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Using Count Data Models in Travel 

Cost Analysis with Aggregate Data 

Daniel M. Hellerstein 

In order to control for censoring and the integer nature of trip demand, the use of count 
data models in travel cost analysis is attractive. Two such models, the Poisson and 

negative binomial, are discussed. Robust estimation techniques that loosen potentially 
stringent distributional assumptions are also reviewed. For illustrative purposes, several 
count data models are used to estimate a county-level travel cost model using permit 
data from the Boundary Waters Canoe Area. 

Key words: Boundary Waters Canoe Area, count data, negative binomial, Poisson, 
travel cost. 

Estimators of recreational demand models fre- 

quently use continuous functional forms, such 
as ordinary least squares (OLS) on log trans- 
formed variables (e.g., Ziemer, Musser, and 

Hill). However, the nature of trip demand in- 
troduces complicating factors. First, trips occur 
in nonnegative quantities. Failure to control for 
this censoring will lead to biased estimation. 

Second, because trips are available only in in- 

teger quantities, the usual demand models, which 
correlate marginal quantity with marginal price, 
may be inapplicable. 

In light of these factors, a natural alternative 
is to use statistical models that explicitly rec- 

ognize the "count" nature of trip demand. Sev- 
eral recent papers (e.g., Shaw, Smith, Grogger 
and Carson, Creel and Loomis) have applied 
count models to the travel cost model. These 
works largely have focused on truncated data sets 
based on choice-based samples. In this study the 
focus is on the older problem where zero-de- 
manders are included. In particular, the appli- 
cation of several robust estimators of count 
models to aggregated data will be considered. 

The Poisson distribution forms the foundation 
for the count models examined in this study. Al- 

though the Poisson is a convenient distribution 

to work with, it imposes some stringent con- 
straints on the demand distribution. In particu- 
lar, the Poisson distribution assumes the vari- 
ance of trip demand is equal to the expected value 
of trip demand. To loosen these constraints, a 

generalization of the Poisson, the negative bi- 
nomial, is discussed. Robust estimation proce- 
dures, that permit further loosening of a priori 
assumptions are then reviewed. Permit data from 
the Boundary Waters Canoe Area are used to 
examine the effects of these count models on 
consumer surplus estimates and on coefficient 

variability. 

Theory 

In formulating a demand process that yields count 
data, one must consider that trips are not avail- 
able in continuous quantities. The integer nature 
of the data can be explicitly accounted for by 
modeling the observed number of trips taken 

(over a season) as the result of many discrete 
choices (say, one for each day of the season). 
Under this scenario, count data distributions, such 
as the Poisson, are an asymptotic outcome.' 

Therefore, in estimating a count model, the 

analyst is implicitly estimating the "daily" prob- 
ability of the recreator choosing to visit. In- 

creasing the travel cost will reduce the proba- 
bility of a visit on any given day. Following Small 
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and Rosen, integrating over these price changes 
yields a measure of the compensating variation. 

Extending these results to the repeated discrete 
choice context yields a consumer surplus mea- 

sure over an entire season (Hellerstein and Men- 

delsohn). The key result is that count data models, 
as the limit of a repeated discrete choice pro- 
cess, can be used much like continuous models. 
In particular, integrating under a continuous es- 
timator of predicted demand will yield a mea- 
sure of consumer surplus. 

Given this background, we concentrate on es- 

timating the expected value of trip demand. Fur- 

thermore, as a result of repeated discrete choice, 
the number of observed trips will follow a Pois- 
son distribution. Formally, the expected value 
of demand is 

E(Y) = f(P, Z; P), 

where E(Y) is the expected number of trips taken 

per season, P, Z are explanatory variables in- 

cluding travel cost to site (P) and demand shift 
variables (Z), such as income and travel costs 
to substitute sites, and p is a vector of coeffi- 
cients. 

The Poisson probability distribution of de- 
mand is 

(1) 
Prob(Y = n; n = 0, 1, 2, ...) = exp(-A)A"/n! 

with A = f(P, Z; p). 
The Poisson is a single parameter distribution 

with expectation and variance both equal to A 

(Mood, Graybill, and Boes). Although n is a 

nonnegative integer, A must be a strictly posi- 
tive real number. 

