
Using Counterfactuals in Knowledge-Based
Programming

Joseph Y. Halpern∗

Cornell University
Dept. of Computer Science

Ithaca, NY 14853
halpern@cs.cornell.edu

http://www.cs.cornell.edu/home/halpern

Yoram Moses
Department of Electrical Engineering

Technion—Israel Institute of Technology
32000 Haifa, Israel

moses@ee.technion.ac.il

April 19, 2004

Abstract

This paper adds counterfactuals to the framework of knowledge-based programs
of Fagin, Halpern, Moses, and Vardi [1995, 1997]. The use of counterfactuals is
illustrated by designing a protocol in which an agent stops sending messages once
it knows that it is safe to do so. Such behavior is difficult to capture in the original
framework because it involves reasoning about counterfactual executions, including
ones that are not consistent with the protocol. Attempts to formalize these notions
without counterfactuals are shown to lead to rather counterintuitive behavior.

∗The work was supported in part by NSF under grant IRI-96-25901 and IIS–0090145, by the Air
Force Office of Scientific Research under grant F49620-96-1-0323, and by ONR under grants N00014-00-
1-03-41 and N00014-01-1-0795. A preliminary version of this paper appeared in the Proceedings of the
Seventh Conference on Theoretical Aspects of Rationality and Knowledge (TARK), 1998.



1 Introduction

Knowledge-based programs, first introduced by Halpern and Fagin [1989] and further
developed by Fagin, Halpern, Moses, and Vardi [1995, 1997], are intended to provide a
high-level framework for the design and specification of protocols. The idea is that, in
knowledge-based programs, there are explicit tests for knowledge. Thus, a knowledge-
based program might have the form

if K(x = 0) then y := y + 1 else skip,

where K(x = 0) should be read as “you know x = 0” and skip is the action of doing
nothing. We can informally view this knowledge-based program as saying “if you know
that x = 0, then set y to y + 1 (otherwise do nothing)”.

Knowledge-based programs are an attempt to capture the intuition that what an
agent does depends on what it knows. They have been used successfully in papers such as
[Dwork and Moses 1990; Hadzilacos 1987; Halpern, Moses, and Waarts 2001; Halpern and
Zuck 1992; Mazer and Lochovsky 1990; Mazer 1990; Moses and Tuttle 1988; Neiger and
Toueg 1993] both to help in the design of new protocols and to clarify the understanding
of existing protocols. However, as we show here, there are cases when, used naively,
knowledge-based programs exhibit some quite counterintuitive behavior. We then show
how this can be overcome by the use of counterfactuals [Lewis 1973; Stalnaker 1968]. In
this introduction, we discuss these issues informally, leaving the formal details to later
sections of the paper.

Some counterintuitive aspects of knowledge-based programs can be understood by
considering the bit-transmission problem from [Fagin, Halpern, Moses, and Vardi 1995].
In this problem, there are two processes, a sender S and a receiver R, that communicate
over a communication line. The sender starts with one bit (either 0 or 1) that it wants to
communicate to the receiver. The communication line may be faulty and lose messages
in either direction in any given round. That is, there is no guarantee that a message
sent by either S or R will be received. Because of the uncertainty regarding possible
message loss, S sends the bit to R in every round, until S receives an ack message
from R acknowledging receipt of the bit. R starts sending the ack message in the round
after it receives the bit, and continues to send it repeatedly from then on. The sender S
can be viewed as running the program BTS:

if recack then skip else sendbit,

where recack is a proposition that is true if S has already received an ack message from R
and false otherwise, while sendbit is the action of sending the bit.1 Note that BTS is a
standard program—it does not have tests for knowledge. We can capture some of the
intuitions behind this program by using knowledge. The sender S keeps sending the bit

1Running such a program amounts to performing the statement repeatedly forever.

1



until an acknowledgment is received from the receiver R. Thus, another way to describe
the sender’s behavior is to say that S keeps sending the bit until it knows that the bit was
received by R. This behavior can be characterized by the knowledge-based program BT′S:

if KS(recbit) then skip else sendbit,

where recbit is a proposition that is true once R has received the bit. The advantage of
this program over the standard program BTS is that it abstracts away the mechanism
by which S learns that the bit was received by R. For example, if messages from S to R
are guaranteed to be delivered in the same round in which they are sent, then S knows
that R received the bit even if S does not receive an acknowledgment.

We might hope to improve this even further. Consider a system where all messages
sent are guaranteed to be delivered, but rather than arriving in one round, they spend
exactly five rounds in transit. In such a system, a sender using BTS will send the bit
10 times, because it will take 10 rounds to get the receiver’s acknowledgment after the
original message is sent. The program BT′S is somewhat better; using it S sends the
bit only five times, since after the fifth round, S will know that R got his first message.
Nevertheless, this seems wasteful. Given that messages are guaranteed to be delivered, it
clearly suffices for the sender to send the bit once. Intuitively, the sender should be able
to stop sending the message as soon as it knows that the receiver will eventually receive
a copy of the message; the sender should not have to wait until the receiver actually
receives it.

It seems that there should be no problem handling this using knowledge-based pro-
grams. Let 3 be the standard “eventually” operator from temporal logic [Manna and
Pnueli 1992]; 3ϕ means that ϕ is eventually true, and let 2 be its dual, “always”. Now
the following knowledge-based program BT∗S for the sender should capture exactly what
is required:

if KS(3recbit) then skip else sendbit.

Unfortunately, BT∗S does not capture our intuitions here. To understand why, consider
the sender S. Should it send the bit in the first round? According to BT∗S, the sender
S should send the bit if S does not know that R will eventually receive the bit. But
if S sends the bit, then S knows that R will eventually receive it (since messages are
guaranteed to be delivered in 5 rounds). Thus, S should not send the bit. Similar
arguments show that S should not send the bit at any round. On the other hand, if
S never sends the bit, then R will never receive it and thus S should send the bit! It
follows that according to BT∗S, S should send the bit exactly if it will never send the bit.
Obviously, there is no way S can follow such a program. Put another way, this program
cannot be implemented by a standard program at all. This is certainly not the behavior
we would intuitively have expected of BT∗S.2

2While intuitions may, of course, vary, some evidence of the counterintuitive behavior of this program
is that it was used in a draft of [Fagin, Halpern, Moses, and Vardi 1995]; it was several months before
we realized its problematic nature.

2



One approach to dealing with this problem is to change the semantics of knowledge-
based programs. Inherent in the semantics of knowledge-based programs is the fact that
an agent knows what standard protocol she is following. Thus, if the sender is guaranteed
to send a message in round two, then she knows at time one that the message will be
sent in the following round. Moreover, if communication is reliable, she also knows the
message will later be received. If we weaken the semantics of knowledge sufficiently,
then this problem disappears. (See [Engelhardt, van der Meyden, and Moses 1998] for an
approach to dealing with the problem addressed in this paper along these lines.) However,
it is not yet clear how to make this change and still maintain the attractive features of
knowledge-based programs that we discussed earlier.

In this paper we consider another approach to dealing with the problem, based on
counterfactuals. Our claim is that the program BT∗S does not adequately capture our
intuitions. Rather than saying that S should stop sending if S knows that R will even-
tually receive the bit we should, instead, say that S should stop sending if it knows that
even if S does not send another message R will eventually receive the bit.

How should we capture this? Let do(i, a) be the formula that is true at a point (r,m)
if process i performs a in the next round.3 The most obvious way to capture “(even)
if S does not send a message then R will eventually receive the bit” uses standard
implication, also known as material implication or material conditional in philosophical
logic: do(S, skip) ⇒ recbit . This leads to a program such as BT⇒S :

if KS(do(S, skip) ⇒ 3recbit) then skip else sendbit.

Unfortunately, this program does not solve our problems. It, too is not implementable
by a standard program. To see why, suppose that there is some point in the execution
of this protocol where S sends a message. At this point S knows it is sending a message,
so S knows that do(S, skip) is false. Thus, S knows that do(S, skip) ⇒ 3recbit holds.
As a result, KS(do(S, skip) ⇒ 3recbit) is true, so that the test in BT⇒S succeeds. Thus,
according to BT⇒S , the sender S should not send a message at this point. On the other
hand, if S never sends a message according to the protocol (under any circumstance),
then S knows that it will never send a message (since, after all, S knows how the protocol
works). But in this case, S knows that the receiver will never receive the bit, so the test
fails. Thus, according to BT⇒S , the sender S should send the message as its first action,
this time contradicting the assumption that the message is never sent. Nothing that S
can do is consistent with this program.

The problem here is the use of material implication (⇒). Our intuitions are better
captured by using counterfactual implication, which we denote by >. A statement such
as ϕ > ψ is read “if ϕ then ψ”, just like ϕ ⇒ ψ. However, the semantics of > is very
different from that of ⇒. The idea, which goes back to Stalnaker [1968] and Lewis [1973]
is that a statement such as ϕ > ψ is true at a world w if in the worlds “closest to” or

3We assume that round m takes place between time m− 1 and m. Thus, the next round after (r, m)
is round m + 1, which takes takes place between (r, m) and (r, m + 1).

3



“most like” w where ϕ is true, ψ is also true. This attempts to capture the intuition that
the counterfactual statement ϕ > ψ stands for “if ϕ were the case, then ψ would hold”.
For example, suppose that we have a wet match and we make a statement such as “if the
match were dry then it would light”. Using ⇒ this statement is trivially true, since the
antecedent is false. However, with >, the situation is not so obvious. We must consider
the worlds most like the actual world where the match is in fact dry and decide whether
it would light in those worlds. If we think the match is defective for some reason, then
even if it were dry, it would not light.

A central issue in the application of counterfactual reasoning to a concrete problem is
that we need to specify what the “closest worlds” are. The philosophical literature does
not give us any guidance on this point. We present some general approaches for doing
so, motivated by our interest in modeling counterfactual reasoning about what would
happen if an agent were to deviate from the protocol it is following. We believe that this
example can inform similar applications of counterfactual reasoning in other contexts.

There is a subtle technical point that needs to be addressed in order to use counter-
factuals in knowledge-based programs. Traditionally, we talk about a knowledge-based
program Pgkb being implemented by a protocol P . This is the case when the behavior
prescribed by P is in accordance with what Pgkb specifies. To determine whether P
implements Pgkb , the knowledge tests (tests for the truth of formulas of the form Kiϕ)
in Pgkb are evaluated with respect to the points appearing in the set of runs of P . In
this system, all the agents know that the properties of P (e.g. facts like process 1 al-
ways sending an acknowledgment after receiving a message from process 2) hold in all
runs. But this set of runs does not account for what may happen if (counter to fact)
some agents were to deviate from P . In counterfactual reasoning, we need to evaluate
formulas with respect to a larger set of runs that allows for such deviations.

We deal with this problem by evaluating counterfactuals with respect to a system
consisting of all possible runs (not just the ones generated by P ). While working with
this larger system enables us to reason about counterfactuals, processes no longer know
the properties of P in this system, since it includes many runs not in P . In order to
deal with this, we add a notion of likelihood to the system using what are called ranking
functions [Spohn 1988]. Runs generated by P get rank 0; all other runs get higher rank.
(Lower ranks imply greater likelihood.) Ranks let us define a standard notion of belief.
Although a process does not know that the properties of P hold, it believes that they
do. Moreover, when restricted to the set of runs of the original protocol P , this notion of
belief satisfies the knowledge axiom Biϕ⇒ ϕ, and coincides with the notion of knowledge
we had in the original system. Thus, when the original protocol is followed, our notion
of belief acts essentially like knowledge.

Using the counterfactual operator and this interpretation for belief, we get the pro-
gram BT>

S :
if BS(do(S, skip) > 3recbit) then skip else sendbit.

We show that using counterfactuals in this way has the desired effect here. If message

4



delivery is guaranteed, then after the message has been sent once, under what seems
to be the most reasonable interpretation of “the closest world” where the message is
not sent, the sender believes that the bit will eventually be received. In particular, in
contexts where messages are delivered in five rounds, using BT>

S , the sender will send one
message.

