
QUATITATIVE METHODS IN PSYCHOLOGY

Using Covariance Structure Analysis to Detect Correlates and Predictors
of Individual Change Over Time

John B. Willett and Aline G. Sayer

Recently, methodologists have shown how two disparate conceptual arenas—individual growth
modeling and covariance structure analysis—can be integrated. The integration brings the flexibility
of covariance analysis to bear on the investigation of systematic interindividual differences in change
and provides another powerful data-analytic tool for answering questions about the relationship
between individual true change and potential predictors of that change. The individual growth mod-
eling framework uses a pair of hierarchical statistical models to represent (a) within-person true
status as a function of time and (b) between-person differences in true change as a function of pre-
dictors. This article explains how these models can be reformatted to correspond, respectively, to the
measurement and structural components of the general LISREL model with mean structures and
illustrates, by means of worked example, how the new method can be applied to a sample of longi-

tudinal panel data.

Questions about correlates and predictors of individual
change over time are concerned with the detection of systematic
interindividual differences in change, that is, whether individual
change in a continuous outcome is related to selected charac-
teristics of a person's background, environment, treatment, or
training. Examples include the following: Do the rates at which
students learn differ by attributes of the academic programs in
which they are enrolled? Are longitudinal changes in children's
psychosocial adjustment related to health status, gender, and
home background?

Questions like these can be answered only when continuous
data are available longitudinally on many individuals, that is,
when both time points and individuals have been sampled rep-
resentatively. Traditionally, researchers have sampled individual
status at only two points in time, a strategy that has proven
largely inadequate because two waves of data contain only min-
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imal information on individual change (Rogosa, Brandt, & Zi-
mowski, 1982; Willett, 1989). When true development follows
an interesting trajectory over time, "snapshots" of status taken
before and after are unlikely to reveal the intricacies of individ-
ual change.

In the last 15 years, the methods of individual growth model-
ing have capitalized on the richness of continuous multiwave
data to provide better methods for answering questions about
systematic interindividual differences in change (Bryk, 1977;
Bryk & Raudenbush, 1987; Rogosa et al., 1982; Rogosa & Wil-
lett, 1985; Willett, 1988, 1994). Under this approach, an indi-
vidual growth model is chosen to represent the change that each
person experiences with time. This is often referred to as the
within-person or Level 1 model. All members of a given popu-
lation are assumed to have trajectories of the same functional
form, but different members can have different values of the
individual growth parameters present in the Level 1 model. For
instance, if individual change is linear with time, interindivid-
ual differences in change may be due to heterogeneity in initial
status (intercept) and rate of change (slope). Alternatively, if in-
dividual change is a quadratic function of time, then interindi-
vidual differences in change may also be due to between-person
variation in the curvature parameter. Interindividual differ-
ences in change are said to be systematic when between-person
variation in one or more individual growth parameters is re-
lated to variation in the selected predictors of change. The hy-
pothesized link between the individual growth parameters and
the predictors of change is described in a between-person or
Level 2 statistical model.

A variety of methods have been proposed for estimating the
parameters of the Level 1 and Level 2 models in the analysis of
change. Rogosa and his colleagues (Rogosa et al., 1982; Rogosa
& Willett, 1985; Willett, 1985, 1994; Williamson, 1986; Wil-
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liamson, Appelbaum, & Epanchin, 1991) described explor-
atory ordinary least squares regression-based methods to sepa-
rately estimate the parameters of the Level 1 and Level 2
models, with reliability-based adjustments to the latter based
on the marginal maximum likelihood methods of Blomqvist
(1977). In an extension of the exploratory approach, Willett
(1988, based on Hanushek, 1974) provided weighted least
squares methods for obtaining asymptotically efficient esti-
mates of the parameters of the Level 2 model. And, as part of
their work on hierarchical linear modeling (HLM), Bryk and
Raudenbush (1987, 1992) described strategies for simulta-
neously estimating the parameters of the Level 1 and Level 2
models using empirical Bayes estimation.

Recently, several pioneering authors have demonstrated how
the analysis of change can be conducted very conveniently by
the methods of covariance structure analysis. Meredith and Ti-
sak (1984, 1990; see also Tisak & Meredith, 1990), for instance,
have provided a technical framework for representing interin-
dividual .differences in intraindividual development and exam-
ples of how model parameters can be estimated by covariance
structure analysis. Their work extends earlier research on longi-
tudinal factor analysis (Rao, 1958; Tucker, 1958) and subsumes
more traditional approaches to the analysis of panel data, such
as repeated measures analysis of variance (ANOV4.) and multi-
variate analysis of variance (M ANOVA; see also Joreskog & Sor-
bom, 1989). The Meredith-Tisak approach is very general. It
permits the evaluation of the general shape of the individual
growth trajectories and provides not only estimates of the indi-
vidual growth parameters (through the estimation of factor
scores) but estimates of the Level 2 means, variances, and co-
variances of the individual growth parameters across all mem-
bers of the population. These latter statistics estimate the popu-
lation average growth curve and provide evidence for the pres-
ence of interindividual differences in growth in the population.

In a linked body of applied work, McArdle and his colleagues
have extended the covariance structure approach of Meredith
and Tisak, demonstrating its flexibility by application to a wide
variety of developmental problems in psychology and through-
out the social sciences. For instance, they showed how covari-
ance structure methods can be used to estimate average growth
curves and to indicate the presence of interindividual differ-
ences in change in a single domain and simultaneously in many
domains (McArdle, 1986a, 1986b, 1989, 1991; McArdle & Ep-
stein, 1987). They also showed how average growth curves can
be compared across groups (McArdle, 1989; McArdle & Ep-
stein, 1987) and described how covariance structure methods
can be used to conduct convergence analysis, in which segments
of average growth curves estimated in overlapping cohorts are
linked into a single continuous trajectory (McArdle & Ander-
son, 1989; McArdle, Anderson, & Aber, 1987; McArdle & Ha-
magami, 1991). Furthermore, in an extension that provided the
impetus for this article, McArdle and Epstein (1987) demon-
strated how the Level 2 relationship between slope and a single
predictor of change can be modeled and estimated when indi-
vidual change is represented by a restricted linear growth model
that contains only a slope parameter (and no intercept).

Finally, in a separate but related stream of research, Muthen
and his colleagues have also described the technical basis for,

and provided data-analytic examples of, the modeling of
multilevel data using covariance structure methods (Muthen,
1989; Muthen & Satorra, 1989). Of particular interest are a pair
of recent papers (Muthen, 1991, 1992) in which the parameters
of a linear individual growth model were allowed to vary across
individuals in ways systematically related to selected time-in-
variant predictors of change. The latter paper also presented
an application of an interesting strategy based on multigroup
analysis (see Bollen, 1989) for incorporating individuals with
incomplete observed growth records into the analyses.

We are convinced that these new methods are another pow-
erful data-analytic weapon in the armory of the empirical re-
searcher. Questions about correlates and predictors of change
pervade psychology and the social sciences. In this article, we
present a careful exposition of the application of covariance
structure methods to the investigation of systematic interindi-
vidual differences in change. Analytically, our article is closest
to—and derivative of—the work of McArdle and Epstein
(1987) and Muthen (1991, 1992). However, we intend our prin-
cipal contribution to be the provision of a viewpoint that inverts
that of our covariance modeling colleagues. Unlike them, we
owe our principal allegience to the field of individual growth
modeling, and we have come to understand these recent inno-
vations in the covariance structure analysis of longitudinal data
from that perspective. Consequently, in this article, we have
tried to link the pioneering contributions of McArdle, Muthen,
and Meredith and Tisak directly to recent developments in the
measurement of individual change (Bryk, 1977; Bryk & Rau-
denbush, 1987, 1992; Burchinall& Appelbaum, 1991;Rogosa
etal., 1982; Rogosa& Willett, 1985; Willett, 1985, 1988, 1989,
1994; Williamson, 1986; Williamson etal., 1991).

The integration of the individual growth modeling and covar-
iance structure approaches capitalizes on the fundamental
mathematical equivalence of two alternative methods of repre-
senting the same data structure. The process of formulating
population Level 1 and Level 2 models for individual change
and for systematic interindividual differences in change is
equivalent to postulating a specific structure for the matrix of
population covariances among the multiple waves of observed
data and the predictors of change. By using the general LISREL
model with mean structures (Joreskog & Sorbom, 1989) to ex-
plicitly articulate this latter covariance structure and to fit it
to the matrix of sample covariances, we can obtain maximum
likelihood estimates of the critical between-person parameters
that were specified under the original growth modeling formu-
lation and thereby answer our research questions about poten-
tial correlates and predictors of change.