The Poisson model is solved by estimating P, 
say P*, in A* = A(P, Z; /3*). The estimated value 
of A, A*, is interpreted as the predicted expected 
value (and variance) of demand. The predicted 
expected value of consumer surplus, E(CS), is 
then computed via the usual integration: 

(2) E(CS) = A(P, Z; 8P*)dP, 

where Pobs is observed price, and Pm, is a choke 

price, possibly 00 

This paper will focus on this measure of con- 
sumer surplus estimated using the predicted mean 
of demand. Criticisms of this approach in the 
continuous context (see Bockstael and Strand; 
or Adamowicz, Fletcher, Graham-Tomasi) stress 
the importance of considering the source of er- 
ror. However, if measurement error is small, and 

if the measure of expected demand is unbiased, 
then this measure of consumer surplus will be a 

good approximation to the expected value of 
consumer surplus.2 

Extending the Poisson: The Negative 
Binomial 

A drawback to the Poisson model is the implied 
assumption that E(Y) and &(Y) are equal. Fur- 

thermore, Poisson "regressions" allow no ran- 
dom component in the A estimator; the A = A(P, 
Z; /3*) relationship does not contain an error 

component. 
The negative binomial count model is often 

used to relax this unlikely condition of perfect 
knowledge of the A estimator and to permit more 
flexible variance/mean relationships. Following 
Cameron and Trivedi, the negative binomial is 
derived as a compound Poisson distribution, 
where A is assumed to be distributed as a gamma 
random variable.3 Integrating over this distri- 
bution of A yields the two parameter negative 
binomial. Formally, 

Prob(Y = n, n = 0, 1, .. .) 

F(n + P) V b 

F(n + 
1)F(,) ,+ 

P + 
,+ 

with 

2 

E(Y) = L and &(Y) = L + 

The variance to mean ratio of the negative bi- 
nomial is a decreasing function of v. As v ap- 
proaches infinity, the negative binomial col- 

lapses to the Poisson; hence the Poisson is nested 
within the negative binomial. 

In terms of the repeated discrete choice 

framework, the negative binomial admits that 

2 The concern is that E(CS(Y)) may not equal the CS(E(Y)), where 
the latter is what the analyst computes. However, 

d(x; 0, E)dPdF(E) = d*(x; P)dP 

with d* = E(Y). Therefore, as long as E(Y) is unbiased, then 

E(CS(Y)), the left-hand side of the above equation, will approach 
CS(E(Y)), the right-hand side. It must be stressed that d* is an 
unbiased estimate of the expected value of demand. In particular, 
d* is assumed to explicitly account for censoring. When this con- 

straint cannot be guaranteed, an alternative form for d* = E(Y) 
(such as suggested by Maddala, p. 158) should be used. 

3 An alternative derivation can also be found in Hausman, Hall, 
and Griliches. The Cameron and Trivedi formulation is more flex- 

ible, including the Hausman, Hall, and Griliches specification as a 

special case. 
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the underlying daily probability of visiting may 
be randomly distributed. More concisely, each 
individual is assumed to draw a value for her 

daily probability at the beginning of the season. 

Knowledge of the random process generating 
these daily probabilities is not required, so long 
as the net result is a gamma distribution of A, 
conditional on the exogenous variables. 

Estimation 

In addition to their appealing statistical proper- 
ties, the Poisson and negative binomial have 
several useful empirical properties: 

(a) The sum of W independent Poisson var- 
iates is also Poisson distributed, with parameter 
A, = WAiA. Thus, the distribution of visits from 
the aggregate of W individuals is prob(Y = n) 
= 

(e- A)(Aw)n/n!. This adding-up property fa- 
cilitates the use of aggregate data, given knowl- 

edge of population size. 

(b) If a constant term is included in the func- 
tion describing A, the sum (over all observa- 

tions) of observed demand will equal the sum 
of predicted demand. 

(c) Zero values are admissible. These prop- 
erties also hold for the negative binomial, with 
A replaced by ~t. 

To insure that A (or g in the negative bino- 

mial) is strictly positive, it is postulated that 

(3) A(P, Z; 3) = exp(/30 + P/P + z8Z). 

These count data models are estimated via max- 
imum likelihood (ML) techniques. The Poisson 
is readily estimated using the Newton-Raphson 
technique. The negative binomial, especially its 
Hessian matrix, is more complicated and is usu- 

ally solved with a quasi-Newton method, such 
as the BHHH or the DFP algorithms (Judge et 

al.). 
Maximum likelihood estimation assumes that 

the postulated distribution is indeed correct. This 

assumption may impose some stringent require- 
ments, such as the E(Y) = 2(Y) criteria of the 
Poisson. The distributional sensitivity of these 
models raises concerns about robustness. How 

badly will these models fail if the true proba- 
bility distribution deviates from the assumed 
distribution? 