As we said, one advantage of BT′S over the standard program BTS is that it abstracts
away the mechanism by which S learns that the bit was received by R. We can abstract
even further. The reason that S keeps sending the bit to R is that S wants R to know
the value of the bit. Thus, intuitively, S should keep sending the bit until it knows that
R knows its value. Let KR(bit) be an abbreviation for KR(bit = 0) ∨ KR(bit = 1), so
KR(bit) is true precisely if R knows the value of the bit. The sender’s behavior can be
characterized by the following knowledge-based program, BTK

S :

if KSKR(bit) then skip else sendbit.

Clearly when a message stating the value of the bit reaches the receiver, KR(bit) holds.
But it also holds in other circumstances. If, for example, the KSKR(bit) holds initially,
then there is no need to send anything.

As above, it seems more efficient for the sender to stop sending when he knows that
the receiver will eventually know the value of the bit. This suggests using the following
program:

if KS(do(S, skip) ⇒ 3KR(bit)) then skip else sendbit.

However, the same reasoning as in the case of BT> shows that this program is not
implementable. And, again, using belief and counterfactuals, we can get a program
BT3B

S that does work, and uses fewer messages than BT>

S . In fact, the following program
does the job:

if BS(do(S, skip) > 3BR(bit)) then skip else sendbit,

except that now we have to take BR(bit) to be an abbreviation for (bit = 0 ∧ BR(bit =
0))∨ (bit = 1∧BR(bit = 1)). Note that KR(bit), which was defined to be KR(bit = 0))∨
KR(bit = 1)), is logically equivalent to (bit = 0∧KR(bit = 0))∨ (bit = 1∧KR(bit = 1)),
since KRϕ ⇒ ϕ is valid for any formula ϕ. But, in general, BRϕ ⇒ ϕ is not valid, so
adding the additional conjuncts in the case of belief makes what turns out to be quite an
important difference. Intuitively, BR(bit) says that R has correct beliefs about the value
of the bit.

The rest of this paper is organized as follows: In the next section, there is an informal
review of the semantics of knowledge-based programs. Section 3 extends the knowledge-
based framework by adding counterfactuals and beliefs. We then formally analyze the
programs BT>

S and BT3B
S , showing that they have the appropropriate properties. We

conclude in Section 4.

5



2 Giving semantics to knowledge-based programs

Formal semantics for knowledge-based programs are provided by Fagin, Halpern, Moses,
and Vardi [1995, 1997]. To keep the discussion in this paper at an informal level, we
simplify things somewhat here, and review what we hope will be just enough of the
details so that the reader will be able to follow the main points. All the definitions in
this section, except that of de facto implementation at the end of the section, are taken
from [Fagin, Halpern, Moses, and Vardi 1995].

Informally, we view a multi-agent system as consisting of a number of interacting
agents. We assume that, at any given point in time, each agent in the system is in some
local state. A global state is just a tuple consisting of each agent’s local state, together
with the state of the environment, where the environment’s state accounts for everything
that is relevant to the system that is not contained in the state of the processes. The
agents’ local states typically change over time, as a result of actions that they perform.
A run is a function from time to global states. Intuitively, a run is a complete description
of what happens over time in one possible execution of the system. A point is a pair
(r,m) consisting of a run r and a time m. If r(m) = (`e, `1, . . . , `n), then we use ri(m)
to denote process i’s local state `i at the point (r,m), i = 1, . . . , n and re(m) to denote
the environment’s state `e. For simplicity, time here is taken to range over the natural
numbers rather than the reals (so that time is viewed as discrete, rather than dense or
continuous). Round m in run r occurs between time m − 1 and m. A system R is a
set of runs; intuitively, these runs describe all the possible executions of the system. For
example, in a poker game, the runs could describe all the possible deals and bidding
sequences.

Of major interest in this paper are the systems that we can associate with a program.
To do this, we must first associate a system with a joint protocol. A protocol is a function
from local states to nonempty sets of actions. (We often consider deterministic protocols,
in which a local state is mapped to a singleton set of actions. Such protocols can be viewed
as functions from local states to actions.) A joint protocol is just a set of protocols, one
for each process/agent.

We would like to be able to generate the system corresponding to a given joint pro-
tocol P . To do this, we need to describe the setting, or context , in which P is being
executed. Formally, a context γ is a tuple (Pe,G0, τ,Ψ), where Pe is a protocol for the
environment, G0 is a set of initial global states, τ is a transition function, and Ψ is a set
of admissible runs. The environment is viewed as running a protocol just like the agents;
its protocol is used to capture features of the setting such as “all messages are delivered
within 5 rounds” or “messages may be lost”. The transition function τ describes how
the actions performed by the agents and the environment change the global state by
associating with each joint action (a tuple consisting of an action for the environment
and one for each of the agents) a global state transformer, that is, a mapping from global
states to global states. For the simple programs considered in this paper, the transition
function will be almost immediate from the description of the global states. The set Ψ of

6



admissible runs is useful for capturing various fairness properties of the context. Typi-
cally, when no fairness constraints are imposed, Ψ is the set of all runs. (For a discussion
of the role of the set Ψ of admissible runs see [Fagin, Halpern, Moses, and Vardi 1995].)
Since our focus in this paper is reasoning about actions and when they are performed,
we assume that all contexts are such that the environment’s state at the point (r,m)
records the joint action performed in the previous round (that is, between (r,m − 1)
and (r,m)). (Thus, we are essentially considering what are called recording contexts in
[Fagin, Halpern, Moses, and Vardi 1995].)

A run r is consistent with a protocol P if it could have been generated when running
protocol P . Formally, run r is consistent with joint protocol P in context γ if r ∈ Ψ (so r
is admissible according to the context γ), its initial global state r(0) is one of the initial
global states G0 given in γ, and for all m, the transition from global state r(m) to r(m+1)
is the result of performing one of the joint actions specified by P and the environment
protocol Pe (given in γ) in the global state r(m). That is, if P = (P1, . . . , Pn), Pe is
the environment’s protocol in context γ, and r(m) = (`e, `1, . . . , `n), then there must
be a joint action (ae, a1, . . . , an) such that ae ∈ Pe(`e), ai ∈ Pi(`i) for i = 1, . . . , n, and
r(m + 1) = τ(ae, a1, . . . , an)(r(m)) (so that r(m + 1) is the result of applying the joint
action (ae, a1, . . . , an) to r(m). For future reference, we will say that a run r is consistent
with γ if r is consistent with some joint protocol P in γ. A system R represents a joint
protocol P in a context γ if it consists of all runs in Ψ consistent with P in γ. We use
R(P, γ) to denote the system representing P in context γ.

The basic logical language L that we use is a standard propositional temporal logic.
We start out with a set Φ of primitive propositions p, q, . . . (which are sometimes given
more meaningful names such as recbit or recack). Every primitive proposition is consid-
ered to be a formula of L. We close off under the Boolean operators ∧ (conjunction) and
¬ (negation). Thus, if ϕ and ψ are formulas of L, then so are ¬ϕ and ϕ ∧ ψ. The other
Boolean operators are definable in terms of these. E.g., implication ϕ ⇒ ψ is defined
as ¬(¬ϕ ∧ ψ). Finally, we close off under temporal operators. For the purposes of this
paper, it suffices to consider the standard linear-time temporal operators © (“in the next
(global) state’)’ and 3 (“eventually”): If ϕ is a formula, then so are ©ϕ and 3ϕ. The
dual of 3, which stands for “forever,” is denoted by 2 and defined to be shorthand for
¬3¬. This completes the definition of the language.

In order to assign meaning to the formulas of such a language L in a system R, we
need an interpretation π, which determines the truth of the primitive propositions at
each of the global states of R. Thus, π : Φ × G → {true, false}, where π(p, g) = true
exactly if the proposition p is true at the global state g. An interpreted system is a pair
I = (R, π) whereR is a system as before, and π is an interpretation for Φ inR. Formulas
of L are considered true or false at a point (r,m) with respect to an interpreted system
I = (R, π) where r ∈ R. Formally,

• (I, r,m) |= p, for p ∈ Φ, iff π(p, r(m)) = true.

• (I, r,m) |= ¬ϕ, iff (I, r,m) 6|= ϕ.

7



• (I, r,m) |= ϕ ∧ ψ, iff both (I, r,m) |= ϕ and (I, r,m) |= ψ.

• (I, r,m) |= ©ϕ, iff (I, r,m+ 1) |= ϕ.

• (I, r,m) |= 3ϕ, iff (I, r,m′) |= ϕ for some m′ ≥ m.

By adding an interpretation π to the context γ, we obtain an interpreted context (γ, π).

We now describe a simple programming language, introduced in [Fagin, Halpern,
Moses, and Vardi 1995], which is still rich enough to describe protocols, and whose
syntax emphasizes the fact that an agent performs actions based on the result of a test
that is applied to her local state. A (standard) program for agent i is a statement of the
form:

case of
if t1 do a1

if t2 do a2

· · ·
end case

where the tj’s are standard tests for agent i and the aj’s are actions of agent i (i.e.,
aj ∈ ACT i). (We later modify these programs to obtain knowledge-based and belief-
based programs; the distinction will come from the kinds of tests allowed. We omit the
case statement if there is only one clause.) A standard test for agent i is simply a
propositional formula over a set Φi of primitive propositions. Intuitively, if Li represents
the local states of agent i in G, then once we know how to evaluate the tests in the
program at the local states in Li, we can convert this program to a protocol over Li: at
a local state `, agent i nondeterministically chooses one of the (possibly infinitely many)
clauses in the case statement whose test is true at `, and executes the corresponding
action.

We want to use an interpretation π to tell us how to evaluate the tests. However, not
just any interpretation will do. We intend the tests in a program for agent i to be local,
that is, to depend only on agent i’s local state. It would be inappropriate for agent i’s
action to depend on the truth value of a test that i could not determine from her local
state. An interpretation π on the global states in G is compatible with a program Pgi

for agent i if every proposition that appears in Pgi is local to i; that is, if q appears
in Pgi, the states s and s′ are in G, and s ∼i s

′, then π(s)(q) = π(s′)(q). If ϕ is a
propositional formula all of whose primitive propositions are local to agent i, and ` is a
local state of agent i, then we write (π, `) |= ϕ if ϕ is satisfied by the truth assignment
π(s), where s = (se, s1, . . . , sn) is a global state such that si = `. Because all the primitive
propositions in ϕ are local to i, it does not matter which global state s we choose, as
long as i’s local state in s is `. Given a program Pgi for agent i and an interpretation π
compatible with Pgi, we define a protocol that we denote Pgπ

i by setting:

Pgπ
i (`) =

{
{aj : (π, `) |= tj} if {j : (π, `) |= tj} 6= ∅
{skip} if {j : (π, `) |= tj} = ∅.

8



Intuitively, Pgπ
i selects all actions from the clauses that satisfy the test, and selects the

null action skip if no test is satisfied. In general, we get a nondeterministic protocol, since
more than one test may be satisfied at a given state.

Many of the definitions that we gave for protocols have natural analogues for pro-
grams. We define a joint program to be a tuple Pg = (Pg1, . . . ,Pgn), where Pgi is a
program for agent i. An interpretation π is compatible with Pg if π is compatible with
each of the Pgi’s. From Pg and π we get a joint protocol Pgπ = (Pgπ

1 , . . . ,Pgπ
n). We say

that an interpreted system I = (R, π) represents a joint program Pg in the interpreted
context (γ, π) exactly if π is compatible with Pg and I represents the corresponding
protocol Pgπ. We denote the interpreted system representing Pg in (γ, π) by I(Pg, γ, π).
Of course, this definition only makes sense if π is compatible with Pg. From now on we
always assume that this is the case.