This article has three sections and a concluding discussion.
In the first section, we begin our presentation by introducing a
simple Level 1 growth model to represent individual change
over time. In this model, we hypothesize that true change is a
linear function of time, and we assume that the occasion-by-
occasion errors of measurement are both homoscedastic and
mutually independent. Then we formulate a preliminary "no-
predictor" Level 2 model for interindividual differences in
change that describes heterogeneity in change across members
of the population. In this latter model, the intercepts and slopes
of the Level 1 individual growth model are permitted to vary
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jointly across people, but interindividual heterogeneity in
change is left unexplained by potential predictors of change. In
the second section, we illustrate how the "baseline" individual
growth modeling perspective maps onto the framework pro-
vided by the general LISREL model. Then we demonstrate how
the respective Level 2 means, variances, and covariance of the
individual growth parameters can be estimated straightfor-
wardly by covariance structure analysis. To close out the sec-
tion, we extend the baseline analysis to test and modify the crit-
ical assumptions made at Level 1 concerning (a) the linearity of
the individual true growth trajectory and (b) the homoscedas-
ticity and independence of the measurement error covariance
structure. In the third section, we introduce potential predictors
of change into the baseline Level 2 specification and describe
how the methods of covariance structure analysis can be used
to estimate the relationship between interindividual heteroge-
neity in the growth parameters and the predictors of change.
Our rationale for this organization is both substantive and
methodological because, logically, individual change must be
described before interindividual differences in change can be
examined, and interindividual differences in change must be
present before one can ask whether any heterogeneity is related
to predictors of change.

A data-based example is used to frame our presentation
throughout the article, and we provide, in the Appendix, illus-
trative LISREL programs for conducting the proposed analyses.
In our concluding discussion, we comment on the advantages
and limitations of the covariance structure approach and note
further extensions of the method that are made feasible by the
flexibility of the general LISREL model.

data obtained from a sample of 168 adolescents on the contin-
uous dependent variable tolerance of deviant behavior.' During
each year of the study—at 11, 12, 13, 14,and ISyearsofage—
each participant completed a nine-item instrument that asked
whether it was wrong for someone his or her age to cheat on
tests, purposely destroy property of others, use marijuana, steal
something worth less than $5, hit or threaten someone without
reason, use alcohol, break into a building or vehicle to steal, sell
hard drugs, or steal something worth more than $50 (Rauden-
bush & Chan, 1992). Responses to each item were registered on
a 4-point scale ranging from very wrong (1) to not wrong at all
(4), and responses were averaged across items to provide a scale
score. In Table 1, for illustration, we list scores for 16 randomly
selected cases. Inspection of the table—and the full data set—
suggests that although there is considerable scatter in the ob-
served scores over time and across individuals, adolescents ap-
pear to become gradually more tolerant of deviant behavior as
they age.

To answer questions about systematic interindividual differ-
ences in change, information must also be available on potential
predictors of change. Our data example provides the values of
two potential predictors of change: (a) the gender of the adoles-
cent (0 = male, 1 = female), and (b) the adolescent's reported
exposure to deviant behavior in the 1 st year of data collection
(at age 11 ).2 Values of these predictors are also presented for the
16 randomly selected cases in Table 1. In our illustrative data
analyses, the broad research question is as follows: Are interin-
dividual differences in change of tolerance toward deviance dur-
ing adolescence related to respondent gender and initial
exposure to deviant behavior?

Modeling Change Over Time: An Individual Growth
Modeling Perspective

To answer research questions about individual change in a
continuous variable, a representative sample of individuals
must be observed systematically over time, with their status be-
ing measured on several temporally spaced occasions. To use
the covariance structure approach described here, three or
more waves of data must be available on each individual. In
addition, the data must be balanced in a particular way. The
occasions of measurement need not be equally spaced in time,
but both the number and the spacing of assessments must be the
same for all individuals, a pattern that Bock (1979) referred to
as "time-structured" data.

Thus, the methods we describe here are appropriate for ana-
lyzing panel data, in which the number of individuals is large
with respect to the number of occasions of measurement. The
sample size must be large enough to enable the investigator to
detect person-level effects. Other analytic methods are available
for time-series data sets, which typically contain many repeated
assessments on few individuals. In psychology, studies of physi-
cal growth, language development, and dyadic interaction are
often of this latter form.

Introducing the Data Example

Throughout this article, we illustrate the covariance structure
analysis of change using a data set that contains five waves of

Modeling Individual Change Over Time

As is well known, classical test theory describes the psycho-
metric properties of scores on a single occasion, distinguishing
observed score from true score, the former being a fallible oper-
ationalization of the latter. The observed score continues to be
distinguished from the true score when change is investigated
because change in underlying true score is the focus of research
interest. Measurement error is an uninvited guest that ran-
domly obscures the true growth trajectory from view. Conse-
quently, when individual growth is represented by a statistical
model, the model must contain a part describing a person's true
growth trajectory over time and a part representing the stochas-
tic effect of measurement error.

1 We thank Stephen W. Raudenbush for providing these data.
2 Adolescents' exposure to deviance was also self-reported on a nine-

item instrument in each of the 5 years of the study. Participants were
asked how many of their peers engaged in the same nine activities iden-
tified in the tolerance of deviant behavior instrument. For each item,
ratings were obtained on a 5-point scale ranging from none of them (0)
to all of them (4). Scale scores were computed by averaging across items.
To simplify the presentation, we have chosen to use only the partici-
pant's initial scale score at age 11 as a predictor of change. Further anal-
yses could capitalize on the potentially time-varying nature of the
exposure data to answer more complex questions than we are asking
here (e.g., Is change over time in adolescents' tolerance of deviant be-
havior related to change in their exposure to that behavior?).
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Table 1
Data on a Subsample of 16 Drawn at Random From the 168 Adolescents in the Example

Predictors of change

Subject ID
number

Reported tolerance of deviant behavior8

Age 11 Age 12 Age 13 Age 14 Age 15 Gender6

Exposure
to deviant
behavior
at age 11

0009

0045

0268

0314

0442

0514

0569

0624

0723

0918

0949

0978

1105

1542

1552

1653

2.23

1.12

1.45

1.22

1.45

1.34

1.79

1.12

1.22

1.00

1.99

1.22

1.34

1.22

1.00

1.11

.79

.45

.34

.22

.99

.67

.90

.12

.34

.00

.55

.34

.90

.22

.12

.11

1.90

1.45

1.99

1.55

1.45

2.23

1.90

1.22

1.12

1.22

1.12

2.12

1.99

1.99

2.23

1.34

2.12

1.45

1.79

1.12

1.67

2.12

1.99

1.12

1.00

1.99

1.45

3.46

1.90

1.79

1.55

1.55

2.66

1.99

1.34

1.12

1.90

2.44

1.99

1.22

1.12

1.22

1.55

3.32

2.12

2.12

1.55

2.12

0

1

1

0

0

1
0

1

0

0

1
1

1
0

0

0

1.60

1.30

0.76

0.76

0.84

0.84

2.29

0.99

0.99

0.76

0.84

0.76

1.12

1.15

0.84

1.00

1 On a 4-point scale ranging from very wrong (1) to not wrong at all (4).
b 0 = male, 1 = female.

Under the individual growth modeling framework, the "true"
part of each person's growth trajectory is represented by an al-
gebraic function of time. Many possible mathematical func-
tions are available, both those that depend linearly on time and
those that do not. Choice of an appropriate mathematical func-
tion to represent true individual change is an important first
step in any project.3

A responsible preliminary strategy for choosing a valid
growth model is to inspect each person's empirical growth rec-
ord by plotting his or her observed status against time (see Wil-
lett, 1989). As an aid to inspection, we also find it useful to
superimpose an observed growth trajectory (estimated through
within-person ordinary least squares [OLS] regression analysis)
on each individual's plot. Such exploratory analyses permit the
investigator to compare the appropriateness of alternative
growth models through descriptive statistics that describe the fit
of each model. In our data example, this process—along with
examination of wave-by-wave univariate descriptive statistics
on the dependent variable—suggested that the distribution of
the natural logarithm of tolerance of deviance was less skewed
and that, once transformed, a linear (straight-line) model was
an appropriate representation of individual change in log toler-
ance of deviance over the adolescent years.4

As an evocative summary of our data exploration, Figure 1
presents OLS-fitted observed straight-line growth curves for the
adolescents in Table 1. Notice that the observed (log) tolerance
of deviance of most adolescents increases as time passes and
that there is evidence of heterogeneity in observed change across
people. This collection of trajectories must be interpreted care-
fully, however, because the trajectories summarize observed
rather than true change. It is possible, for instance, that all
differences among the slopes of the 16 fitted trajectories can be
attributed to measurement error rather than to heterogeneity in

true rate of change. The methods described in this article can
distinguish these two eventualities.