The consequences of these assumptions, and 

possible means of relaxing them, have been 
studied by a number of authors. For count data 
models, the work of Gourieroux, Montfort, and 

Trognon is especially useful.4 They introduce 
the concept of pseudo- (PML) and quasi-gen- 
eralized pseudo (QGPML) maximum likelihood 
estimation. Basically, they show that if func- 
tions describing the true mean and true variance 
of the dependent variable (say, the number of 

trips) are known [say, equal to f(p, z; P) and 

g(p, z; 8, a), respectively]; then the Poisson and 

negative binomial will be consistent, regardless 
of the underlying distribution. Several interest- 

ing results are obtained at the empirical level: 

(a) For the Poisson, the estimates of p from 
ML are consistent, and analytically equivalent 
to the PML estimates. However, the ML esti- 
mate of the covariance matrix of p is too small. 
The PML estimator can be used to compute a 
consistent estimate of the covariance (CV) ma- 

trix, which turns out to be a function of the "true 
variance" [the function g(P, Z; 3, a) introduced 

above]. 
(b) For the negative binomial, the ML esti- 

mate of p is not consistent if the distributional 

assumptions do not hold. A two-step QGPML 
estimator can be used to consistently estimate 
both a and /3. In this case, both 3 and the CV 
matrix are functions of the true variance. 

An Application to the Boundary Waters 
Canoe Area 

1980 permit data from the Boundary Waters 
Canoe Area (BWCA) in northern Minnesota will 
be used to compare the various count models. 
Each permit contains the ZIP code of the group 
leader, which can be used to obtain distance-to- 
site information as well as socioeconomic vari- 
ables either at the zip code level or at the county 
level. Because no other information is available, 
especially information on number of prior trips, 
the permits must be aggregated. County-level 
aggregates are used for this analysis. Therefore, 
the dependent variable is number of trips per 
county. 

A total of 27,433 overnight permits were ag- 
gregated into the 1,396 counties within 1,000 
road miles of the BWCA.5 About half of these 

4 Other works in this field include White, who offers a general 
discussion of the consequences of using an incorrect distribution 

function, and McCullagh and Nelder, who embed count models in 
the framework of generalized linear models. An interesting sum- 

mary of count models as weighted, iterative linear estimators is 

presented by Hall, Hausman, and Griliches. 
5 All overnight visitors are required to obtain a permit. The entire 

data base of permits comprises a full census of overnight visitors, 
who account for about 50% of BWCA use (in RVD terms). 
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counties have zero visits. Travel cost was based 
on $0.076/mile (1980$) plus a time cost com- 

puted using one-third of the per capita wage rate 

multiplied by average group size (4.0); the re- 
sult was an average cost per mile of approxi- 
mately $0.20. 

Table 1 contains the results from several 
models. An exponential form is used, with an 
individual's expected demand equal to exp(XPf), 
where X is a vector of exogenous variables. Be- 
cause aggregate data are used, the population of 
each county must also be considered. For the 
count models, the adding-up property suggests 
use of population as a multiplicative weight. 
Thus, 

E(Y,,oun) 
= POP * exp(Xcon,,,,,); Y,,,ounis 

the aggregate number of visits from the county, 
POP is the population of the county, and 

Xcounty 

is a set of county-level exogenous variables (see 
table 1 for a description of the exogenous vari- 

ables). For comparative purposes, a simple per 
capita semilog model is also estimated. Con- 
sumer surplus (CS) estimates (in 1980$) are 

computed using equation (2), with equation (3) 
used for A*.6 In all models, the reported CS es- 
timates use all 1,396 counties. 

The most noticeable results are that the own- 

price coefficient (BWTC) is negative and sig- 
nificant for all models. This is especially true 
for the Poisson model. However, if the Poisson 

assumption of E(Y) = r2(Y) is incorrect, then 
the standard errors generated by the ML esti- 
mator of the Poisson will also be incorrect. To 
test this assumption, a score test devised by Lee 
is computed. This test is normally distributed 
under the null hypothesis that the Poisson model 
is correct. The results of this test, and the large 
value of the t-statistic for a in the negative bi- 
nomial model, indicate that the Poisson is in- 

appropriate [that E(Y) does not equal &2(Y)]. 
Thus, the CV matrix computed by the ML es- 
timator is incorrect, suggesting use of the PML 
estimator for the Poisson model. In the PML es- 
timator, BWTC is still significantly negative, but 
several of the demand shifters (the age vari- 

ables, percent unemployment, and percent pov- 
erty) are insignificant at the 95% level. 