The syntactic form of our standard programs is in many ways more restricted than
that of programs in common programming languages such as C or FORTRAN. In such
languages, one typically sees constructs such as for, while, or if. . . then. . . else. . . ,
which do not have syntactic analogues in our formalism. As discussed in [Fagin, Halpern,
Moses, and Vardi 1995], it is possible to encode a program counter in tests and actions
of standard programs. By doing so, it is possible to simulate these constructs. Hence,
there is essentially no loss of generality in our definition of standard programs.

Since each test in a standard program Pg run by process i can be evaluated in each
local state, we can derive a protocol from Pg in an obvious way: to find out what pro-
cess i does in a local state `, we evaluate the tests in the program in ` and perform the
appropriate action. A run is consistent with Pg in interpreted context (γ, π) if it is consis-
tent with the protocol derived from Pg. Similarly, a system represents Pg in interpreted
context (γ, π) if it represents the protocol derived from Pg in (γ, π).

Example 2.1 Consider the (joint) program BT = (BTS,BTR), where BTS is as defined
in the introduction, and BTR is the program

if recbit then sendack else skip.

Thus, in BTR, the receiver sends an acknowledgement if it has received the bit, and
otherwise does nothing. This program, like all the programs considered in this paper,
is applied repeatedly, so it effectively runs forever. Assume that S’s local state in-
cludes the time, its input bit, and whether or not S has received an acknowledgment
from R; the state thus has the form (m, i, x), where m is a natural number (the time),
i ∈ {0, 1} is the input bit, and x ∈ {λ, ack}. Similarly, R’s local state has the form
(m,x), where m is the time and x is either λ, 0, or 1, depending on whether or not it has
received the bit from S and what the bit is. As in all recording contexts, the environ-
ment state keeps track of the actions performed by the agents. Since the environment
state plays no role here, we omit it from the description of the global state, and just
identify the global state with the pair consisting of S and R’s local state. Suppose that,

9



in context γ, the environment protocol nondeterministically decides whether or not a
message sent by S and/or R is delivered, the initial global states are ((0, 0, λ), (0, λ)) and
((0, 1, λ), (0, λ)), the transition function is such that the joint actions have the obvious
effect on the global state, and all runs are admissible. Then a run consistent with BT
in (γ, π) in which S’s bit is 0, R receives the bit in the second round, and S receives
an acknowledgment from R in the third round has the following sequence of global states:
((0, 0, λ), (0, λ)), ((1, 0, λ), (1, λ)), ((2, 0, λ), (2, 0)), ((3, 0, ack), (3, 0)), ((4, 0, ack), (4, 0)), . . ..

Now we consider knowledge-based programs. We start by extending our logical lan-
guage by adding a modal operator Ki for every agent i = 1, . . . , n. Thus, whenever ϕ
is a formula, so is Kiϕ. Let LK be the resulting language. According to the standard
definition of knowledge in systems [Fagin, Halpern, Moses, and Vardi 1995], an agent i
knows a fact ϕ at a given point (r,m) in interpreted system I = (R, π) if ϕ is true at all
points in R where i has the same local state as it does at (r,m). We now have

• (I, r,m) |= Kiϕ if (I, r′,m′) |= ϕ for all points (r′,m′) such that ri(m) = r′i(m
′).

Thus, i knows ϕ at the point (r,m) if ϕ holds at all points consistent with i’s information
at (r,m).

A knowledge-based program has the same structure as a standard program except
that all tests in the program text Pgi for agent i are formulas of the form Kiψ.4 As
for standard programs, we can define when a protocol implements a knowledge-based
program, except this time it is with respect to an interpreted context. The situation
in this case is, however, somewhat more complicated. In a given context, a process
can determine the truth of a standard test such as “x = 0” by simply checking its
local state. However, the truth of the tests for knowledge that appear in knowledge-
based programs cannot in general be determined simply by looking at the local state
in isolation. We need to look at the whole system. As a consequence, given a run, we
cannot in general determine if it is consistent with a knowledge-based program in a given
interpreted context. This is because we cannot tell how the tests for knowledge turn out
without being given the other possible runs of the system; what a process knows at one
point will depend in general on what other points are possible. This stands in sharp
contrast to the situation for standard programs.

This means it no longer makes sense to talk about a run being consistent with a
knowledge-based program in a given context. However, notice that, given an interpreted
system I = (R, π), we can derive a protocol from a knowledge-based program Pgkb

for process i by evaluating the knowledge tests in Pgkb with respect to I. That is, a
test such as Kiϕ holds in a local state ` if ϕ holds at all points (r,m) in I such that

4All standard programs can be viewed as knowledge-based programs. Since all the tests in a standard
program for agent i must be local to i, every test ϕ in a standard program for agent i is equivalent to
Kiϕ.

10



ri(m) = `.5 In general, different protocols can be derived from a given knowledge-based
program, depending on what system we use to evaluate the tests. Let PgIkb denote the
protocol derived from Pgkb by using I to evaluate the tests for knowledge. An interpreted
system I represents the knowledge-based program Pgkb in interpreted context (γ, π) if
I represents the protocol PgIkb . That is, I represents Pgkb if I = I(PgIkb , γ, π). Thus,
a system represents Pgkb if it satisfies a certain fixed-point equation. A protocol P

implements Pgkb in interpreted context (γ, π) if P = Pg
I(P,γ,π)
kb .

This definition is somewhat subtle, and determining the protocol(s) implementing a
given knowledge-based program may be nontrivial. Indeed, as shown by Fagin, Halpern,
Moses, and Vardi [1995, 1997], in general, there may be no protocols implementing a
knowledge-based program Pgkb in a given context, there may be only one, or there may
be more than one, since the fixed-point equation may have no solutions, one solution,
or many solutions. In particular, it is not hard to show that there is no (joint) pro-
tocol implementing a (joint) program where S uses BT∗S or BT⇒S , as described in the
introduction.

For the purposes of this paper, it is useful to have a notion slightly weaker than that
of implementation. Two joint protocols P = (P1, . . . , Pn) and P ′ = (P ′

1, . . . , P
′
n) are

equivalent in context γ, denoted P ≈γ P ′, if (a) R(P, γ) = R(P ′, γ) and (b) Pi(`) =
P ′

i (`) for every local state ` = ri(m) with r ∈ R(P, γ). Thus, two protocols that are
equivalent in γ may disagree on the actions performed in some local states, provided
that those local states never arise in the actual runs of these protocols in γ. We say
P de facto implements a knowledge-based program Pgkb in interpreted context (γ, π) if

P ≈γ Pg
I(P,γ,π)
kb . Arguably, de facto implementation suffices for most purposes, since all

we care about are the runs generated by the protocol. We do not care about the behavior
of the protocol on local states that never arise.

It is almost immediate from the definition that if P implements Pgkb , then P de facto

implements Pgkb . The converse may not be true, since we may have P ≈γ Pg
I(P,γ,π)
kb

without having P = Pg
I(P,γ,π)
kb . On the other hand, as the following lemma shows, if P

de facto implements Pgkb , then a protocol closely related to P implements Pgkb .

Lemma 2.2 If P de facto implements Pgkb in (γ, π) then Pg
I(P,γ,π)
kb implements Pgkb in

(γ, π).

Proof Suppose that P de facto implements Pgkb in (γ, π). Let P ′ = Pg
I(P,γ,π)
kb . By

definition, P ′ ≈γ P . Thus, I(P ′, γ, π) = I(P, γ, π), so P ′ = Pg
I(P ′,γ,π)
kb . It follows that P ′

implements Pgkb .

5Note that if there is no point (r, m) in I such that ri(m) = `, then Kiϕ vacuously holds at `, for all
formulas ϕ.

11



3 Counterfactuals and Belief

In this section, we show how counterfactuals and belief can be added to the knowledge-
based framework, and use them to do a formal analysis of the programs BT>

S and BT3B
S

from the introduction.

3.1 Counterfactuals

The semantics we use for counterfactuals is based on the standard semantics used in
the philosophy literature [Lewis 1973; Stalnaker 1968]. As with other modal logics, this
semantics starts with a set W of possible worlds. For every possible world w ∈ W
there is a (partial) order <w defined on W . Intuitively, w1 <w w2 if w1 is “closer” or
“more similar” to world w than w2 is. This partial order is assumed to satisfy certain
constraints, such as the condition that w <w w′ for all w′ 6= w: world w is closer to w
than any other world is. A counterfactual statement of the form ϕ > ψ is then taken to
be true at a world w if, in all the worlds closest to w among the worlds where ϕ is true,
ψ is also true.

In our setting, we obtain a notion of closeness by associating with every point (r,m)
of a system I a partial order on the points of I.6 An order assignment for a sys-
tem I = (R, π) is a function << that associates with every point (r,m) of I a partial
order relation <<(r,m) over the points of I. The partial orders must satisfy the constraint
that (r,m) is a minimal element of <<(r,m), so that there is no run r′ ∈ R and time m′ ≥ 0
satisfying (r′,m′)<<(r,m)(r,m). A counterfactual system is a pair of the form J = (I, <<),
where I is an interpreted system as before, while << is an order assignment for the points
in I. Given a counterfactual system J = (I, <<), a point (r,m) in I, and a set A of
points of I, define

closest(A, (r,m),J ) =
{(r′,m′) ∈ A : there is no (r′′,m′′) ∈ A such that (r′′,m′′)<<(r,m) (r′,m′)}.

Thus, closest(A, (r,m),J ) consists of the closest points to (r,m) among the points in A
(according to the order assignment <<).

To allow for counterfactual statements, we extend our logical language L with a binary
operator > on formulas, so that whenever ϕ and ψ are formulae, so is ϕ > ψ. We read
ϕ > ψ as “if ϕ were the case, then ψ,” and denote the resulting language by L>.

Let [[ϕ]] = {(r,m) : (J , r,m) |= ϕ}; that is, [[ϕ]] consists of all points in J satisfying
ϕ. We can now define the semantics of counterfactuals as follows:

(J , r,m) |= ϕ > ψ if (J , r′,m′) |= ψ for all (r′,m′) ∈ closest([[ϕ]], (r,m),J ).

6In a more general treatment, we could associate a different partial order with every agent at every
point; this is not necessary for the examples we consider in this paper.

12



This definition captures the intuition for counterfactuals stated earlier: ϕ > ψ is true at
a point (r,m) if ψ is true at the points closest to (r,m) where ϕ is true.

All earlier analyses of (epistemic) properties of a protocol P in a context γ used the
interpreted system I(P, γ, π), consisting of all the runs consistent with P in context γ.
However, counterfactual reasoning involves events that occur on runs that are not con-
sistent with P . To support such reasoning we need to consider runs not in I(P, γ, π).
The runs that must be added can, in general, depend on the type of counterfactual state-
ments allowed in the logical language. Thus, for example, if we allow formulas of the
form do(i, a) > ψ for process i and action a, then we must allow, at every point of the
system, a possible future in which i’s next action is a.7

An even richer set of runs is needed if we allow the language to specify a sequence of
actions performed by a given process, or if counterfactual conditionals > can be nested.
To handle a broad class of applications, including ones involving formulas with tempo-
ral operators and arbitrary nesting of conditional statements involving do(i, a), we do
reasoning with respect to the system I+(γ, π) = (R+(γ), π) consisting of all runs com-
patible γ, that is, all runs consistent with some protocol P ′ in context γ. In this way all
possible behaviors, within the constraints induced by γ, can be reasoned about. There is
a potential problem with using system I+(γ, π) = (R+(γ), π) for reasoning about P : all
reference to P has been lost. We return to this issue in the next section, when we discuss
belief. For now we show how to use I+(γ, π) as a basis for doing counterfactual reasoning.

As we have already discussed, the main issue in using I+(γ, π) to reason about P is
that of defining an appropriate order assignment. We are interested in order assignments
that depend on the protocol in a uniform way. An order generator o for a context γ
is a function that associates with every protocol P an order assignment <<P = o(P ) on
the points of R+(γ). A counterfactual context is a tuple ζ = (γ, π, o), where o is an
order generator for γ. In what follows we denote by J c(P, ζ) the counterfactual system
(I+(γ, π), o(P )), where ζ = (γ, π, o); we omit ζ when it is clear from context.