The methods described here do not explicitly demand the
preliminary inspection of empirical growth records. In subse-
quent analysis, one can confirm earlier "eyeball" suspicions by
testing whether higher order nonlinear terms must be added to
the individual growth function. Nonetheless, we recommend
that every analysis of change begin with individual-level data
exploration. Sound data-analytic practice demands knowledge
of the data at the lowest level of aggregation so that anomalous
cases can be identified, outlying data points can be detected,
and assumptions can be checked. Once data are summarized in
a covariance matrix, all individual-level richness is lost.

As we have noted, in our data example, preliminary explora-
tion suggested that a straight-line function was most appropri-
ate for modeling change in log tolerance of deviance over the
adolescent years. Therefore, we model true individual change in
log tolerance as a linear function of time, with a stochastic term
added to account for the influence of measurement error:

Yip — TOp + TTlpti + tip, (1)

3 Ideally, theory will guide the rational choice of model so that the
specified individual growth parameters have meaningful substantive in-
terpretations. Often, however, the mechanisms governing the change
process are poorly understood and, thus, a well-fitting polynomial is
used to approximate the trajectories. Also, in much research, only a
restricted portion of the life span is observed with few waves of data
collected, and so the selected growth model must contain a small num-
ber of individual growth parameters if the model is to be fitted success-
fully. Thus, the most popular growth model is often a linear or a qua-
dratic function of time.

4 Details are available on request. Raudenbush and Chan (1992) also
transformed the dependent variable logarithmically.



PREDICTORS OF CHANGE 367

7.5
Log-Tolerance

0.51

0
10 11 12 13 14

Age in Years

15 16

Figure I . A collection of ordinary least squares (OLS) fitted trajecto-
ries summarizing observed linear growth in (log) tolerance for deviant
behavior between ages 11 and 15 for the subsample of 16 randomly
selected youths whose empirical growth records are displayed in
Table 1.

where Yip is the observed value of log tolerance of deviance and
tip is the measurement error for the /rth person (p = 1 , 2 , . . . ,
168) at known times tt (i = 1,2,.. . , 5).

The shape of the trajectory for a particular person depends
on the way in which time is parameterized in the model and on
the values of the constants—the individual growth parame-
ters—that appear on the right-hand side of the model. The
straight-line individual growth model in Equation 1 contains a
linear parameterization of time and a pair of individual growth
parameters representing the intercept and slope of the true tra-
jectory. The slope parameter wlp is easy to interpret. It repre-
sents rate of change in true status over time for the pth person.
In our example, with time measured in years, ir\p represents the
yearly rate of true change in log tolerance of deviance. Adoles-
cents whose tolerance increased rapidly with time will have
large positive values of this parameter; those whose tolerance
increased less rapidly will possess correspondingly smaller val-
ues.

Mathematically, the intercept parameter ir0p is also easy to
interpret: It is the true status of person p when ?, is equal to
zero. However, in many research projects there is no natural or
convenient origin for time; thus, the investigator can control the
interpretation of the intercept parameter by denning Time 0 at
some interesting or important point in the life course. In our
example, for instance, although we possess measurements on
each person at 11, 12, 13, 14, and 15 years of age, we chose to
define the third occasion of measurement as the origin of time
(i.e., we set /3 = 0). Our measurement times are thus t, = -2, /2

= — 1, ?s = 0, ?4 = 1, and ts = 2 years, and the intercept parameter

7r0p represents the true value of log tolerance of deviance for the
pth adolescent at 13 years of age.5

A word of caution: Like many other common forms of statis-
tical analysis, the individual growth modeling approach is ap-
plicable only if it is intuitively sensible to measure change in the
outcome variable. At the very least, this means that the outcome
variable must have three properties. First, it must be a continu-
ous variable at either the interval or ratio level. Second, it must
be equatable from occasion to occasion (i.e., each scale point on
the measure must retain an identical meaning as time passes).
Finally, it must remain construct valid for the entire period of
observation. If any of these conditions are violated, the methods
that we describe here are being inappropriately applied.

A Matrix Representation of the Empirical Growth
Record

In our data example, five waves of longitudinal data were col-
lected. Therefore, each person's empirical growth record con-
tains five measurements of observed status: Yif, Y2p, Y3p, Ytp,
and YSP. Under the individual growth model in Equation 1,
these measurements can be represented conveniently as

Up

(2)

For pedagogical reasons, in Equation 2 and throughout the text,
we have retained symbols t} through ;5 to represent the times at
which the panel data were obtained. In any particular research
project, each of these symbols will have a known constant value.
For instance, in our data example, because of our earlier center-
ing of the time axis at age 13, t\ through ts have the values —2,
— 1,0, 1, and 2 years, respectively.

Note that, by algebraic manipulation, we have shown that
the observed growth record for person p can be written as a
combination of three parts: (a) a matrix of known times and
constants identical across all individuals, multiplied by (b) an
individual-specific vector of unknown individual growth pa-
rameters (which we refer to henceforth as the latent growth vec-
tor), and added to (c) an individual-specific vector of unknown
errors of measurement. This representation provides a critical
conceptual emphasis showing that, for each person, one can
view the empirical growth record (the observed score vector on
the left of Equation 2) as a weighted linear combination of the
elements of an unobserved latent growth vector added to a mea-
surement error vector. It is the latent growth vector that is the
focus of a study of interindividual differences in change. In our
data example, the two elements of the latent growth vector rep-
resent the within-person signal: the individual growth parame-
ters that describe true change over time for person p. The ele-
ments of the error vector, on the other hand, describe the within-
person noise: the forces that disturb measurement of person p's

5 Making the middle of the occasions of measurement, the origin of
time ensures that the intercept parameter is estimated most precisely
and facilitates the convergence of the iterative model-fitting process.
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true change over time. If the latter are large and erratic, one may
not be able to detect the former.

Distribution of the Measurement Errors

In Equations 1 and 2, we stated that error t lp disturbs the true
status of the pth person on the first occasion of measurement,
e2p does so on the second occasion, and so forth. However, we
have made no claims about the shape of the error distribution;
the errors may be homoscedastic and independent over time
within individuals, they may be heteroscedastic, or they may be
autocorrelated. We usually begin by assuming that the errors of
measurement obey stringent "classical" assumptions; that is,
they are distributed independently and homoscedastically over
time with mean zero and homogeneous variance of. In other
words, person p draws his or her measurement error vector from
the following distribution:

~N

"0"
0
0
0
0

?

[V?
0
0
0
0

0
^
0
0
0

0
0
^
0
0

0
0
0
<r?
0

0"
0
0
0

<t.

(3)

where the mean vector and covariance matrix on the right-hand
side are assumed to be identical across people.

A major advantage of the covariance structure approach de-
scribed here lies in the flexibility with which the error covari-
ance structure can be modeled. Under the method, we assume
that each person draws his or her measurement error vector at
random from a distribution with mean vector zero and an un-
known covariance matrix whose shape can be specified as nec-
essary. This permits us to test the fit of the classical error struc-
ture against other, more liberal hypotheses, and we can modify
the error covariance structure as necessary. And regardless of
the final structure adopted, we can estimate the components of
the hypothesized error covariance matrix.6 This facility is im-
portant in a study of change because knowledge of the magni-
tudes of the error variances and covariances underpins the esti-
mation of measurement reliability and error autocorrelation.
We provide examples of this later.

Modeling Interindividual Differences in Change

Even though all people share a common functional form for
their change, the true growth trajectories may still differ across
people because of interindividual variation in the values of the
individual growth parameters. Thus, formerly ill-specified
questions about vaguely defined interindividual differences in
change can be reframed as specific questions about the distribu-
tion of individual growth parameters across people in the popu-
lation. In our data example (in which we believe that straight-
line growth is occurring), for instance, we can ask questions
about (a) the population mean vector of the individual growth
parameters (e.g., Across all members of the population, what is
the average value of the true intercept? Of the true slope?) and
(b) the population covariance matrix of the individual growth
parameters (e.g., Across all members of the population, what is
the variance of the true intercept? Of the true slope? What is the
population covariance of the true intercept and slope?).