The negative binomial model returns quali- 
tatively similar coefficients for BWTC, % COL- 

LEGE, and INCOME. The sign on the substitute 

price (APTC) is now positive, the theoretically 
anticipated sign. Also, the age variables are sig- 
nificant. 

Within count models, the effect on consumer 

surplus is on the order of 25%. A much greater 
change (50%-100%) occurs between count and 

semilog OLS models. In RVD terms, given an 

average CS of $1.5 million, and a total of 25,000 
groups of four individuals spending four days in 
the wilderness, the average RVD value will be 
about $4.00 (a fairly small value). 

The semilog OLS model uses two heuristics: 
zero observations are dropped when coefficients 
are computed, and a bias correction factor is 

computed. The drop zeros rule ensures com- 

putability of the model. Since it discards infor- 
mation about nonvisitors, a potential for bias 
exists. Alternatively, the semilog model could 
be estimated using a nonlinear maximum like- 
lihood technique (Creel and Loomis). While such 
an approach permits zero visits, the treatment of 
demand shocks resulting from fluctuations in the 
error term (presumably caused by changes in 
unobservable factors) is not consistent with de- 
mand shocks caused by fluctuations in observed 

exogenous variables; with changes in unobserv- 
able factors having an additive impact, changes 
in observable variables have a proportional im- 

pact. Although this feature may or may not be 

appealing, for purposes of comparison the sim- 

pler drop zeros method is adopted. 
The bias correction factor (Stynes, Peterson, 

and Rosenthal) is a simple multiplier guarantee- 
ing that the sum of observed demand equals the 
sum of predicted demand. It has substantial im- 

pact, leading to a doubling of CS. Alternatively, 
Bockstael and Strand argue against inclusion of 
such a bias correction factor. However, the bias 
correction factor is used since unbiased esti- 
mation of E(CS) requires an unbiased estimate 
of E(Y). 

Formal qualitative comparisons between 
models are presented in table 2 and by exam- 

ining the 72 goodness-of-fit statistic in table 1.7 
Table 2 displays the results of an out-of-sample 
test created by Ashley and popularized by Shaw. 

6 To maintain consistency with the definition of the market area 
(all counties within 1,000 miles), a choke price equal to the max- 
imum price in the sample is used. Alternatively, a choke price of 

infinity could be used. However, when CS is computed using a 
choke price of infinity, the results differ by less than 1%. Note that 
the market area is limited in order to limit the bias resulting from 
visitors who partake in multiple-destination trips. 

7 The 712 statistic can be described as a measure of the corre- 

spondence between observed and predicted values. It is related to 
the familiar R2 statistic. Specifically, R2 = ESS/TSS and 712 = 1 - 
RSS/TSS, with ESS the explained sum of squares, TSS the observed 
(total) sum of squares, and RSS the residual sum of squares. In 
linear models, these two statistics are analytically equivalent, but 

they may diverge in nonlinear models. For further discussion of 

goodness of fit statistics in nonlinear models, see Peterson and Stynes. 
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Table 1. Results of Count Models, 1980 BWCA Permit Data 

Negative Negative Semilog OLS 
Poisson Poisson Binomial Binomial (discard 

MLa PMLa MLb QGPMLb zeros)c 

-5.14 -5.14 -5.42 -5.39 -7.62 
Constant (-23.0) (-2.45) (-9.3) (-4.2) (-8.9) 

-0.0208 -0.0208 -0.0158 -0.0158 -0.0111 
BWTC (-179.0) (-15.0) (-79.0) (-27.0) (-27.2) 

-0.00219 -0.00219 0.00203 0.00209 0.00229 
APTC (-15.0) (-1.9) (7.4) (4.5) (6.5) 

0.000328 0.000328 0.000316 0.000315 0.00017 
Income (44.0) (5.7) (22.0) (7.9) (4.45) 

