for Boosting. This technique assigns a weight to each example in the training data and
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adjusts it after learning each model. Initially, the examples are weighted uniformly. For
learning subsequent models, examples are reweighted as follows: “easy” examples which
are predicted with low error by previously learned hypotheses (i.e., learned models) get lower
weight, and “hard” examples that are frequently misclassified are given higher weight. The
data sets for each learned model are resampled with replacement according to the weight
distribution of the examples.4

A combining strategy for Boosting is described in (Freund & Schapire, 1995) Ada-
Boost.M1 algorithm. Thei th model’s vote for a given class is a function of its error,εi , i.e.,

αi = log
(1− εi )

εi

In this scheme, learned models which make fewer errors (on the distribution of examples
they see) get higher weights. Like Bagging, Boosting places more emphasis on generating
a diverse model set. It is possible that a more elaborate non-constant weighting scheme like
SCANN could improve upon the combining approach above.

Several other resampling techniques have been explored in the literature (Meir, 1995;
Krogh & Vedelsby, 1995; Chan & Stolfo, 1995). However, they are not discussed in detail
because the emphasis here is on the combining stage.

7.2. Non-constant weighting functions

The most prevalent method in the literature for dynamically deciding how to weight a
collection of classifiers is the “mixture of experts” approach (Jacobs et al., 1991) which
consists of several different expert learned models (i.e., multilayer perceptrons) plus a gat-
ing network that decides which of the experts should be used for each case. Each expert
reports a class probability distribution for a given example. The gating network selects
one or a few experts which appear to have the most appropriate class distribution for the
example. During training, the weight changes are localized to the chosen experts (and the
gating network). Experts which classify the example well5 are given more responsibil-
ity for that example and experts which do not classify the example well are given less
responsibility. The weights of other experts which specialize in quite different cases are
unmodified. The experts become localized because their weights are decoupled from the
weights of other experts, and they will end up specializing on a small portion of the input
space.

Jordan and Jacobs (1994) expanded on this approach allowing the learned models/experts
to be generalized linear models. The experts are leaves in a tree-structured architecture
whose internal nodes are gating functions. These gating functions make soft splits allowing
data to lie simultaneously in multiple regions. The mixture of experts approach is different
than SCANN in that it is more involved in the model generation phase. SCANN deals with
the models after they have been learned.

Tresp and Taniguchi (1995) derived a collection of non-constant weighting functions
which can be used to combine regressors or classifiers. The proposed methods weigh a
learned model according to its reliability in the region of the given example. Reliability
is defined in terms of either the model’s accuracy in the region of the given example, or
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the amount of variability of the model’s predictions in that region. All of the approaches
require that the weights be positive and sum to one. The methods proposed have not been
evaluated empirically, but may prove useful in extending methods like SCANN to allow for
more elaborate non-constant weighting functions.

8. Limitations and future work

The most significant limitation of SCANN is that the final combining scheme results in a
loss of interpretability. One of the biggest advantages of using a single symbolic learning
algorithm is that an interpretable result is produced, such as a decision tree or a rule list.
This limitation is common to all approaches to model combination to date. Shannon and
Banks (1997) have developed a technique for producing a single interpretable tree from a
set of trees, but the technique is limited to decision trees. Producing a single model from a
homogeneous model set is a logical place to start working on the interpretability problem.
A more ambitious approach would be to try to identify the most reliable rule, decision tree
path, etc., from a model set for a given example.

The SCANN algorithm may be extended in several ways. The nearest neighbor compo-
nent of SCANN could be replaced. A possible substitute combining strategy would be to
fit a set of Gaussians functions (Duda & Hart, 1973) (i.e., one per class) to the intermediate
representation derived by the correspondence analysis stage. The space derived by CA
serves as a good set of attributes for Gaussian models because it is compact and fairly free
of noise. This extension could provide class probability output, as opposed to simple class
label output, even if all of the constituent models produced class label output.

SCANN is a non-constant weighting scheme in the sense that each model has one weight
per class. A more dynamic extension would be to incorporate some of the proposed non-
constant weighting schemes of Tresp and Taniguchi (1995) which derive weights according
to the example being classified.

In this work SCANN is only applied to learned models which report class labels. The
analysis needs to be extended to model sets which report class probabilities and class rank-
ings. The inclusion of probabilistic models may lead to a more robust combining scheme,
e.g., as class probabilities more accurately reflect the confidence a learned model has in its
predictions. Class probabilities could easily be used by SCANN by filling the indicator ma-
trix with the probabilities instead of a single ‘1’ for the predicted class. Applying SCANN
to model sets that report class rankings may also be fruitful for tasks such as character
recognition (Ho, Hull, & Srihari, 1994) and information retrieval.

9. Conclusion

A novel method has been introduced for combining the predictions of heterogeneous or
homogeneous classifiers. It draws upon the methods of stacking, correspondence analysis
and nearest neighbor. In an empirical analysis, the method proves to be insensitive to poor
learned models and matches the performance of plurality voting as the errors of the learned
models become less correlated.



COMBINING CLASSIFIERS 57

Acknowledgment

This research was supported by AFOSR grant F49620-96-1-0224.

Notes

1. HenceforthL will be referred to asL0 for clarity.
2. Note thatj may also be associated the Truth column.
3. The author realizes that significance tests on resampled data have a higher probability of falsely detecting

significant differences (Type I error) (Dietterich, 1996; Salzberg, 1997). To guard against this, a high confidence
level was used in conjunction with multiple evaluation measures.

4. Note that this resampling technique can be replaced by a reweighting technique when the learning algorithm
is capable of directly accepting aweightedset of examples.

5. Here, to classify an example well means to have less error than the weighted average of the errors of all the
experts (using the outputs of the gating network to decide how to weight each expert’s error). To not classify
an example well means to have more error than the weighted average.
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