Thus, when one studies interindividual differences in change,
one expresses an interest in the population between-person dis-
tribution of the individual growth parameters. In our data ex-
ample, for instance, we assume that each person in the popula-
tion draws his or her latent growth vector independently from a
multivariate normal distribution of the following form:

'O'l

2
(4)

The hypothesized distribution in Equation 4 is our first be-
tween-person, or Level 2, model for interindividual differences
in true change. Later we extend this model by introducing pre-
dictors of change into the formulation. Even in this simple
model, however, there are several between-person parameters
worthy of estimation: the population means, variances, and co-
variance on the right-hand side of Equation 4. These parame-
ters provide baseline information on the average trajectory of
true change, the variation of true intercept and slope, and the
covariation of true intercept and slope in the population,
thereby answering the preliminary questions cited earlier in this
subsection.

Adopting a Covariance-Structure Perspective

In Table 2, we present the sample mean vector and covariance
matrix for the variables introduced in Table 1, estimated with
data on all 168 adolescents in the illustrative data set. What
statements about change over time do these statistics readily
support? Focus, first, on the statistics describing the five waves
of observed log tolerance of deviance. Examining the wave-by-
wave means shows that observed (log) tolerance tends to in-
crease steadily, on average, over the 5-year period of observation
in the sample as a whole. In addition, the magnitudes of the
variances along the leading diagonal of the sample covariance
matrix suggest that observed log tolerance of deviance becomes
more variable over time, perhaps as adolescents' scores "fan
out" with age. Finally, inspection of the sample between-wave
covariances suggests a generally positive association among ob-
served log tolerance of deviance over the five occasions of mea-
surement.

However, even ignoring the distinction between observed and
true scores, it is not easy to reach informed conclusions about
interindividual differences in change by inspecting between-
wave summary statistics (Rogosa et al., 1982; Rogosa & Willett,
1985; Willett, 1989). Between-wave statistics do not provide an
optimal view for easy inference about differences in individual
change. To answer questions about change, one must adopt a
perspective that emphasizes change. Rather than summarizing
data as between-wave variances and covariances, one must use
individual growth trajectories. For instance, it is easier to see
from Figure 1 that observed change is generally positive, indi-
viduals are fanning out over time, and there is heterogeneity in
level and rate of change across people. The data are identical in
both cases, but the view offered by the summary statistics
differs; each view supports a qualitatively different kind of in-
terpretation.

6 Provided the hypothesized covariance structure model is identified.
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Table 2
Sample Mean Vector and Covariance Matrix for the Five Waves of Log Tolerance
of Deviant Behavior and Two Predictors of Change

Predictors of change

Log tolerance of deviant behavior

Statistic

Mean vector
Covariance matrix

Age 11
Age 12
Age 13
Age 14
Age 15
Gender
Log exposure

Age 11

.2008

.0317

.0133

.0175

.0213

.0230
-.0108

.0115

Age 12

.2263

.0395

.0256

.0236

.0233
-.0143

.0133

Age 13

.3255

.0724

.0531

.0479
-.0225

.0089

Age 14

.4168

.0857

.0663
-.0299

.0091

Age 15

.4460

.0873
-.0270

.0186

Gender
(Gp)

.4762

.2509
-.0498

Log exposure
to deviant

behavior (Ep)

-.0788

.0693

Note. AT =168.

Does this mean that one cannot recover information about
change once data have been collapsed into between-wave means
and covariances? No, it does not. One must simply "match up"
the between-wave and change perspectives explicitly. If we
could, for instance, determine the between-wave implications
of the individual growth modeling perspective adopted in
Equations 1-4, we could check whether they compared favor-
ably with the data summaries in Table 2. For instance, in
Equations 4 and 3, we proposed what we believe are reasonable
models for interindividual variation in the individual growth
parameters and errors of measurement. If we are correct, then
these models must underwrite the between-wave mean and co-
variance structure evident in Table 2. In other words, although
we are dealing with two different perspectives on the problem—
a between-wave perspective in Table 2 and a growth perspective
in Equations 1 -4—the between-wave covariance structure im-
plied by the growth models must resemble the between-wave
covariance structure observed in our data if our parameteriza-
tion of change is correct.

Fortunately, well-developed methods are available for testing
our suspicions: the methods of covariance structure analysis.
Starting with the sample mean vector and covariance matrix in
Table 2 as input we can claim that our hypothesized growth
models fit when, having estimated the parameters of Equations
3 and 4, we can accurately predict the between-wave covariance
structure of the observed data. As Meredith, Tisak, McArdle,
and Muthen have pointed out, the growth formulation that we
have posited—the within-person models of Equations 2 and 3
and the between-person model of Equation 4—falls naturally
into the framework offered by the LISREL model with mean
structures (Joreskog & Sorbom, 1989). Thus, maximum likeli-
hood estimates of the important parameters in Equations 3 and
4 can be obtained by covariance structure analysis, as we now
demonstrate.

Rewriting the Individual Growth Model as the LISREL
Measurement Model for Y

When covariance structure analysis is used to examine
change over time, the hypothesized individual growth model

plays the role of the LISREL measurement model for the vector
of endogenous variables Y. For instance, we can rewrite the em-
pirical growth record of the pth person in our illustrative exam-
ple as

4p

1 tl
1 h

1 t.
** +

tip

(5)

which has the format of the LISREL measurement model for
endogenous variables Y:

Y = Ty + + e, (6)

with LISREL score vectors that contain the empirical growth
record, the individual growth parameters, and the errors of
measurement, respectively:

Y =

lf
f
lp

-
f
Sp.

(7)

Furthermore, unlike the usual practice of covariance structure
analysis, the elements of the LISREL ry and A,, parameter ma-
trices are entirely constrained to contain only known values,

(8)

and the error vector i is distributed with zero mean vector and
covariance matrix 0e, which, under the classical assumptions
of Equation 3, is given by

0. = Cov(e) =

~ 2

0

0

0

.0

0

0̂

0

0

0

0

0̂

0

0

0

0

of

0

o"
0

0

0

ff?_

(9)
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Rewriting the Model for Interindividual Differences in
Change as the LISREL Structural Model

Note that, unlike in more familiar standard covariance struc-
ture analyses, we have chosen to specify the entire LISREL A^
parameter matrix in Equation 8 as a matrix of known times and
constants rather than as a collection of unknown parameters to
be estimated. This specification acts to "pass" the critical Level
1 individual growth parameters (TTO/, and ir,p) from the Level 1
growth model into the LISREL endogenous construct vector ij,
which we have then referred to as the latent growth vector. In
other words, our fully constrained specification for A.y has
forced the i? vector to contain the very individual-level parame-
ters whose Level 2 distribution is to become the focus of our
subsequent between-person analyses.

These Level 2 analyses are conducted within the structural
component of the general LISREL model, which permits the
distribution of the i\ vector to be modeled explicitly in terms of
selected population means, variances, and covariances. And, of
course, the particular population means, variances, and covari-
ances that we have selected as parameters of the structural
model are those that we have hypothesized are the important
parameters in the joint distribution of the individual growth
parameters in Equation 4. All that is required is to write the
latent growth vector as

l*ipj L/^,J L" ujL^J imp-i

which has the form of the reduced LISREL structural model

with a latent residual vector f that contains the deviations of the
individual growth parameters from their respective population
means,

and parameter matrices,

o

(12)

(13)

Note that we have moved the population averages of the indi-
vidual growth parameters—true intercept and slope, in this
case—into the LISREL a vector. This permits these important
mean parameters to be estimated explicitly. The elements of the
LISREL latent residual vector, f, in Equations 11 and 12 con-
tain deviations of if0p and tr\f from their respective population
means. The f vector of latent residuals is of special interest here
because it is distributed with zero mean vector and covariance
matrix *, the matrix containing the very variance and covari-
ance parameters in which one is most interested in an investi-
gation of interindividual differences in change:

= Cov(f) = (14)

eling framework provides baseline Level 1 (within-person) and
Level 2 (between-person) models that represent our initial
hypotheses about the growth structure underlying the five waves
of panel data in our data example. Then, in Equations 5-14, we
have shown that these models can be rewritten, without loss of
generality, in the format and notation of the general LISREL
model with mean structures. By carefully choosing our speci-
fication of the various standard LISREL parameter matrices,
we have forced the LISREL ^-measurement model to become
our original Level 1 individual growth model (including all ex-
isting assumptions on the distribution of the measurement er-
rors), and we have forced a reduced form of the LISREL struc-
tural model to become our Level 2 model for interindividual
differences in true change.