1.64 1.64 -4.40 -4.5 -0.614 

%Unemploy (3.7) (0.46) (-4.9) (-2.04) (-0.45) 
-2.58 -2.58 -0.346 -0.381 1.70 

%Poverty (-7.9) (-1.14) (-0.67) (-0.28) (1.69) 
5.51 5.51 2.6 2.60 4.09 

%College (20.0) (2.3) (3.7) (1.57) (3.3) 
-1.06 -1.06 -5.46 -3.55 1.49 

% < 17 (-2.5) (-0.26) (-4.2) (-1.27) (0.76) 
-0.0256 -0.0256 -5.47 -5.58 1.62 

% > 65 (-0.054) (-0.006) (-4.2) (-2.05) (0.87) 
ad 9943 7915 29855 

(20.0) 
Lee teste 292.0 292.0 
CS (k$) 1,317 1,317 1,680 1,689 2,538 
712 0.92 0.92 0.67 0.66 0.68 

Notes: Dependent variable: count models, number of visits per county; semilog OLS model, per capita visitation. Functional form (W = population): for count models, E(Y) 
W* exp(XP); for semilog OLS, E(ln(Y/W)) = XP. Here, 27,433 permits are aggregated by county into 1,396 observations. Of these 1,396 observations, 647 observations contain 
zero visits (zero permits). T-statistics are displayed in parenthesis. For Poisson and QGPML count models, the standard errors are computed using the inverse Hessian. The negative 
binomial ML uses inv(Z'Z), with Z = aL/ap. Independent variables: BWTC is travel cost to BWCA; APTC, travel cost to Algonquin Provincial Park, a substitute site in southern 
Ontario; INCOME, per capita income; %UNEMPLOY, % of labor force currently unemployed; %COLLEGE, % of population older than 16 with college degree; %POVERTY, % 
of households with income below poverty level; % < 17, % of population less than 17 years old; and % > 65, % of population greater than 65 years old. The GAUSS programs 
used to estimate these models are available from the author. 
' The Poisson ML and the Poisson PML models yield analytically equivalent estimates of 3. 
b The NEGBIN II model is used, with the variance to mean ratio linear-in-the-mean: T-2(y) = E(y)[1 + aE(y)]. 

A bias correction factor of 0.74, computed to force the sum of predicted visits to equal the sum of observed visits is incorporated into the constant. 
d For the PML Poisson and the QGPML Negative Binomial, a is computed in separate regression; it is not estimated using the likelihood function, hence standard errors are not 
available. Note that in the MLE negative binomial, a insignificantly different from 0 implies that the variance equals the mean. 
SUnder the null hypothesis the Poisson is the correct distribution, implying that the mean equals the variance, the Lee test (Lee) is distributed as a standard normal. A one-tailed 
test is appropriate, with critical value at 1.64. 
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Table 2. Ashley Test of Model Quality 

Model Ia Model 2 The superior model is ... 

Poisson NegBin inconclusive 
Poisson QGPML inconclusive 
Poisson Semilog + Poisson 

NegBin QGPML NegBin 
NegBin Semilog + NegBin 
QGPML Semilog+ QgPML 

Note: The Ashley test (Ashley, or Shaw) uses out-of-sample data 

(1981 data) to directly compare the predictive power of two dif- 
ferent models. 
a Models: Poisson, Poisson model; NegBin, negative binomial es- 
timated using ML; QGPML, negative binomial estimated using 
QGPML; Semilog+, OLS on semilog model with a "bias correc- 
tion" factor. 

This test is essentially a nonparametric compar- 
ison of the goodness of fit of two different 

models, using out of sample data. In this case, 
1981 data are used as the out-of-sample data, 
and 1980 data are used to estimate the coeffi- 
cients.8 

The 2 goodness-of-fit statistics suggest that 
fit is fairly good, especially for the Poisson 
model. The negative binomial have predictive 
accuracy similar to the bias-corrected semilog. 
The results of the Ashley test, although not con- 

clusive, suggest that count models are superior 
to the bias-corrected semilog model. Within count 

models, the evidence is weaker. For example, 
the ML negative binomial is considered superior 
to the QGPML negative binomial. It is inter- 

esting that a Hausman specification test (Haus- 
man) comparing the QGPML and the ML esti- 
mators fails to reject the consistency of the ML 

estimator; the result indicates that the negative 
binomial distribution is correct. 