We are interested in order generators o such that o(P ) says something about devi-
ations from P . For the technical results we prove in the rest of the paper, we focus
on order generators that prefer runs in which the agents do not deviate from their pro-
tocol. Given an agent i, action a, protocol P , context γ, and point (r,m) in R+(γ),
define close(i, a, P, γ, (r,m)) = {(r′,m) : (a) r′ ∈ R+(γ), (b) r′(m′) = r(m′) for all
m′ ≤ m, (c) if agent i performs a in round m + 1 of r, then r′ = r, (d) if agent i does

7Recall from the introduction that our programs use the formula do(i, a) to state that agent i is
about to perform action a. Thus, do(i, a) > ϕ says “if agent i were to perform a then ϕ would be the
case.” We assume that all interpretations we consider give this formula the appropriate meaning. If the
protocol P being used is encoded in the global state (for example, if it is part of the environment state),
then we can take do(i, a) to be a primitive proposition. Otherwise, we cannot, since its truth cannot
be determined from the global state. However, we can always take do(i, a) to be an abbreviation for
©last(i, a), where the interpretation π ensures that last(i, a) is true at a point (r, m) if i performed a in
round m of r. Since we assume the the last joint action performed is included in the environment state,
the truth of last(i, a) is determined by the global state.

13



not perform perform a in round m + 1 of r, then agent i performs a in round m + 1
of r′ and follows P in all later rounds, (e) all agents other than i follow P from round
m + 1 on in r′}. That is, close(i, a, P, γ, (r,m)) is the set of points (r′,m) where
run r′ = r if i performs a in round m + 1 of r; otherwise, r′ is identical to r up
to time m and all the agents act according to joint protocol P at all later times,
except that at the point (r′,m), agent i performs action a. An order generator o
for γ respects protocols if, for every protocol P , point (r,m) of R(P, γ), action a, and
agent i, closest([[do(i, a)]], (r,m),J c(P )) is a nonempty subset of close(i, a, P, γ, (r,m))
that includes (r,m). Of course, the most obvious order generator that respects pro-
tocols just sets closest([[do(i, a)]], (r,m),J +(P )) = close(i, a, P, γ, (r,m)). Since our
results hold for arbitrary order generators that respect protocols, we have allowed the
extra flexibility of allowing closest([[do(i, a)]], (r,m),J +(P )) to be a strict subset of
close(i, a, P, γ, (r,m)).

A number of points are worth noting about this definition:

• If the environment’s protocol Pe and the agents’ individual protocols in P are all
deterministic, then close(i, a, P, γ, (r,m)) is a singleton, since there is a unique run
where the agents act according to joint protocol P at all times except that agent i
performs action a at time m. Thus, closest([[do(i, a)]], (r,m),J c(P )) must be the
singleton close(i, a, P, γ, (r,m)) in this case. However, in many cases, it is best to
view the environment as following a nondeterministic protocol (for example, non-
deterministically deciding at which round a message will be delivered); in this case,
there may be several points in I closest to (r,m). Stalnaker [1968] required there
to be a unique closest world; Lewis [1973] did not. There was later discussion of
how reasonable this requirement was (see, for example, [Stalnaker 1980]). Thinking
in terms of systems may help inform this debate.

• If process i does not perform action a at the point (r,m), then there may be points
in closest([[do(i, a)]], (r,m),J c(P )) that are not in R(P, γ), even if r ∈ R(P, γ).
These points are “counter to fact”.

• According to our definition, the notion of “closest” depends on the protocol that
generates the system. For example, consider a context γ′ that is just like the
context γ from Example 2.1, except that S keeps track in its local state, not only
of the time, but also of the number of messages it has sent. Suppose that the
protocol PS for S is determined by the program

if time=0 then sendbit else skip,

while P ′
S is the protocol determined by the program

if #messages=0 then sendbit else skip.

Let P = (PS, SKIPR) and P ′ = (P ′
S, SKIPR), where PR is the protocol where R

does nothing (performs the action skip) in all states. Clearly R(P, γ′) = R(P ′, γ′):

14



whether it is following PS or P ′
S, the sender S sends a message only in the first

round of each run. It follows that these two protocols specify exactly the same
behavior in this context. While these protocols coincide when no deviations take
place, they may differ if deviations are possible. For example, imagine a situa-
tion where, for whatever reason, S did nothing in the first round. In that case,
at the end of the first round, the clock has advanced from 0, while the count of
the number of messages that S has sent is still 0. P and P ′ would then pro-
duce different behavior in the second round. This difference is captured by our
definitions. If o respects protocols, then closest([[do(S, skip)]], (r, 0),J c(P )) 6=
closest([[do(S, skip)]], (r, 0),J c(P ′)). No messages are sent by S in runs appearing
in points in closest([[do(S, skip)]], (r, 0),J c(P )), while exactly one message is sent
by S in each run appearing in points in closest([[do(S, skip)]], (r, 0),J c(P ′)).

This dependence on the protocol is a deliberate feature of our definition; by using
order generators, the order assignment we consider is a function of the protocol
being used. While the protocols P and P ′ specify the same behavior in γ, they
specify different behavior in “counterfactual” runs, where something happens that
somehow causes behavior inconsistent with the protocol. The subtle difference
between the two protocols is captured by our definitions.

3.2 Belief

As we have just seen, in order to allow for counterfactual reasoning about a protocol P
in a context γ, our model needs to represent “counterfactual” runs that do not appear
in R(P, γ). Using the counterfactual system J c(P ), which includes all runs of R+(γ),
provides considerable flexibility and generality in counterfactual reasoning. However,
doing this has a rather drastic impact on the processes’ knowledge of the protocol be-
ing used. Agents have considerable knowledge of the properties of protocol P in the
interpreted system I(P, γ), since it contains only the runs of R(P, γ). For example, if
agent 1’s first action in P is always b, then all agents are guaranteed to know this fact
(provided that it is expressible in the language, of course); indeed, this fact will be com-
mon knowledge, which means agent knows it, for any depth of nesting of these knowledge
statements (cf. [Fagin, Halpern, Moses, and Vardi 1995; Halpern and Moses 1990]). If
we evaluate knowledge with respect to R+(γ), then the agents have lost the knowledge
that they are running protocol P . We deal with this by adding extra information to the
models that allows us to capture the agents’ beliefs. Although the agents will not know
they are running protocol P , they will believe that they are.

A ranking function for a system R is a function κ : R→ N+, associating with every
run of R a rank κ(r), which is either a natural number or ∞, such that minr∈R κ(r) = 0.8

8The similarity in notation with the κ-rankings of [Goldszmidt and Pearl 1992], which are based on
Spohn’s ordinal conditional functions [1988], is completely intentional. Indeed, everything we are saying
here can be recast in Spohn’s framework.

15



Intuitively, the rank of a run defines the likelihood of the run. Runs of rank 0 are most
likely; runs of rank 1 are somewhat less likely, those of rank 2 are even more unlikely,
and so on. Very roughly speaking, if ε > 0 is small, we can think of the runs of rank k
as having probability O(εk). For our purposes, the key feature of rankings is that they
can be used to define a notion of belief (cf. [Friedman and Halpern 1997]). Intuitively,
of all the points considered possible by a given agent at a point (r,m), the ones believed
to have occurred are the ones appearing in runs of minimal rank. More formally, for a
point (r,m) define

minκ
i (r,m) = min{κ(r′) | r′ ∈ R(γ) and r′i(m

′) = ri(m) for some m′ ≥ 0}.

Thus, minκ
i (r,m) is the minimal κ-rank of runs in which ri(m) appears as a local state

for agent i.

An extended system is a triple of the form J = (I, <<, κ), where (I, <<) is a counter-
factual system, and κ is a ranking function for the runs of I. In extended systems we
can define a notion of belief. The logical language that results from closing L> (resp. L)
under belief operators Bi, for i = 1, . . . , n, is denoted L>

B (resp. LB). The truth of Biϕ
is defined as follows:

(I, <<, κ, r,m) |= Biϕ iff (I, <<, κ, r′,m′) |= ϕ for all (r′,m′) such that
κ(r′) = minκ

i (r,m) and r′i(m
′) = ri(m).

What distinguishes knowledge from belief is that knowledge satisfies the knowledge
axiom: Kiϕ⇒ ϕ is valid. While Biϕ⇒ ϕ is not valid, it is true in runs of rank 0.

Lemma 3.1 Suppose that J = ((R, π), <<, κ) is an extended system, r ∈ R, and κ(r) =
0. Then for every formula ϕ and all times m, we have (J , r,m) |= Biϕ⇒ ϕ.

Proof Assume that κ(r) = 0. Thus, minκ
i (r,m) = 0 for all times m ≥ 0. It now

immediately follows from the definitions that if (J , r,m) |= Biϕ, then (J , r,m) |= ϕ.

By analogy with order generators, we now want a uniform way of associating with
each protocol P a ranking function. Intuitively, we want to do this in a way that lets
us recover P . We say that a ranking function κ is P -compatible (for γ) if κ(r) = 0 if
and only if r ∈ R(P, γ). A ranking generator for a context γ is a function σ ascribing
to every protocol P a ranking σ(P ) on the runs of R+(γ). A ranking generator σ is
deviation compatible if σ(P ) is P -compatible for every protocol P . An obvious example
of a deviation-compatible ranking generator is the characteristic ranking generator σξ

that, for a given protocol P , yields a ranking that assigns rank 0 to every run in R(P, γ)
and rank 1 to all other runs. This captures the assumption that runs of P are likely
and all other runs are unlikely, without attempting to distinguish among them. Another
deviation-compatible ranking generator is σ∗, where the ranking σ∗(P ) assigns to a run r
the total number of times that agents deviate from P in r. Obviously, σ∗(P ) assigns r

16



the rank 0 exactly if r ∈ R(P, γ), as desired. Intuitively, σ∗ captures the assumption
that not only are deviations unlikely, but they are independent. It is clearly possible to
construct other P -compatible rankings that embody other assumptions. For example,
deviation can taken to be an indication of faulty behavior. Runs of rank k can be those
where exactly k processes are faulty.

Our interest in deviation-compatible ranking generators is motivated by the observa-
tion that the notion of belief that they give rise to in I+(γ, π) generalizes the notion of
knowledge with respcet to I(P, γ, π). To make this precise, define ϕB to be the formula
that is obtained by replacing all Ki operators in ϕ by Bi. (Notice that if ϕ ∈ LK then
ϕB ∈ LB.) In addition, since ranking generators now play a role in determining beliefs,
we define an interpreted belief context to be a triple of the form (γ, π, σ).

Theorem 3.2 Let σ be a deviation-compatible ranking generator for γ. For every for-
mula ϕ ∈ LK and for all points (r,m) of R = R(P, γ) and every ordering << we have

(I(P, γ, π), r,m) |= ϕ iff (I+(γ, π), <<, σ(P ), r,m) |= ϕB.

Proof We proceed by induction on the structure of ϕ. For primitive propositions,
the result is immediate by definition, and the argument is trivial if ϕ is a conjunc-
tion or a negation. Thus, assume that ϕ is of the form Kiψ. Let κ = σ(P ). Then
(I(P, γ, π), r,m) |= Kiψ iff (I(P, γ, π), r′,m′) |= ψ for all (r′,m′) such that r′ ∈ R(P, γ)
and r′i(m

′) = ri(m). But r′ ∈ R(P, γ) iff κ(r′) = 0. Thus, (I(P, γ, π), r,m) |= Kiψ iff
(I+(γ, π), r′,m′) |= ψB for all (r′,m′) such that κ(r′) = 0 and r′i(m

′) = ri(m). Note that
minκ

i (r,m) = 0 (because κ(r) = 0). Thus, it easily follows that (I(P, γ, π), r,m) |= Kiψ
iff (I+(γ, π), r,m) |= Biψ

B.