Because of this direct and explicit mapping of one model into
the other, we can test whether our hypothesized growth formu-
lation underpins the matrix of observed between-wave vari-
ances and covariances in Table 2 using the LISREL program. If
the implied covariance structure fits the data, then we also ob-
tain, and can interpret, LISREL-provided maximum likelihood
estimates of the unknown parameters in our growth models that
now reside in the a vector, the 0, matrix, and the * matrix. In
the Appendix, we provide an annotated LISREL program for
this analysis (Model 1). The program specifies the ry, A.y, 0,, a,
B, and * parameter matrices as defined in Equations 8, 9, 13,
and 14. All hypothesized zero entries in these parameter matri-
ces are fixed at zero in the program; the values of measurement
times ti through r5 are set to -2, — 1 , 0 , 1, and 2 in accordance
with our earlier centering decision; and all unknown parameters
are free to be estimated.

This baseline "no predictors of change" model fits moder-
ately well (see Bollen, 1989, pp. 256-289, for a discussion of the
use of summary statistics in model evaluation). Although the
model chi-square statistic (49.74) is slightly large, given its de-
grees of freedom (14), the values of other goodness-of-fit indices
are heartening: Both LISREL goodness-of-fit statistics are
greater than .9 (goodness of fit index [GFI] = .918, adjusted
goodness of fit index [AGFI] = .912), and the root mean-square
residual (RMSR) is small relative to the absolute magnitude of
the elements of the sample covariance matrix in Table 2
(RMSR = .008). Maximum likelihood estimates of the un-
known parameters are listed under Model 1 in Table 3, along
with approximate p values.7

The entries in the first two rows of Table 3 for Model 1 esti-
mate the population means of true intercept (.3231, p < .001)
and true slope (.0681, p < .001) and describe the average trajec-
tory of true change in the dependent variable. On average, ado-

To summarize, in Equations 1-4, the individual growth mod-

7 The approximate^ value tests the null hypothesis that the value of
a parameter is zero in the population using a test statistic that is the ratio
of the parameter estimate to its asymptotic standard error (see Bollen,
1989, p. 286). The investigator should be cautious in interpreting p val-
ues associated with these tests of the variance components, however,
because they are sensitive to failures of the assumption of multivariate
normality. As Miller (1986) noted, when commenting generally on
parametric tests of variance, "the effects of nonnormality on the distri-
bution theories for the [variance component] test statistics... are cata-
strophic. For each test the actual significance level can be considerably
different from the nominally stated level" (p. 264).
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Table 3
Fitted Models Demonstrating Interindividual Differences in

Change in Log Tolerance in the Full Sample

Maximum likelihood estimates

Parameter Model 1 Model 2 Model 3

M,

M*°

a
2
,

CT'°

"'0'2

*i
(77

°i
°i
°i
•d
ff.3<!

ff'4'3

"'I'i

x2 '
df

Goodness of fit index (GFI)
Adjusted goodness of fit

index (AGFI)
Root mean-square residual

(RMSR)

.3231***

.0681***

.0328***

.0026***

.0081***

.0254***

.0254***

.0254***

.0254***

.0254***

49.74
14

.918

.912

.008

.3235***

.0664***

.0326***

.0029***

.0079***

.0186***

.0269***

.0340***

.0242***

.0178***

39.82
10

.941

.912

.006

.3197***

.0643***

.0295***

.0023*

.0070***

.0195**

.0275***

.0382***

.0350***

.0212*

.0010

.0052f

.0113***

.0084
20.83

6
.981

.951

.004

Note. N= 168. See text for descriptions of models.
tp<.10. *p<.05. **p<.01. ***p<.001 (approximate values).

lescents' true log tolerance of deviance increases by .0681 per
year, having a value of .3231 in Year 3(13 years of age).

The entries in the third and fourth rows for Model 1—the
fitted variances of true intercept (.0328, p < .001) and true slope
(.0026, p < .001)—estimate population interindividual hetero-
geneity in true change. Because both of these variances are non-
zero, we know that between-person heterogeneity in the age 13
level and rate of change in true log tolerance exist in the popu-
lation. The fifth table entry under Model 1 provides an estimate
of the covariance of the true intercept and true rate of change in
log tolerance of deviance across people in the population (.0081,
p < .001). Combining this covariance estimate with the esti-
mated variances suggests that the true rate of change has a cor-
relation of .887 with the true intercept; this large value indicates
that participants with higher age 13 levels of true log tolerance
also have the most rapid rates of increase.

Entries in the 6th through 10th rows for Model 1 provide
an estimate of the homoscedastic measurement error variance
(.0254, p < .001), which—together with the variances of ob-
served score along the leading diagonal of the sample covariance
matrix in Table 2—indicates that, except for the first and second
panels, the within-wave reliability of measurement was moder-
ate (.198, .357, .649, .703, and .709, respectively, in Years 1
through 5). Finally, substituting the estimated variances of mea-
surement error and true slope into Equation 29 of Willett
(1989), we find that the rate of true change in log tolerance has
been measured with a reliability of .502. This is higher than

usually anticipated in the measurement of change and higher
than the reliability with which log tolerance itself was measured
on two of the occasions. It illustrates that, if sufficient waves of
longitudinal data are collected, the measurement of change can
be more reliable than the measurement of status on a single
occasion despite the prognostications of Bereiter (1963), Lord
(1963), and others.

Testing for Evidence of Nonlinear Individual Change

So far, we have hypothesized that individual change over time
in log tolerance is linear. However, in practice, individual change
may be curvilinear (e.g., see the research on vocabulary growth
in children conducted by Huttenlocher, Haight, Bryk, & Seltzer,
1991).

The covariance structure approach that we have described
can easily be modified to include any Level 1 growth model
that is linear in the individual growth parameters. Keats (1983)
denned such models as having the property of dynamic consis-
tency; for such models, the curve of the averages (obtained by
taking the population of true growth curves and plotting the
average of the true scores at each value of time) is identical to
the average of the curves (obtained by averaging the individual
growth parameters over the population and plotting a curve
with parameters equal to these averages). Many common
growth functions, including segmented growth curves and poly-
nomial growth of any order, are dynamically consistent. Other,
more specialized growth functions (such as the Gompertz,
Jenss, and logistic functions) are not; therefore, the character of
the individual curves is distorted by group averaging, making it
difficult to infer the shape of individual growth from a group
growth curve (Boas, 1892;Estes, 1956).

If true individual change is hypothesized to be a quadratic
function of time, for instance, the observed status of the pth
person at time /, can be represented by

V — ~ - - L ~ . t - L ~ l 2 - L , / 1 « \
*ip ~ T*0p ~r T*\pli ' T2p*7 ' tip, (.I-*)

where the presence of the quadratic parameter ir2p permits the
trajectory to be curvilinear. If ir2p is negative, the trajectory is
concave to the time axis; if it is positive, the trajectory is convex
to the time axis. Because time was centered on the third occa-
sion of measurement, ir0p represents the pth person's true log
tolerance of deviance at age 13, and 7rlp is the instantaneous rate
of true change in log tolerance of deviance at age 13.

Again, following Equation 5, we can write the empirical
growth record for the pth person as the product of a matrix
of known times and constants and an individual-specific latent
growth vector containing the unknown individual growth pa-
rameters, added to a measurement error vector. As before, this
provides the LISREL measurement model for the endogenous
variables Y, but now the quadratic individual growth parameter
is forced into the latent growth vector t) along with true intercept
and slope by suitable redefinition of the earlier Aj, parameter
matrix, as follows:

ip

1, tl
h t\

i t4
t\

• (16)
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This matrix again has the format of the LISREL 7-measure-
ment model in Equation 6 with constituent score vectors,

«4p

(17)

and parameter matrices,

e.=
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where the times /! through ts have known numeric value (as
before).

Although all members of the population share a common
quadratic growth function, their true change trajectories may
differ when the values of the individual growth parameters differ
from person to person. Thus, when studying interindividual
differences in quadratic change, one remains interested in the
population distribution of the latent growth vector, which can
again be modeled within the LISREL structural model:

+
'0 0 0"
0 0 0
0 0 0

Top

Tip

.T2p.