These results indicate that count models out- 

perform the drop-zeros semilog model. Within 
count models, the Poisson outperforms the neg- 
ative binomial in predictive accuracy but pro- 
duces incorrect measures of variability, throw- 

ing the Poisson t-statistics into doubt. The PML 
estimator of the Poisson can be used to address 
this failure while maintaining the predictive power 
of the Poisson. The QGPML negative binomial 
is similar to the ML negative binomial, sug- 
gesting either that the ML estimator be used (on 

efficiency grounds) or that the QGPML esti- 
mator be used (on ease of computation grounds). 

Concluding Comments 

The intrinsic nature of site visitation suggests 
that demand models based on continuous func- 
tional forms are inappropriate because they fail 
to recognize the count nature of trip making. To 
account for this feature, two count models, the 

Poisson and negative binomial, are reviewed. 
At an empirical level, besides matching the in- 

teger quality of trip demand, these count distri- 
butions explicitly account for censoring at zero. 

Furthermore, a behavioral justification for their 

use, based on a repeated discrete choice process 
generating trip demand, can be derived. 

An application to permit data from the 

Boundary Waters Canoe Area reveals that the 
choice of estimator can have substantial impact, 
especially on consumer surplus estimates. In 

particular, the drop-zero semilog OLS yielded 
estimates approximately 50% larger than the 
Poisson. The consumer surplus differences among 
the several count models were smaller. This 

suggests that for welfare purposes, the ML Pois- 
son may be adequate. However, coefficient val- 
ues did vary, especially for demand shift vari- 
ables. More important, t-statistics for all variables 
were quite different across count models, with 
the robust estimators (such as the PML Poisson) 
generally returning much smaller t-statistics. 
These results suggest caution when interpreting 
coefficient values from maximum likelihood es- 
timators.9 

Although the application of count models to 
travel cost analysis is becoming increasingly 
popular, the existence of robust estimators for 
both the Poisson and negative binomial has not 
been exploited. These robust estimators reduce 
the extent of a priori knowledge required for 
consistent estimation of the coefficient vector and 
its covariance matrix. 

A discussion of the aggregation issue also is 
in order. First, consider the robust estimators used 
here. They all require that the functional form 

describing expected demand is correct. In the 
context of aggregate data, this requires that the 

8 The Ashley test uses out-of-sample data. To test that 1981 data 
is out of sample but not generated by a different model, parameter 
stability is tested. Specifically, a Chow test of parameter equality, 
using 1980 and 1981 data with a Poisson PML model, failed to 

reject the null of parameter stability; with an F(9, 2774)-statistic 
of 0.92, well below the 95% cutoff level at 1.88. However, the 
MLE model did reject the null, with an F-statistic of 42.0. 

9 To the extent that variance of consumer surplus is a function 
of the covariance of the coefficient vector, this result also suggests 
caution when qualitative comparisons are formed. See Bockstael 
and Strand or Adamowicz, Fletcher, and Graham-Tomasi for fur- 
ther discussion of the effects of uncertainty on the variance of con- 
sumer surplus estimates. 
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Xcon,y measures be representative, in the sense 
of Deaton and Muelbauer (p. 149), of the county. 
If they are not, then W* exp(Xcount3*) will not 

equal EW,1 exp(xi,3*), and the requirements for 
robust estimation will be violated. 

This weakness of aggregate data sets must be 
measured against the weaknesses of alternative 

methods, such as the sample selection models 
of Shaw or the truncated count models of Creel 
and Loomis. These models admit the influence 
of nonvisitors in a limited fashion. First, for to- 
bit-like estimators and for Poisson-based models, 
incorrect specification of higher moments will 
bias estimates of demand parameters. Although 
the negative binomial is robust to misspecifi- 
cation of higher moments (Grogger and Car- 

son), all these models are sensitive to the pre- 
sumption that nonvisitors possess the same 
demand parameters as visitors. To the extent that 
this is not true, truncated models may be more 
biased than aggregated models. In other words, 
aggregate models permit nonvisitors to influ- 
ence estimation, so that the resulting parameters 
are a reduced form incorporating information on 
both visitors and nonvisitors. For many pur- 
poses, such as calculating the CS for a new pop- 
ulation, such parameters may be superior to those 

produced by truncated models.10 In short, ag- 
gregate analysis is not necessarily dominated by 
site-based samples estimated with econometric 

techniques that recognize truncation. 

[Received April 1990; final revision received 

August 1990.] 
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Furthermore, extensions to the Poisson that permit systematic 

differences between visitors and nonvisitors, such as proposed by 
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