In light of Theorem 3.2, from this point on we work with the larger system I+(γ, π)
and use belief relative to deviation-compatible ranking generators, instead of working
with the system I(P, γ, π) and using knowledge.

By having both ranking generators and order generators in our framework, we can
handle both belief and counterfactual reasoning. Thus, for example, we can write
B3(do(1, a) > ϕ) to represent agent 3’s belief that if agent 1 were to perform action a
in the next round, then ϕ would hold. We can further write B3(do(1, a) > ϕ) > ψ
to state that were it the case that agent 3 had the above belief, then in fact ψ would
hold. Arbitrary nesting of belief and counterfactuals is allowed. To take advantage of
the expressive features of the framework, we now define the analogue of knowledge-base
programs, to allow for belief and counterfactuals.

A counterfactual belief-based program (or cbb program for short) has the same form as
a knowledge-based program, except that the underlying logical language for the formulas
appearing in tests is now L>

B instead of LK , and all tests in the program text Pgi for
agent i are formulas of the form Biψ or ¬Biψ. As with knowledge-based programs, we
are interested in when a protocol P implements a cbb program Pgcb . Again, the idea

17



is that the protocol should act according to the high-level program, when the tests are
evaluated relative to the counterfactual belief-based system corresponding to P . To make
this precise, given an extended system J = (I, <<, κ) and a cbb program Pgcb , let PgJcb
denote the protocol derived from Pgcb by using J to evaluate the belief tests. That is, a
test in Pgcb such as Biϕ holds at a point (r,m) relative to J if ϕ holds at all points (r′,m′)
in (I, κ) such that r′i(m

′) = ri(m) and κ(r′) = minκ
i (r,m). Define an extended context to

be a tuple (γ, π, o, σ), where (γ, π) is an interpreted context, o is an ordering generator
for R+(γ), and σ is a deviation-compatible ranking generator for γ. An extended system
(I, <<, κ) represents the belief-based program Pgcb in extended context (γ, π, o, σ) if (a)

I = I+(γ, π), (b) << = o(Pg
(I,<<,κ)
cb ), and (c) κ = σ(Pg

(I,<<,κ)
cb ). A protocol P implements

Pgcb in (γ, π, o, σ) if P = Pg
(I+(γ,π),o(P ),σ(P ))
cb . Protocol P de facto implements Pgcb in

(γ, π, σ) if P ≈γ Pg
(I+(γ,π),o(P ),σ(P ))
cb .

There is a close connection between the notions of implementation for knowledge-
based programs and implementation for cbb programs using deviation-compatible rank-
ings. Given a knowledge-based program Pgkb , we denote by PgB

kb the program that re-
sults from replacing every knowledge operator Ki appearing in Pgkb to Bi, for all agents
i = 1, . . . , n. (This is, in particular, a cbb programs with no counterfactual operators.)

Theorem 3.3 Let Pgkb be a knowledge-based program and let σ be a deviation-compatible
ranking generator for γ. Moreover, let o be an arbitrary ordering generator for R+(γ). A
protocol P de facto implements Pgkb in (γ, π) if and only if P de facto implements PgB

kb

in (γ, π, o, σ).

Proof Since σ is deviation compatible, by Theorem 3.2, for all points (r,m) of R(P, γ),
we have that (I(P, γ, π), r,m) |= ϕ iff (I+(γ, π), o(P ), σ(P ), r,m) |= ϕB. Let Pgcb = PgB

kb

and let J (P ) = (I+(γ, π), o(P ), σ(P )). Then

(Pgkb)
I(P,γ,π)
i (ri(m)) = (Pgcb)

J (P )
i (ri(m)) whenever r ∈ R(P, γ). (1)

Now suppose that P de facto implements Pgkb . By definition, P ≈γ Pg
I(P,γ,π)
kb . Thus, the

only global states that arise when running Pg
I(P,γ,π)
kb are those of the form r(m) for some

r ∈ R(P, γ). It easily follows from (1) that I(Pg
I(P,γ,π)
kb , γ, π) = I(Pg

J (P )
cb , γ, π). Thus, P

de facto implements Pgcb as well. The argument in the other direction is analogous.

Theorem 3.3 shows that a protocol P de facto implements a knowledge-based pro-
gram iff P de facto implements the corresponding belief-based program. Thus, by using
deviation-compatible rankings, cbb programs can essentially emulate knowledge-based
programs. The move to cbb programs as defined here thus provides what may be con-
sidered a conservative extension of the knowledge-based framework: it allows us to treat
beliefs and counterfactuals, while being able to handle everything that the old theory
gave us without changing the results.

18



3.3 Analysis of the Bit-Transmission Problem

Recall the program BT′′S from the introduction: if KS(recbit) then skip else sendbit.
With this program, S keeps sending the bit until it knows that R has received the
bit. As discussed in the introduction, it would be even more efficient for S to stop
sending the bit once it knows that eventually R will receive it. As we saw, replacing
KS(recbit) by KS(3recbit) leads to problems. We can deal with these problems by using
counterfactuals (and, thus, belief rather than knowledge), as in the cbb program BT>

S

from the introduction:

if BS(do(S, skip) > 3recbit) then skip else sendbit.

This program says that S should send the bit unless it believes that even if it would
not send the bit in the current round, R would eventually receive the bit. Similarly, the
program BT3B

S says that S should send the bit unless it believes that R would eventually
correctly believe its value:

if BS(do(S, skip) > 3BR(bit)) then skip else sendbit.

(Recall that BR(bit) is short for (bit = 0 ∧BR(bit = 0)) ∨ (bit = 1 ∧BR(bit = 1)).)

Let BT> = (BT>

S , SKIPR) and, similarly, let BT3B = (BT3B
S , SKIPR). We now consider

the implementations of BT> and BT3B in three different contexts:

• γ1, in which messages are guaranteed to be delivered within five rounds;9

• γ2, in which messages are guaranteed to arrive eventually, but there is no upper
bound on message delivery time; and

• γ3, in which a message that is sent infinitely often is guaranteed to arrive, but there
is no upper bound on message delivery time. (Nothing can be said about a message
sent only finitely often; this is a standard type of fairness assumed in the literature
[Francez 1986].)

In all contexts that we consider, messages cannot be reordered or duplicated. Moreover,
a message can be delivered only if it was previously sent. We assume for now that we are
working in synchronous systems, so that processes can keep track of the round number.
(Indeed, we cannot really make sense out of messages being delivered in five rounds in
asynchronous systems.) At the end of this section we briefly comment on how our results
can be modified to apply to asynchronous systems. We now describe these contexts more
formally.

In γ1 = (P 1
e ,G1

0 , τ
1,Ψ1), an agent can perform one of two actions: skip and sendbit,

with the obvious outcome. The local state of S consists of three components: (a) a

9There is nothing special about five rounds here; another other fixed number would do for the purposes
of this example.

19



Boolean variable bit that is fixed throughout the run, (b) a clock value, encoded in the
variable time, which is always equal to the round number; at a point (r,m) the clock
value is m, and (c) the message history, which is the sequence of messages that S has sent
and received, each marked by time at which it was sent or received. The local state of the
receiver R consists of the clock value and R’s message history. Assume that the set G1

0 of
initial states in γ1 consists of two states—one in which bit = 0 and one in which bit = 1.
In both states the clock values are 0 and message histories are empty. In this context,
messages are guaranteed to be delivered within at most five rounds. The environment
can perform the action of delivering a message. Its protocol P 1

e consists of deciding when
messages are delivered, subject to this constraint. Since the environment’s state keeps
track of all actions performed, it can be determined from the state which messages are
in transit and how long they have been in transit. Ψ1 makes no restrictions: all runs are
considered admissible.

The context γ2 = (P 2
e ,G2

0 , τ
2,Ψ2) is a variant of γ1 with asynchronous communication.

G2
0 = G1

0 , and the local states of S and R are the same as in γ1. Every message sent is
guaranteed to be delivered, but there is no bound on the time it will spend in transit.
Thus, the environment’s state again keeps track of the messages in transit, while the
environment’s protocol P 2

e decides at each point (nondeterministically) which, if any,
of the messages in transit should be delivered in the current round. The constraint
that messages are guaranteed to eventually be delivered is captured by the admissibility
constraint Ψ2; the set Ψ2 consists of the runs in which every message sent is eventually
delivered.

The only difference between γ3 = (P 3
e ,G3

0 , τ
3,Ψ3) and γ2 is that the admissibility

condition Ψ3 is more liberal than (i.e., is a superset of) Ψ2. The set Ψ3 consists of all
runs r that are fair in the sense that, for every time m, if a given message µ is sent
infinitely often in r after time m, then at least one of the copies of µ sent after time m
is delivered.

We define three sets of extended contexts, extending γi, i = 1, 2, 3. Let ECi consist of
all contexts of the form (γi, π, o, σ), i = 1, 2, 3, where π interprets the propositions bit = 0
and bit = 1 in the natural way, o respects protocols, and σ is deviation compatible.

We claim that both BT> and BT3B solve the bit-transmission problem in every ex-
tended context in ECi, i = 1, 2, 3. But what does it mean for a protocol to “solve” the
bit-transmission problem? To make this precise, we need to specify the problem. In the
case of the bit-transmission problem, the specification is simple: we want the receiver to
eventually know the bit. Thus, we say that a cbb-program Pg solves the bit-transmission
problem in extended context ζ = (γ, π, o, σ) if, for every protocol P that de facto imple-
ments Pg, we have that (J +(P, ζ), r, 0) |= 3BR(bit) for every run r ∈ R(P, γ). Notice
that using belief here is safe, because we are requiring only that the belief hold in runs
of P . Lemma 3.1 guarantees that, in these runs (which all have rank 0), the beliefs are
true.

Theorem 3.4 Both BT> and BT3B solve the bit-transmission problem in all the ex-

20



tended contexts EC1 ∪ EC2 ∪ EC3.

Proof Let ζ = (γ, π, o, σ) be a context in EC1 ∪ EC2 ∪ EC3 and assume that P de
facto implements BT> or BT3B in ζ. Let J = (I(P, γ), o(P ), σ(P )) and let r ∈ R(P, γ)
be a run of P in γ. We first consider the case that P implements BT>; the argument in
the case that P implements BT3B is even easier, and is sketched afterwards. There are
two cases:

(a) Suppose that (J , r,m) |= BS(do(S, skip) > 3recbit) for some m > 0. Since P de
facto implements BT>, S performs skip in round m + 1 of r. Thus, we have that
(J , r,m) |= do(S, skip). Since σ(P ) is deviation compatible and r ∈ R(P, γ),
it follows that (J , r,m) |= do(S, skip) > 3recbit . Since o respects protocols,
(r,m) ∈ closest([[do(S, skip)]], (r,m),J ). It now follows from the semantics of
> that (J , r,m) |= 3recbit . Since P de facto implements BT>, if S sends a value
in a run r′ of P , S is actually sending the bit. Since σ(P ) is deviation compatible, it
follows that in every run r′ of P , we have that (J , r′,m′) |= recbit ⇒ BR(bit), since
all the points in minR(r′,m′) are points on runs of P . Thus, (J , r,m) |= BR(bit).

(b) Suppose that (J , r,m) 6|= BS(do(S, skip) > 3recbit) for all m ≥ 0. Since P de facto
implements BT>, it follows that S sends the bit in every round of r. (In particular,
the bit is sent by S infinitely often.) All three contexts under consideration have the
property that a message sent infinitely often is guaranteed to be delivered. Thus, at
some time m′ ≥ 0 in r, the receiver will receive the bit; that is, (J , r,m′) |= recbit
for some m′ > 0. we have by Then, just as in part (a), it follows that (J , r,m′) |=
BR(bit), and hence that (J , r, 0) |= 3BR(bit).