+
TOp ~" MTTQ

Tip - M»,

-T2p - M^2-

. (19)
Tflp

Tip

Again, this model has the form of the reduced structural model
in Equation 11 but with an expanded definition of the LISREL
latent residual vector,

Top - Mir0

Tip - M»,

-T2p - M»2

(20)

and parameter matrices modified to account for the presence of
the quadratic individual growth parameter in the latent growth
vector T),

M»,

LM»2J

2

o _
0
0
0

(21)

This expanded model for interindividual differences in true
quadratic change (Equations 15-21) can be fitted by straight-
forward modification of the LISREL program for Model 1 in
the Appendix. The respective fits of the linear and quadratic

formulations can then be compared directly because the linear
formulation is nested within the quadratic formulation (setting
7r2p to zero in Equations 15-21 leads to Equations 5-14). Spe-
cifically, the null hypothesis that the addition of a quadratic
term to the linear individual growth model does not improve
the fit of the simpler representation can be evaluated by per-
forming a standard "decrement-to-chi-square" test in which
the respective goodness of fits (and degrees of freedom) of the
linear and quadratic representations are differenced. In our
data example, this test indicates that the addition of the qua-
dratic parameter does not improve global goodness of fit
(change in x2 = 49.74 - 44.18 = 5.56, change in df= 14 - 10
= 4). We conclude, therefore, that the straight-line individual
growth model in Equation 1 is an appropriate representation of
change over time in this particular case.

Note, however, that we refer to this comparison of the two
nested models as a global test. Its purpose is analogous to the
usual inspection of the global F statistic associated with a com-
plex main effect in an ANOVA before conducting multiple com-
parisons or follow-up contrast analyses. With the addition of
the quadratic term to the individual straight-line growth model,
four new parameters have been added to the Level 2 model:
Mr2, the population mean of the quadratic parameter; a*2, the
population variance of 7r2p, and ff,2,0 and a,^, the population
covariances of ir2p with irop and ir,p. Therefore, a comparison of
the fits of the linear and quadratic formulations is actually a
simultaneous test of the jointly null values of these Level 2 qua-
dratic mean, variance, and covariance parameters, holding
Type I error at some manageable level (e.g., an alpha level of
.05). Broadly speaking, the global test evaluates whether there is
any interest in including a quadratic term in the individual
growth model; in our case, there is no such interest.8

Of course, the flexibility of the covariance structure approach
permits a sequence of more subtle and restrictive hypotheses to
be tested. If we had rejected the null hypothesis under the global
test, for instance, we would have been entitled to follow up with
tests of subhypotheses in which the four Level 2 parameters
were constrained to be zero, either singly or in interesting com-
binations. For example, we could test whether everyone does, in
fact, experience quadratic growth but with a curvature identical
for all, that is, the case in which the value of the quadratic
growth parameter ir2p is fixed at its population average for all
individuals (i.e., w2p = ti,2 for all p). This hypothesis is easily
tested by comparing the fit of the full quadratic model, as de-
scribed earlier, with that of a reduced quadratic model in which
the population average of the curvature term /a,2 is estimated
but the population variance of ir2p and its covariances with true
intercept and slope are constrained to be zero (in other words,
everyone is hypothesized to possess an identical nonzero curva-
ture coefficient equal to nr2). On the other hand, if we wished to
test whether the population average of the quadratic growth pa-
rameter was, in fact, zero but that individual quadratic terms

8 A reviewer pointed out that the results of a global test may be mis-
leading if the variance components associated with the quadratic pa-
rameter are small. The power to detect a nonzero mean coefficient may
be lower for the global test than for a specific test of the quadratic mean
parameter. Therefore, the prudent strategy is always to conduct separate
tests of each hypothesis in lieu of the omnibus test.
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were distributed (randomly) about this value, we would com-
pare the full quadratic model with one in which ̂  was set to
zero and <rr2ro, ar , and a^ are free to be estimated. The com-
parison of nested models within the general LISREL framework
provides a very flexible strategy for testing the effectiveness of
reasoned modifications to the basic measurement (within-per-
son) and structural (between-person) models.

Testing Whether Measurement Errors Are

Heteroscedastic and Nonindependent

Investigators often assume that measurement errors are ho-
moscedastic and independent within individuals over time, as
we have done so far in this article. Such assumptions are com-
mon in the psychometric literature, in which they are central to
classical test theory, and in the growth literature (e.g., see Ber-
key, 1982a, 1982b). However, with consecutive measurements
on an individual changing over time, these assumptions may be
untenable. There is no reason to believe a priori that the
precision with which an attribute can be measured is identical
at all ages, and so the measurement errors may be heteroscedas-
tic. And when measurements are closely spaced in time, there
may be inadvertent links among their errors.

The covariance structure approach affords great flexibility in
modeling the error covariance structure; one can easily relax
the stringent assumptions of homoscedasticity and zero auto-
correlation on the measurement errors. At present, this facility
is not available under the HLM approach of Bryk and Rauden-
bush (1992); neither has it been demonstrated in other applica-
tions of covariance structure analysis to the measurement of
individual change (McArdle & Epstein, 1987;Muthen, 1991).

When distributional assumptions on the measurement errors
are relaxed, the basic covariance structure approach is un-
changed. The error covariance structure associated with the
Level 1 ( ̂ measurement) model is simply modified to contain
whatever parameters permit the hypothesized heteroscedastic-
ity or autocorrelation among the errors. The Level 2 (structural)
model for the distribution of the latent growth vector remains
the same. The modified model can then be fit by means of the
approach already described once the LISREL 0, matrix — in
which the newly hypothesized error structure resides — has been
reparameterized appropriately, with suitable constraints on the
equality of parameters being imposed or omitted as required.

For instance, one can hypothesize that the measurement er-
rors are independent but heteroscedastic. Then, G, in Equation
9 becomes

(22)

A program suitable for fitting the modified model is provided
in the Appendix. When the new linear-change heteroscedastic-
error model is fitted (Model 2 in Table 3), there is a statistically
significant improvement in fit over Model 1 (change in x2 =
49.74 - 39.82 = 9.92, change in d/= 14 - 10 = 4). Now, rather
than remaining constant at .0254 on all occasions, the estimated
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measurement error variance is lower on the first and last occa-
sions of measurement and peaks at .0340 when the adolescent
is 13 years old. This, of course, modifies our earlier yearly esti-
mates of the reliability of the dependent variable, which now
becomes .413, .320, .531, .718, and .797, respectively. Other pa-
rameter estimates remain relatively stable from those obtained
when Model 1 was fitted.

We can also relax the assumption of independence across
time that we imposed on the wave-by-wave measurement errors
by further respecifying the O, matrix. The LISREL program
permits considerable flexibility in this regard. For instance, we
can retain the heteroscedasticity that we detected earlier but
also allow temporally adjacent pairs of measurement errors to
be mutually autocorrelated:
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Model 3, in Table 3 (see the Appendix for the associated
LISREL program), contains this pairwise autocorrelated error
covariance structure. It improves successfully on the fit of
Model 2 (see Table 3; change in x2 = 18.99, change in df =
4), with estimated autocorrelations between adjacent pairs of
measurement errors of .044, .159, .309, and .307, respectively.
Note that, despite major changes in the hypothesized links
among the measurement errors across the models in Table 3,
the shape of the average trend line, the heterogeneity in linear
growth, and the correlation between intercept and slope remain
relatively stable. We use Model 3 as the foundation for subse-
quent investigations of systematic interindividual differences in
change.

A Comment on the Requirement for

Time-Structured Data

As we noted earlier, covariance structure methods for the
analysis of change require that all sample members be observed
on the same set of occasions. If the available data are not time
structured, then the method cannot be used. This requirement
is a potentially serious limitation not shared by other analytic
approaches, such as those of Bryk and Raudenbush (1987) and
Willett and Ayoub (1991).

In longitudinal research, investigators often intend at the out-
set to collect time-structured data; however, reality intervenes,
and observations on some individuals on some occasions are
omitted as a result of forces beyond the researcher's control.
This introduces missing values into the data set and destroys
the intended time structuring, leading to difficulties in the esti-
mation of the sample covariance matrix on which subsequent
analyses are based.

Bollen (1989) described two general approaches for dealing
with missing data in covariance structure analysis. The first uses
either listwise or pairwise deletion of incomplete cases, or the
imputation of missing data points, to construct an alternative
estimator of the sample covariance matrix. Estimators obtained
in the reduced sample created by listwise deletion retain the
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important property of consistency when data are missing com-
pletely at random. The second approach uses all available data
by treating individuals with similar patterns of missing data as
subgroups of the original sample so that multigroup analysis
(Joreskog & Sorbom, 1989) can be used to obtain estimates of
model parameters, which are again consistent providing that
data are missing completely at random. Both approaches are
potentially applicable in the investigation of change, although
the second may be preferable to the first. Muthen (1992) has
described ways of applying this latter approach to the covari-
ance structure analysis of incomplete longitudinal data. Recent
advances in the handling of missing data may also lead to fur-
ther innovations in this area (Graham, Hofer, & Piccinin, in
press; Little & Rubin, 1987).