The argument is almost identical (and somewhat simpler) if P implements BT3B.
Now we split into two cases according to whether there is some m such that (J , r,m) |=
BS(do(S, skip) > 3BR(bit)). Using the same arguments as above (but skipping the
argument that J |= recbit ⇒ BR(bit)) we get that, in both cases, (J , r, 0) |= 3BR(bit).

Theorem 3.4, while useful, does not give us all we want. In particular, it shows
neither that BT> or BT3B is implementable nor that S sends relatively few messages
according to any protocol that implements BT> or BT3B (which, after all, was the goal
of using counterfactuals in this setting). In fact, as we now show, both BT> and BT3B

are implementable in all three sets of contexts, and their implementations are as message-
efficient as possible. We consider each of EC1, EC2,and EC3 in turn.

Intuitively, in order to solve the bit-transmission problem in a context in which mes-
sages are always delivered, sending the bit only once in any given run should suffice.
Consider the collection of protocols P 1(k,m) = (P 1

S(k,m), SKIPR) for k,m ∈ N, where
P 1

S(k,m) is described by the program

if (time = k and bit = 0) or (time = m and bit = 1) then sendbit else skip.

21



In these protocols, the sender S sends its bit at time k if the bit value is 0, and at time m
if it is 1. We now show that all protocols of the form P 1(k,m) implement BT> in all
contexts in EC1:

Lemma 3.5 The protocol P 1(k,m) de facto implements BT> in every extended context
in EC1.

Proof Fix k, m, and a context ζ = (γ1, π, o, κ) ∈ EC1. We want to show that
P 1(k,m) ≈γ1 (BT>)J (k,m), where J (k,m) = (I+(γ1, π1), o(P

1(k,m)), σ(P 1(k,m))). We
can characterize a run consistent with P 1(k,m) by the value of bit and when the one
message sent by S is received. Let rb,n be the run where bit = b and the message is
received at time n (clearly k + 5 ≥ n > k if b = 0 and m+ 5 ≥ n > m if b = 1). Clearly
the formula recbit holds in run rb,n from time n on. Thus, 3recbit holds at every point
in every run consistent with P 1(k,m) in the system J (k,m). Note that the runs rb,n are
precisely those of rank 0 in J (k,m).

We now show that a run r is consistent with (BT>)J (k,m) in γ1 iff r = rb,n for b ∈ {0, 1}
and a value of n satisfying k + 5 ≥ n > k if b = 0 and m + 5 ≥ n > m if b = 1. So
suppose that r is consistent with (BT>)J (k,m) and the value of the bit in r is 0. It
suffices to show that S sends exactly one message in r, and that happens at time k.
If n′ 6= k, then clearly (J (k,m), r, n′) |= (S, skip) > 3recbit , since the closest point
to (r, n′) where do(S, skip) holds is (r, n′) itself. On the other hand, if n′ = k, then
closest([[do(S, skip)]], (r, n′),J (k,m)) = {(r′0, n′)}, where r′0 is the run where S never
sends any messages and the initial bit is 0. In this case, the properties of γ1 guarantee
that no message is ever received by R in r′, and 3recbit does not hold at (r′, k). It follows
that the test BS(do(S, skip) > 3recbit) fails at (r, k), and r is consistent with BT> if and
only if the action sendbit is performed in round k + 1 of r. Hence, r is one of the runs
r0,n with k + 5 ≥ n > k. A completely analogous treatment applies if bit = 1 in r. We
thus have that exactly the runs rb,n described are consistent with (BT>)J (k,m) in γ1, and
hence P 1(k,m) de facto implements BT> in every extended context in EC1, as desired.

In the context γ1, there is a fixed bound on message delivery time. As a result,
we might hope to save on message delivery in some cases. Suppose that we use a one-
sided protocol, that sends the bit only if bit = 0. Then the receiver should be able
to conclude that the value of the bit is 1 if a message stating the bit is 0 does not
arrive within the specified time bounds. More generally, define the collection of protocols
P 2(k, b) = (P 2

S(k, b), SKIPR) for b ∈ {0, 1} and k ∈ N, where P 2
S(k, b) is the protocol

implementing the program

if time = k and bit = b then sendbit else skip.

According to P 2
S(k, b), the sender S sends a message only in runs where the bit is b; if the

bit is 1− b, it sends no messages. Moreover, in runs where the bit is b, S sends only one
message, at time k. This type of optimization (sending a message only for one of the two

22



bit values) was used in the message-optimal protocols of [Hadzilacos and Halpern 1993];
it can be used in synchronous systems in which there is an upper bound on the message
delivery time, as in contexts in EC1.

It is easy to verify that P 2(k, b) does not implement BT>: Intuitively, in a run r of
P 2(k, b) with bit = 1 − b, the sender S never sends the bit, and hence 3recbit does not
hold. Since S follows P 2(k, b) in r, the formula do(S, skip) holds at time 0 in r. It follows
that in evaluating the test BS(do(S, skip) > 3recbit) the closest point to (r, 0) is (r, 0)
itself. Because 3recbit does not hold at that point, the test fails, and according to BT>

the sender S should perform sendbit. Since, in fact, S does not perform sendbit at (r, 0),
and r is a run of P 2(k, b), we conclude that P 2(k, b) does not implement BT>. However,
as we now show, P 2(k, b) does implement the more sophisticated program BT3B:

Lemma 3.6 Every instance of P 2(k, b) de facto implements BT3B in every context in
EC1.

Proof Fix k, b, and a context ζ = (γ1, π, o, σ) ∈ EC1. We want to show that
P 2(k, b) ≈γ1 (BT3B)J (k,b), where J (k, b) = (I+(γ1, π), o(P 2(k, b)), σ(P 2(k, b))). Note
that there are exactly six runs consistent with P 2(k, b) in context γ1: five runs rm

b ,
m = k + 1, . . . , k + 5, where the value of the bit is b, the message is sent in round k + 1
and it arrives in round m; the sixth run is r1−b, where the value of the bit is 1 − b and
no message is sent. It is easy to check that in the extended system J (k, b), the formula
bit = b ∧ BR(bit = b) holds in runs rm

b from time m on, while in run r1−b the formula
bit = 1− b ∧ BR(bit = 1− b) holds from time k + 5 on. Thus, 3BR(bit) holds at every
point in the six runs in R(P 2(k, b), γ1). Note that these six runs are exactly the runs of
rank 0.

We now show that r is consistent with (BT3B)J (k,b) iff r ∈ R(P 2(k, b), γ1). We
consider two cases, according to the values of the bit in r. First suppose that bit = 1− b
in the run r. We prove by induction on m′ ≥ 0 that (a) if r is consistent with BT

J (k,b)
S

then (i) r(m′) = r1−b(m
′) and (ii) (BT3B)

J (k,b)
S (rS(m′)) = skip, and (b) r1−b is consistent

with (BT3B)
J (k,b)
S up to time m′. For the base case, observe that r(0) = r1−b(0) because

there is only one initial state in γ1 with bit = 1 − b. Clearly r1−b is consistent with

(BT3B)
J (k,b)
S up to time 0. Thus, parts (a)(i) and (b) hold. For part (a)(ii), to see that

(BT3B)
J (k,b)
S (rS(0)) = skip, it suffices to show that (J (k, b), r, 0) |= BS(do(S, skip) >

3BR(bit)). Since σ1 is deviation compatible and S knows that bit = 1 − b, it follows

that min
σ(P 2(k,b))
S (r, 0) = {(r1−b, 0)}. Thus, it suffices to show that (J (k, b), r1−b, 0) |=

do(S, skip) > 3BR(bit). But this is immediate from the fact that (J (k, b), r1−b, 0) |=
do(S, skip) and, as observed earlier, that (J (k, b), r1−b, 0) |= 3BR(bit).

For the inductive step in the case bit = 1− b, assume that the inductive claim holds
for time m′ ≥ 0. We want to show that it holds at time m′ + 1. Part (a)(i) and (b) are
immediate from the inductive hypothesis. The argument for part (a)(ii) is the same as in
the base case. This completes the inductive argument. It follows immediately from the

23



induction that r1−b is consistent with BT
J (k,b)
S and that if r is consistent with BT

J (k,b)
S

and bit = 1− b in r, then r = r1−b.

Now consider the case where bit = b in r. Define b-runs to be the set {rk+1, rk+2 . . . , rk+5},
and b-pts(m′) to be {(rk+1,m

′), (rk+2,m
′), . . . , (rk+5,m

′)}. We show by induction on
m′ ≥ 0 that if r is consistent with (BT3B)J (k,b), then

(a) r(m′) ∈ b-pts(m′),

(b) (BT3B
S )J (k,b)(rS(m′)) =

{
skip if m′ 6= k
sendbit if m′ = k,

(c) at least one run in b-runs agrees with r up to time m′; moreover, if m′ ≥ k + 5,
then exactly one run in b-runs agrees with r up to time m′.

For the base case, it is again immediate that r(0) ∈ b-pts(0) and that all runs in b-runs

agree with r up to time 0. To see that part (b) holds, first note that min
σ(P 2(k,b))
S (r, 0) =

{(rk′
, 0) : k′ = 1, . . . , 5}. There are now two cases: if k = 0 (so that S sends a mes-

sage in round 1 of all the runs in b-runs), then we must show that (J (k, b), r, 0) |=
¬BS(do(S, skip) > 3BR(bit)), so that BT

J (k,b)
S (rS(0)) = sendbit. Note that, if k = 0,

then closest([[do(S, skip)]], (rk′
, 0),J (k, b)) = {r∗} for k′ = 1, . . . , 5, where r∗ is the run

where bit = b and no messages are ever sent by S or R. Thus, it suffices to show that
(J (k, b), r∗, 0) |= ¬3BR(bit). It is easy to see that, since σ1 is deviation compatible,

we must have (r1−b,m) ∈ min
σ(P 2(k,b))
R (r∗,m), for all m ≥ 0. Thus, (J , r∗,m) 6|= bit =

1−b∧BR(bit = 1−b) for all m ≥ 0, and hence (J , r∗,m′) |= ¬3BR(bit) for all m′ ≥ 0, as
desired. On the other hand, if k > 0, we must show that (J (k, b), r, 0) |= BS(do(S, skip) >
3BR(bit)). Note that if k > 0, then closest([[do(S, skip)]], (rk′

, 0),J (k, b)) = {rk′}, for
k′ = 1, . . . , 5. Since (J (k, b), rk′

, 0) |= do(S, skip) ∧BR(bit)), we are done.

The argument in the inductive step is almost identical, except that it now breaks into
the cases m′ < k, m′ = k, k < m′ < k + 5, and m′ ≥ k + 5. We leave details to the
reader.

Finally, we must show that each run r ∈ b-runs is consistent with (BT3B
S )J (k,b). We

proceed by induction on m′ to show that r is consistent with (BT3B
S )J (k,b) up to time m′.

This involves proving part (b) of the induction above for each r ∈ b-runs. The proof is
similar to that above, and left to the reader.

The preceding discussion has shown that P 2(k, b) implements BT3B, but not BT>, in
contexts in EC1. Lemma 3.5 shows that P 1(k,m) implements BT> in contexts in EC1.
An obvious question is whether P 1(k,m) implements BT3B in contexts in EC1. We now
show that if k 6= m, then P 1(k,m) does not implement BT3B; if k = m, then whether
P 1(k,m) implements BT3B depends on what the receiver believes in runs where he does
not receive a message. Since there is no run of P 1(k,m) where the receiver receives no
messages, this is not determined by just assuming that we have a deviation-compatible
ranking generator. Given a ranking κ, let κ(n, b) be the rank of the run with least rank

24



where (a) the receiver does not receive any messages up to and including time n and (b)
the bit has value b. We say that a ranking κ is biased if κ(n, 0) 6= κ(n, 1) holds for at least
one time instant n. Note that if κ(n, i) < κ(n, i⊕ 1) then, in the absence of messages, R
will believe that the bit is i at time n.

Lemma 3.7 Let ζ = (γ1, π, o, σ) ∈ EC1. The protocol P 1(k,m) de facto implements
BT3B in ζ exactly if both (a) k = m and (b) σ(P 1(k, k)) is not biased.