Of course, great caution must be exercised if there are indi-
viduals in the data set with incomplete or missing data. Data
may not be missing completely at random; people with particu-
lar values of the predictors may have experienced unique pat-
terns of change over time. Any such systematicity in the pattern
of missing values will necessarily undermine the investigator's
ability to make inferences back to the population as originally
defined and may lead to bias in the interpretation of the find-
ings. For this reason, we recommend that preliminary explor-
atory data analysis be conducted to examine whether cases with
missing or incomplete data are atypical so that any interpreta-
tion of study findings can be circumscribed appropriately.

Modeling Systematic Interindividual Differences
in Change

A baseline investigation of the no predictor of change model
informs the subsequent analysis. If baseline analyses confirm
the existence of heterogeneity in true change in the population,
then we can ask whether this heterogeneity is related to selected
characteristics of the people being observed. In other words,
once interindividual differences in true change have been de-
tected, we can ask about the systematic nature of that variation.
And, because we have distinguished among the true change of
different people in terms of their individual growth parameters,
questions about systematic heterogeneity in true change natu-
rally translate into questions about relationships between the
individual growth parameters and predictors (Rogosa & Willett,
1985).

In our data example, we know that heterogeneity in true
change exists in the population (Table 3), and we have two po-
tential predictors of change to investigate: adolescent gender
(Gp) and initial (log) exposure to deviant behavior at age 11
(Ep). Therefore, we can ask whether the individual growth pa-
rameters—intercept and slope—are related to this pair of pre-
dictors: Does the age 13 level of true (log) tolerance of deviance
differ for boys and girls? Does it differ by initial exposure to
deviance at age 11? Does the rate at which true (log) tolerance
changes over time also depend on gender and exposure? The
methods described here generalize immediately to the case of
more than two predictors.

As we stated earlier, such questions are concerned with be-
tween-person differences in change. To answer them, we must
incorporate potential predictors of change into the Level 2
model (i.e., into the LISREL structural model in which interin-

dividual differences in change are described). Within the general
LISREL framework, predictors can be inserted into the struc-
tural model indirectly by taking advantage of the LISREL mea-
surement model for exogenous predictors, X. This last compo-
nent of the general LISREL model permits us to pass predictors
of change into the LISREL vector of exogenous constructs £,
which is a natural and so-far unused constituent of the LISREL
structural model.

In the current case, in which we have single indicators of each
predictor, we set up the ^-measurement model in the following
way:

.HE 0 i , -
(24)

This model has the format of the LISREL measurement model
for exogenous variables X:

X = r; &. (25)

With constituent predictor, latent exogenous score, and error
vectors,

X =
Gp - f

and constituent r* and A* parameter matrices,

0

(26)

(27)

The measurement model for exogenous variables X in Equation
24 can easily be modified in the usual way (Joreskog & Sorbom,
1989) to accommodate multiple indicators of each predictor
construct (if they are available). The parameter matrix Ax is
simply expanded to include the requisite loadings (under the
usual requirements for identification; see Bollen, 1989).

In a regular covariance structure analysis, there is typically
an explicit statistical purpose for including multiple indicators
of a particular construct in any measurement model. Multiple
indicators are present so that their covariation can reveal the
true variance of the underlying construct that they represent.
This ensures that the fallibility with which each indicator has
been measured is accounted for in the measurement model and
ultimately leads to estimates of their associated error variances
and reliabilities. In the case of exogenous variables X, this is
achieved by permitting the error vector 5 to contain nonzero
entries and by estimating the elements of its associated error
covariance matrix 08 (Joreskog & Sorbom, 1989). This same
strategy is, of course, available to the investigator when covari-
ance structure analysis is being used to examine systematic in-
terindividual differences in change and is tantamount to apply-
ing a maximum likelihood correction for errors in the predic-
tors to the fitted relationship between individual growth
parameters and predictors of change (cf. Fuller, 1987). No other
currently available software for the analysis of change permits
such a correction.

Note that we have defined the LISREL rx parameter vector
and A* parameter matrix so that the predictors of change, Gp

and Ep, are centered at their population averages and passed as
deviations from their means into the LISREL latent exogenous
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construct vector £. The standard LISREL covariance matrix
*—which is intended to represent interrelationships among the
elements of the latent exogenous vector £—is used to account
for potential intercorrelations among the predictors of change:

* = Cav(k) =
<TEG

(28)

The centering of the predictors of change forces the LISREL
a vector in the forthcoming structural model to contain the
population values of true intercept and slope at the population
average values of Gp and Ep rather than at Gp = 0 and Ep = 0,
respectively. In other words, the centering of the predictors of
change in Equation 24 ensures that the LISREL a vector will
continue to contain the population means of the individual
growth parameters 7r0p and KIP, as it did in the earlier Equations
10 and 19. This has some convenience for later interpretation.9

The general LISREL model permits us to represent the rela-
tionship between all individual growth parameters and all pre-
dictors of change simultaneously. The Level 1 individual growth
model in Equations 5-9 is unchanged. However, to express the
interrelationships among the growth parameters and predictors
of change, we must modify the existing LISREL structural
model in Equations 10-14 so that the newly defined vector of
latent exogenous predictors (which now contains the predictors
of change as deviations from their means) is introduced on the
right-hand side. We can do this by taking advantage of the so-
far unused LISREL latent regression-weight matrix F that is
present in the general LISREL model for the specific purpose of
modeling the relationship between the rj and £ vectors. We sim-
ply free those elements of the F matrix that represent the simul-
taneous linear regression of true intercept and slope on the pre-
dictors of change.

A model that includes all possible linear relationships among
the individual growth parameters and the predictors of change
is

(29)

This model is the general LISREL structural model

with constituent parameter matrices,

and latent residual vector

(30)

(3D
iJ

rj 1 up 1
 v

~[rtp\G,E.

The two elements of the latent residual vector f in Equation
32 contain the values of true intercept and slope deviated from
their conditional means, based on their linear relationships with
the predictors of change. These are the "adjusted" values of true
intercept and slope, partialing out the linear effects of the pre-
dictors of change (those parts of the true intercept and slope,
respectively, that are not linearly related to Gp and Ep). The
latent residual vector f in Equation 32 is therefore distributed
with zero mean vector and covariance matrix ¥:

(33)

Unlike Equation 14, the * matrix in Equation 33 contains the
partial variances and covariances of true intercept and slope,
controlling for the linear effects of the predictors of change. If
we successfully predict true intercept and slope by Gp and Ep,

then we would expect these partial variances to be markedly
smaller than their unconditional cousins in Equation 14. In
fact, the proportional declines in the variances of true intercept
and slope on inclusion of Gp and Ep as predictors of change pro-
vide pseudo-/?2 statistics that can be used to summarize the
magnitude of the systematic heterogeneity in change.

Maximum likelihood estimates of the new parameters in re-
gression-weight matrix F, along with estimates of the other un-
known parameters in TX, *, a, and *—which together charac-
terize our hypotheses about the nature of any systematic inter-
individual differences in change in the population—can again
be estimated straightforwardly with LISREL. In the Appendix
(Model 4), we again provide a LISREL program that does so,
specifying the A,,, 0«, TX, A,, *, a, B, F, and * matrices as
denned in Equations 8, 23, 27, 28, 31, and 33. Fit statistics and
maximum likelihood estimates of the unknown parameters in
the model are listed under Model 4 in Table 4 with the exception
of the measurement error variances and covariances, which
have been omitted to conserve space.

Focus first on the column in Table 4 titled Model 4. The first
five rows present maximum likelihood estimates of the popula-
tion means and the unconditional variances and covariances of
the individual growth parameters.10 These estimates are very
similar in magnitude to those already examined in the investi-
gation of interindividual differences in Model 3 of Table 3; the
inclusion of predictors of change has not seriously disturbed our
estimates of the heterogeneity in change present in the popula-
tion. Rows 6 through 8 of Table 4 contain the estimated partial
variances and covariances of true intercept and true slope, con-

. (32)

9 Because gender is a dichotomous variable, its introduction into X
appears to violate the assumption of multivariate normality on which
the maximum likelihood estimation is based. Bollen (1989) examined
the consequences of the nonnormality of X on the estimation and con-
cluded that the estimator retains desirable statistical properties of con-
sistency and efficiency when the predictor is measured infallibly and is
truly exogeneous. The gender variable meets both of these criteria in
our model.