Proof Fix a context ζ = (γ1, π, o, σ) ∈ EC1. As in the proof of Lemma 3.5, define
J (k,m) = (I+(γ1, π), o(P 1(k,m)), σ(P 1(k,m))) and the runs rb,n.

First suppose that σ(P 1(k, k)) is not biased. We show that P 1(k, k) de facto imple-
ments BT3B in ζ. By definition, in each of the ten runs rb,n of rank 0 in the extended
system J (k, k), recbit holds at the time n when the receiver R receives the bit. Since R
receives the correct bit, it is easy to see that in fact (J (k, k), rb,n, n) |= BR(bit). Thus,
3BR(bit) holds at every point in the ten runs of the form rb,n in the system (BT3B)J (k,k).
Moreover, (J (k, k), rb,n,m) |= do(S, skip) > 3BR(bit) for m 6= k. Since the runs rb,n

are the runs of rank 0, it actually follows that (J (k, k), rb,n,m) |= BS(do(S, skip) >
3BR(bit)) form 6= k. We now show that (J (k, k), rb,n, k) |= ¬BS(do(S, skip) > 3BR(bit)).
Note that closest([[do(S, skip)]], (rb,n, k),J (k, k)) = {(r′b, k)}, where r′b is the run where
the bit is b and S sends no messages. Suppose that (J (k, k), r′b, k) |= 3BR(bit = b).
Thus, there is some n ≥ k such that (J (k, k), r′b, n) |= BR(bit = b). Then we must
have κ(n, b) < κ(n, b ⊕ 1), so that κ is biased, contradicting the assumption. Thus,
(J (k, k), r′b, k) |= ¬3BR(bit = 0), so (J (k, k), rb,n, k) |= ¬BS(do(S, skip) > 3BR(bit)),
as desired. In this case, by (BT3B)J (k,k), the sender S should perform sendbit at time k.
It follows that rb,n is consistent with (BT3B)J (k,k).

We next show that if r is consistent with (BT3B)J (k,k), then r ∈ {rb,n : b = 0, 1, n =
k + 1, . . . , k + 5}. So suppose that the bit is 0 in r and that r is consistent with
(BT3B)J (k,k). Just as in the proof of Lemma 3.6, it is easy to show by induction on
m that no messages are sent in r at time m < k: It is easy to see that (J (k, k), r,m) |=
BS(do(S, skip) > 3BR(bit)) for k < m, since (r,m) ∼R (rb,n,m). Just as in the case of
rb,n, we can show that (J (k, k), r, k) |= ¬BS(do(S, skip) > 3BR(bit)). Thus, since r is
consistent with (BT3B)J (k,k), the sender S sends a message at time k in r. It is easy to
show that S does not send the bit after time k; we leave details to the reader. Thus, if r
is consistent with (BT3B)J (k,k) then S sends the bit in r at time k (and does not send it
at any other time), so r is of the form rb,n.

We next claim that if k 6= m then P 1(k,m) does not de facto implement BT3B in ζ.
Without loss of generality, suppose that k < m. By the properties of γ1, messages
can take up to five time units to be delivered. Hence, there is a run of P 1(k,m) with
bit = 1 in which the sender’s message is not delivered by time m+ 4. However, because
k < m, there is no run with bit = 0 where no message is delivered by time m + 4.
Because σ is deviation compatible, it follows that κ(m + 4, 1) = 0 < κ(m + 4, 0). Thus,
(J (k,m), r1,m+4,m + 4) |= BR(bit = 1), so (J (k,m), r1,m+j,m) |= BS(do(S, skip) >

25



3BR(bit)) for j = 1, . . . , 5. Therefore, S should not send the bit at time m according
to (BT3B)J (k,m) in runs where the bit is 1, showing that P 1(k,m) does not de facto
implement BT3B.

To complete the proof of the lemma, we need to show that if κ = σ(P 1(k, k)) is
biased, then P 1(k, k) does not implement BT3B in ζ. So suppose that κ = σ(P 1(k, k))
is biased. Since κ is biased, there is an n for which κ(n, 0) 6= κ(n, 1). Without loss of
generality, assume that κ(n, 0) < κ(n, 1). We must have n > k, since κ(`, 0) = κ(`, 1) = 0
for all ` ≤ k, because in all runs consistent with P 1(k, k), the receiver R receives no
messages up to time `. It follows that (J (k, k), r, k) |= 3BR(bit = 0) for all runs r
consistent with P 1(k, k). Thus, (J (k, k), r0,k+j,m) |= BS(do(S, skip) > 3BR(bit)) for
j = 1, . . . , 5. It follows that, in runs where the bit is 0, S should not send the bit according
to (BT3B)J (k,k). This again establishes that P 1(k, k) does not de facto implement BT3B.

Now consider the context γ2. Here there is no upper bound on message delivery times.
As a result, S must send R messages regardless of what bit value is.

Lemma 3.8 Every instance of P 1(k,m) de facto implements both BT> and BT3B in
every context in EC2.

Proof The proof for the case of BT> is identical to the proof given for contexts in EC1

in Lemma 3.5. There are now infinitely many runs rb,n consistent with P 1(k,m) rather
than ten runs, but the argument remains sound. We leave details to the reader.

In the case of BT3B, the argument follows the same lines as the proof Lemma 3.5,
except that the role of 3recbit is now played by 3BR(bit). Fix k, m, and a context ζ =
(γ2, π, o, σ) ∈ EC2. We want to show that P 1(k,m) ≈γ2 (BT3B)J

′(k,m), where J ′(k,m) =
(I+(γ2, π), o(P 1(k,m)), σ(P 1(k,m))). It is easy to check that in the extended system
J ′(k,m), the formula BR(bit = b) holds in run rb,n from time n on. Thus, 3BR(bit)
holds at every point in every run consistent with P 1(k,m) in the system J ′(k,m). Note
that the runs rb,n are precisely those of rank 0 in J ′(k,m). Finally, note that if (r′, n)
is an arbitrary point in J ′(k,m) with n > max(k,m) and no messages are sent in r′ up
to time n, then (J ′(k,m), r′, n) |= ¬BR(bit = 0) ∧ ¬BR(bit = 1), since there are runs
consistent with P 1(k,m) where no messages arrive up to time n and the bit can be either
0 or 1; for example, (r0,n+1, n) ∼R (r′, n) and (r1,n+1, n) ∼R (r′, n).

We now show that a run r is consistent with (BT3B)J
′(k,m) in γ2 iff r = rb,n for

b ∈ {0, 1} and n ≥ 0. So suppose that r is consistent with (BT3B)J
′(k,m) and the

value of the bit in r is 0. It suffices to show that S sends exactly one message in r,
and that happens at time k. The argument is very similar to that in Lemma 3.6. If
n < k, then clearly (J ′(k,m), r, n) |= (S, skip) > 3BR(bit), since the closest point
to (r, n) where do(S, skip) holds is (r, n) itself. On the other hand, if n = k, then
closest([[do(S, skip)]], (r, n),J ′(k,m)) = {(r′0, n)}, where r′0 is the run where S sends
no messages and the initial bit is 0. As observed earlier, we have (J ′(k,m), r′b, n) |=

26



2(¬BR(bit = 0) ∧ ¬BR(bit = 1)), so (J ′(k,m), rb,n, n) |= ¬(do(S, skip) > B̃R(bit)).
Thus, since r is consistent with (BT3B)J

′(k,m) in γ2, S sends its bit at time k in r.
Finally, if n > k, again we have closest([[do(S, skip)]], (r, n),J ′(k,m)) = {(r, n)} so,
again, S does not send a message at time n in r. Thus, r has the form r0,n′ for some n′.
The same argument shows that all runs of the form r0,n′ are in fact consistent with
(BT3B)J

′(k,m). The argument if b = 1 is identical (with m replacing k throughout).

Finally, we consider the contexts in EC3. In this case, communication is such that
if R sends no messages, then S is guaranteed to have one of its messages delivered only in
case it sends infinitely many message. This says that if we consider only protocols of the
form (PS, SKIPR), then S must send infinitely many messages in every run. However, if a
protocol sends infinitely many messages, then no particular one is necessary; if S does not
send, say, the first message, then it still sends infinitely many, and R is guaranteed to get
a message. This suggests that we will have difficulty finding a protocol that implements
BT> or BT3B. The following proposition prevides further evidence of this. If I ⊆ IN (the
natural numbers), let P (I) = (PS(I), SKIPR), where PS(I) is described by the program

if time ∈ I then sendbit else skip.

Thus, with PS(I), the sender S sends the bit at every time that appears in I.

Proposition 3.9 No protocol of the form P (I) de facto implements either BT> or BT3B

in any context in EC3.

Proof We sketch the argument here and leave details to the reader. First suppose
that I is finite. Let r be a run in P (I) where none of the finitely many messages sent
by S is received. Let n = sup(I) + 1. Suppose that (γ3, π, o, σ) ∈ EC3. Let J (I) =
(I+(γ3, π), o(P (I)), σ(P (I))). Clearly, closest([[do(S, skip)]], (r, n),J (I)) = {(r)}, since
S performs the act skip at (r, n). However, since R never receives the bit in run r, and
σ(P (I))(r) = 0, it follows that (J (I), r, n) |= ¬3recbit and (J (I), r, n) |= ¬BR(bit).
Thus, according to both BT> and BT3B, S should send a message at (r, n). It follows
that P (I) does not implement BT> or BT3B.

Now suppose that I is infinite. The properties of γ3 ensure that R does in fact receive
the bit in every run of P (I). Moreover, it is easy to check that when the message is
received, both recbit and BR(bit) hold. Hence, for any given clock time m ∈ I, the
formulas do(S, skip) > 3recbit and do(S, skip) > 3BR(bit) hold at time m in all runs of
the protocol. A straightforward argument shows that sendbit is neither compatible with
BT> nor with BT3B at time m.

Intuitively, Proposition 3.9 is a form of the “procrastinator’s paradox”: Any action
that must be performed only eventually (e.g., washing the dishes) can always safely be
postponed for one more day. Of course, using this argument inductively results in the
action never being performed.

27



Despite Proposition 3.9, we now show that BT> and BT3B are both implementable
in all contexts in EC3. Let P ω = (P ω

S , SKIPR), where P ω
S is the protocol determined by

the following program:

if time = 0 or sendbit was performed in the previous round, then sendbit else skip.

Since S’s local state contains both the current time and a record of the time at which
it sent every previous message, it can perform the test in P ω(S). It is not too hard to
see that P ω is de facto equivalent to P (IN) in γ3—under normal circumstances the bit
is sent in each and every round. The two protocols differ only in their counterfactual
behavior. As a result, while P (IN) implements neither BT> nor BT3B, the protocol P ω

implements both.

Lemma 3.10 P ω de facto implements both BT> and BT3B in every context in EC3.

Proof We provide the proof for BT3B. The proof for BT> is similar, and left to the
reader.

Fix a context ζ3 = (γ3, π, o, σ) ∈ EC3. We want to show that P ω ≈γ3 (BT3B)J
ω
,

where J ω = (I+(γ3, π), o(P ω), σ(P ω)). Let Rω = R(P ω, γ3). Note that, for every natural
number k, there are runs rb,k ∈ Rω in which bit = b and no message that is sent by S in
the first k rounds is ever delivered to R. It follows that if R has received no message by
time m in run r of Rω, then (J ω, r,m) |= ¬BR(bit).

We now prove by induction on k that a run r is consistent with (BT3B)J
ω

in γ3 for k
rounds exactly if S has performed sendbit in each of the first k rounds of r. The base case
for k = 0 is vacuously true. For the inductive step, assume that the claim is true for k = `.
Suppose that r is consistent with (BT3B)J

ω
for `+1 rounds. By the induction hypothesis,

the sender S has performed sendbit in each of the first ` rounds. Since r is, by assumption,
consistent with (BT3B)J

ω
for `+1 rounds, S performs sendbit in round `+1 of r exactly

if (J ω, r, `) |= ¬BS(do(S, skip) > 3BR(bit)). Let bit = b in r. Moreover, σ3(P
ω)(r) = 0

since σ3 is deviation compatible. Clearly (r, `) ∼S (rb,`), where rb,` ∈ Rω is the run
constructed earlier where none of the message sent by S in the first ` rounds arrive, since
in both r and rb,`, the bit is the same and S sends a message in each of the first ` rounds.
Moreover, σ(P ω)(rb,`) = 0, since σ is deviation compatible and rb,` ∈ Rω. Thus, to show
that (J ω, r, `) |= ¬BS(do(S, skip) > 3BR(bit)), it suffices to show that (J ω, rb,`, `) |=
¬(do(S, skip) > 3BR(bit)). The points in closest([[do(S, skip)]], (r, `),J ω) have the form
(r′, `) where r′ agrees with rb,` up to and including time `, S does nothing in round ` of r′,
and S follows P ω in all rounds after ` in r′. The key point here is that, by following P ω,
S sends no messages in r′ after round `. Consequently, in all runs appearing in this set of
closest points, S sends a finite number of message (exactly `, in fact). By the admissibility
condition Ψ3 of γ3, there is one run in this set, which we denote by r̂, in which R receives
no messages. Note that (r̂, n) ∼R (r0,n, n) and (r̂, n) ∼R (r1,n, n), since in all of r̂, r0,n

and r1,n, the receiver R receives no messages up to time n. Since both r0,n and r1,n are in

28



Rω, it follows that they both have rank 0. Thus, (J ω, r̂, n) |= ¬Br(bit). That is, BR(bit)
never holds in r̂. It follows that (J ω, rb,`, `) |= ¬(do(S, skip) > 3BR(bit)), as needed. We
can thus conclude that r is consistent with (BT3B)J

ω
in γ3 for `+ 1 rounds exactly if S

performs sendbit in the first `+ 1 rounds, and we are done.

Lemma 3.10 shows one way of resolving the procrastinator paradox: If one decides
that an action (e.g., washing the dishes) that is not performed now will never be per-
formed, then performing it becomes critical. (We are ignoring the issue of how one can
“decide” to use such protocol. In the context of distributed computing, we can just make
this the protocol; people are likely not to believe that this is truly the protocol.) In any
case, using such a protocol makes performing the action consistent with the procrastina-
tor’s protocol of doing no more than what is absolutely necessary.

We can summarize our analysis of implementability of BT> and BT3B by the following
theorem:

Theorem 3.11 Both BT> and BT3B are de facto implementable in every extended
context in EC1 ∪ EC2 ∪ EC3 Moreover, if P de facto implements BT> or BT3B in a
context ζ ∈ EC1 ∪ EC2, then S sends at most one message in every run consistent with
P in ζ.

Proof The implementability claims follow from Lemmas 3.5, 3.6, and 3.10. We now
prove that S sends no more than one message in every run of a protocol that de facto
implements BT> or BT3B in a context in EC1 ∪ EC2. Suppose that P = (PS, PR) de
facto implements BTR in ζ = (γ, π, o, σ) ∈ EC1 ∪ EC2. Further suppose, by way of
contradiction, that there is a run r consistent with P in γ in which the sender sends
more than one message. Suppose that the second message is sent at time k, and the
value of the bit in r is b. Let J = (I+(γ, π), o(P ), σ(P )). Since γ ∈ {γ1, γ2}, all
messages are guaranteed to arrive eventually in the context γ. Thus, it is easy to see
that (J , r, k) |= BS(3BR(bit = b)). It follows that (J , r, k) |= do(S, skip) > BR(bit).
Since P is de facto consistent with BT>, this means that S should not send a message at
(r, k). This is a contradiction.

All the contexts we have considered are synchronous; the sender and receiver know
the time. As we observed earlier, there is no analogue of γ1 in the asynchronous setting,
since it does not make sense to say that messages arrive in 5 rounds. However, there are
obvious analogues of γ2 and γ3. Moreover, if we assume that S’s local state keeps track
of how many times it has been scheduled and what it did when it was scheduled, then
the analogue of P 2(k,m) implements both BT> and BT3B if messages are guaranteed to
arrive (where now P 2(k,m) means that if bit = 0, then the kth time that S is scheduled
it performs sendbit, while if bit = 1, then the mth time that S is scheduled it performs
sendbit). Similarly, the analogue of P ω implements both BT> and BT3B in contexts that
satisfy the fairness assumption (but any finite number of messages may not arrive).

29



4 Discussion

This paper presents a framework that facilitates high-level counterfactual reasoning about
protocols. Indeed, it enables the design of well-defined protocols in which processes act
based on their knowledge of counterfactual statements. This is of interest because, in
many instances, the intuition behind the choice of a given course of action is best thought
of and described in terms of counterfactual reasoning. For example, it is sometimes most
efficient for agents to stop exending resources once they know that their goals will be
achieved even if they stop. Making this precise involves counterfactual reasoning; this
agent must consider what would happen were it to stop expending resources.

This paper should perhaps best be viewed as a “proof of concept”; the examples
involving the bit-transmission program show that counterfactuals can play a useful role in
knowledge-based programs. While we have used standard approaches to giving semantics
to belief and counterfactuals (adapated to the runs and systems framework that we are
using), these definitions give the user a large number of degrees of freedom, in terms
of choosing the ranking function to define belief and the notion of closeness needed
to define counterfactuals. While we have tried to suggest some reasonable choices for
how the ranking function and the notion of closeness are defined, and these choices
certainly gave answers that matched our intuitions in all the context we considered for
the bit-transmission problem, it would be helpful to have a few more examples to test the
reasonableness of the choices. We are currently exploring the application of cbb programs
for analyzing message-efficient leader election in various topologies; we hope to report on
this in future work.

While we used the very simple problem of bit transmission as a vehicle for introduc-
ing our framework for knowledge, belief, and counterfactuals, we believe it should be
useful for handling a much broader class of distributed protocols. We gave an example
of how counterfactual reasoning is useful in deciding whether a message needs to be sent.
Similar issues arise, for example, in deciding whether to perform a write action on a
shared-memory variable. Because our framework provides a concrete model for under-
standing the interaction between belief and counterfactuals, and for defining the notion
of “closeness” needed for interpreting counterfactuals, it should also be useful for illu-
minating some problems in philosophy and game theory. The insight our analysis gave
to the procrastinator’s paradox is an example of how counterfactual programs can be
related to issues in the philosophy of human behavior. We believe that, in particular, the
framework will be helpful in understanding some extensions of Nash equilibrium in game
theory. For example, as we saw in Lemma 3.7, whether a protocol de facto implements
a cbb program depends on the agent’s beliefs. This seems closely related to the notion
of a subjective equilibrium in game theory [Kalai and Lehrer 1995]. We are currently
working on drawing a formal connection between our framework notions of equilibrium
in game theory. It would also be interesting to relate the notion of “closeness” defined in
our framework to that given by the structural-equations model used by Pearl [2000] (see
also [Halpern 2000]). The structural-equations model also gives a concrete interpretation

30



to “closeness”; it does so in terms of mechanisms defined by equations. It would be
interesting to see if these mechanisms can be modeled as protocols in a way that makes
the definitions agree.

References

Dwork, C. and Y. Moses (1990). Knowledge and common knowledge in a Byzantine
environment: crash failures. Information and Computation 88 (2), 156–186.

Engelhardt, K., R. van der Meyden, and Y. Moses (1998). Knowledge and the logic of
local propositions. In Theoretical Aspects of Rationality and Knowledge: Proc. Sev-
enth Conference (TARK 1998), pp. 29–41.

Fagin, R., J. Y. Halpern, Y. Moses, and M. Y. Vardi (1995). Reasoning about Knowl-
edge. Cambridge, Mass.: MIT Press.

Fagin, R., J. Y. Halpern, Y. Moses, and M. Y. Vardi (1997). Knowledge-based pro-
grams. Distributed Computing 10 (4), 199–225.

Francez, N. (1986). Fairness. Berlin/New York: Springer-Verlag.

Friedman, N. and J. Y. Halpern (1997). Modeling belief in dynamic systems. Part I:
foundations. Artificial Intelligence 95 (2), 257–316.

Goldszmidt, M. and J. Pearl (1992). Rank-based systems: A simple approach to belief
revision, belief update and reasoning about evidence and actions. In Principles of
Knowledge Representation and Reasoning: Proc. Third International Conference
(KR ’92), pp. 661–672.

Hadzilacos, V. (1987). A knowledge-theoretic analysis of atomic commitment protocols.
In Proc. 6th ACM Symp. on Principles of Database Systems, pp. 129–134.

Hadzilacos, V. and J. Y. Halpern (1993). Message-optimal protocols for Byzantine
agreement. Mathematical Systems Theory 26, 41–102.

Halpern, J. Y. (2000). Axiomatizing causal reasoning. Journal of A.I. Research 12,
317–337.

Halpern, J. Y. and R. Fagin (1989). Modelling knowledge and action in distributed
systems. Distributed Computing 3 (4), 159–179. A preliminary version appeared in
Proc. 4th ACM Symposium on Principles of Distributed Computing, 1985, with
the title “A formal model of knowledge, action, and communication in distributed
systems: preliminary report”.

Halpern, J. Y. and Y. Moses (1990). Knowledge and common knowledge in a dis-
tributed environment. Journal of the ACM 37 (3), 549–587.

Halpern, J. Y., Y. Moses, and O. Waarts (2001). A characterization of eventual Byzan-
tine agreement. SIAM Journal on Computing 31 (3), 838–865.

31



Halpern, J. Y. and L. D. Zuck (1992). A little knowledge goes a long way: knowledge-
based derivations and correctness proofs for a family of protocols. Journal of the
ACM 39 (3), 449–478.

Kalai, E. and E. Lehrer (1995). Subjective games and equilibria. Games and Economic
Behavior 8, 123–163.

Lewis, D. K. (1973). Counterfactuals. Cambridge, Mass.: Harvard University Press.

Manna, Z. and A. Pnueli (1992). The Temporal Logic of Reactive and Concurrent
Systems: Specification. Berlin/New York: Springer-Verlag.

Mazer, M. S. (1990). A link between knowledge and communication in faulty
distributed systems. In Theoretical Aspects of Reasoning about Knowledge:
Proc. Third Conference, pp. 289–304.

Mazer, M. S. and F. H. Lochovsky (1990). Analyzing distributed commitment by
reasoning about knowledge. Technical Report CRL 90/10, DEC-CRL.

Moses, Y. and M. R. Tuttle (1988). Programming simultaneous actions using common
knowledge. Algorithmica 3, 121–169.

Neiger, G. and S. Toueg (1993). Simulating real-time clocks and common knowledge
in distributed systems. Journal of the ACM 40 (2), 334–367.

Pearl, J. (2000). Causality: Models, Reasoning, and Inference. New York: Cambridge
University Press.

Spohn, W. (1988). Ordinal conditional functions: a dynamic theory of epistemic states.
In W. Harper and B. Skyrms (Eds.), Causation in Decision, Belief Change, and
Statistics, Volume 2, pp. 105–134. Dordrecht, Netherlands: Reidel.

Stalnaker, R. C. (1968). A theory of conditionals. In N. Rescher (Ed.), Studies in
Logical Theory, American Philosophical Quarterly Monograph Series, No. 2, pp.
98–112. Oxford, U.K.: Blackwell. Also appears in W. L. Harper, R. C. Stalnaker
and G. Pearce (Eds.), Ifs. Dordrecht, Netherlands: Reidel, 1981.

Stalnaker, R. C. (1980). A defense of conditional excluded middle. In W. L. Harper,
R. Stalnaker, and G. Pearce (Eds.), Ifs, pp. 87–104. Dordrecht, Netherlands: Reidel.

32