10 Even though these unconditional variances and covariances are not
an explicit part of the model for systematic interindividual differences
in change, they are output automatically by the LISREL program as
part of the default Covariance Matrix of Eta and Ksi.
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Table 4
Fitted Models Demonstrating Systematic Interindividual

Differences in Change in Log Tolerance in the Full Sample,

With Gender and Log Exposure to Deviant Behavior
at Age 11 as Predictors of Change

Maximum likelihood estimates

Parameter Model 4 Model 5 Model 6

M»,

<40

<^i

"'«',
2

2

^"ll*

TV?

T»,G

7*o£

T»,E

x2'
fljr

Goodness of fit index (GFI)
Adjusted goodness of fit

index (AGFI)
Root mean-square residual

(RMSR)

.3192***

.0644***

.0299

.0026

.0068

.0267***

.0025**

.0064***
-.0457
-.0148

.1664***

.0112
31.54

12
.970

.930

.003

.3198***

.0643***

.0294

.0023

.0069

.0278***

.0022**

.0066***
-.0793***

-.omt

41.31
14

.958

.916

.005

.3190***

.0643***

.0301

.0027

.0069

.0273***

.0026**

.0066***

.2003***

.0223
34.01
14

.965

.930

.006

Note. N = 168. See text for descriptions of models. It was assumed
that individual change is linear over time and that measurement errors
are pairwise autocorrelated and heteroscedastic.
t/><.10. */?<.05. **p<.0\. ***p<. 001 (approximate values).

trolling for the linear effects of adolescent gender and initial
exposure to deviant behavior. Comparing the estimated condi-
tional variances with their unadjusted cousins in rows 3 and 4
shows that the simultaneous inclusion of the predictors of
change successfully reduced the unexplained variance in true
intercept and slope by 11 % and 4%, respectively, suggesting that
these two variables are of moderate to small importance in the
prediction of interindividual differences in true change in the
population.

The coefficients in rows 9 through 12 estimate the linear re-
gression of true intercept and slope on the predictors of change.
Focus on the coefficients in rows 11 and 12 that summarize the
linear relationship between the individual growth parameters
and initial exposure, controlling for the linear effect of gender.
They suggest that children who are exposed to greater levels of
deviant behavior initially are more tolerant of deviant behavior
at midadolescence (7^ = . 1664, p < .001) but that their rate of
true change in tolerance over the adolescent period is not dis-
tinguishable from that of children who are less exposed (•y,1£ =
.0112, p > . 10). Interestingly, on the basis of the approximate p
values displayed in rows 9 and 10 under Model 4, we cannot
reject the null hypothesis that true intercept and slope are unre-
lated to adolescent gender, once (log) exposure to deviant behav-
ior is controlled.

To clarify the joint influence of gender and initial exposure
on change in tolerance, we refit Model 4 twice. Constraining

7To£ and y,lE to zero in Model 5 allowed us to investigate the
uncontrolled effect of gender, and constraining y,oG and y,ta to
zero in Model 6 permitted us to explore the uncontrolled effect
of (log) exposure. The fit statistics and parameter estimates for
these additional models are presented in Table 4. Most impor-
tant are the entries in rows 9 and 10 under Model 5, which in-
dicate that the gender of the adolescent is related to true in-
tercept, and, more weakly, to true slope. Boys are generally
more tolerant of deviant behavior at age 13 than are girls, and
they become increasingly more tolerant over their adolescence.
The difference in findings between Models 4 and 5 is accounted
for by the implicit relationship between the two predictors of
change themselves (i.e., collinearity). Moderate collinearity ex-
ists between the predictors (r = —.378, p < .001)," suggesting
that boys were more exposed to deviant behavior initially, and
it is this difference in exposure that forges a spurious bivariate
relationship between true intercept and gender. Once exposure
is controlled, however, there are no statistically significant
differences in the way that boys and girls differ in true tolerance
at age 13 or in the way that their true tolerance of deviant be-
havior changes over adolescence. This suggests that the more
parsimonious representation in Model 6 is more appropriate
for summarizing our findings.

Using fitted coefficients from Model 6, along with the esti-
mated means of true intercept, true slope, and of the predictors
of change, we can specify a pair of simultaneously fitted Level 2
models that explicitly describe the linear association between
true change and the remaining predictor of interest, log
exposure. Substituting parameter estimates from Model 6 in
Table 4 into the structural model in Equation 29, we have

*0p = .3190 + .2003[£p - (-.0788)]

f IP = .0643 + .0223[£p - (-.0788)]. (34)

For interpretive purposes, these fitted models can be reported
explicitly in a research account or used to construct fitted true
growth trajectories for prototypical adolescents at substantively
interesting values of the predictors. We favor this latter ap-
proach and illustrate it in Figure 2.

The particular prototypical fitted trajectories that we have
plotted in Figure 2 were selected to provide a substantively in-
teresting display of statistically important effects, in this case,
the impact of exposure on growth in tolerance. However, recall
that we have also detected collinearity between gender and
exposure—boys have greater initial exposure to deviant behav-
ior than girls—suggesting that, even though gender no longer
predicts growth in tolerance once exposure is controlled, fitted
trajectories for prototypical boys and girls will differ because of
the underlying difference in exposure. We have captured these
linked differences in Figure 2 by plotting prototypical trajecto-
ries for boys and girls at the lower and upper quartile values of
log exposure, with the requisite quartiles being estimated sepa-
rately in subsamples of boys and girls. The four values of log
exposure that we have used are as follows: (a) girls, Ql = -.32,

" The correlation coefficient was computed from relevant estimated
variances and covariances listed in the Covariance Matrix of Eta and
Ksi on the standard LISREL output, which contains, by default, bivar-
iate covariances among all elements of the rj and | vectors.
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Figure 2. Fitted true growth trajectories in log tolerance of deviant behavior from 11 to 15 years of age for
four prototypical adolescents at varying combinations of gender and initial exposure to deviance.

Q3 = -.09; and (b) boys, Ql = -.17, Q3 = .14. Thus, Figure
2 displays fitted true growth trajectories for four prototypical
adolescents. The two extreme trajectories represent a high-
exposure boy and a low-exposure girl. The slopes of all of the
trajectories are approximately parallel (exposure is not a statis-
tically significant predictor of rate of change in Equation 34),
illustrating that adolescents who were more exposed to deviant
behavior at age 11 do not differ in the rate at which they become
more tolerant of deviance than those adolescents who were less
exposed.

Figure 2 also displays important differences in elevation, il-
lustrating that the level of tolerance during adolescence differs
by initial exposure to deviant behavior and, because of the back-
ground link between gender and exposure, also by gender. The
main effect of initial exposure is indicated by the vertical dis-
placement of the fitted trajectories within gender; for both gen-
ders, higher levels of initial exposure to deviance are related to
higher levels of tolerance throughout adolescence. The effect of
gender is illustrated by the vertical displacement of the trajecto-
ries within exposure; for adolescents at the same level of initial
exposure, boys display higher tolerance for deviant behavior
than girls at all ages.

Discussion

In recent years, pioneering authors (McArdle & Epstein,
1987; Meredith & Tisak, 1990; Muthen, 1991) have demon-
strated how notions of individual growth modeling can be ac-
commodated within the general framework offered by covari-
ance structure analysis. Their work has illustrated how the
methods of covariance structure analysis—here in the guise of

the LISREL program—can provide a straightforward and con-
venient technique for answering important research questions
about the relationship between attributes of individual true
change and selected characteristics of the person.

Here, we have explored and reviewed the links between these
two formerly distinct conceptual arenas, carefully laying out in
detail the mapping of the one onto the other. Specifically, we
have reviewed and illustrated how the Level 1 (within-person)
and Level 2 (between-person) models of the individual growth
modeling framework can be reformatted to correspond, respec-
tively, to the measurement and structural components of the
general LISREL model with mean structures. The direct corre-
spondence between these two pairs of models permits the popu-
lation covariance matrix of the errors of measurement and the
relationships among the individual growth parameters and po-
tential predictors of change to be modeled explicitly within a
covariance structure framework. Consequently, critical param-
eters in the investigation of systematic interindividual differ-
ences in change can readily be estimated. This innovative appli-
cation of covariance structure analysis offers several important
features to data analysts.

1. The method can accommodate any number of waves of
longitudinal data. Willett (1988, 1989) has shown that the col-
lection of additional waves of data leads naturally to higher
precision for the estimation of the individual growth trajectory
and greater reliability for the measurement of change. In the
case of covariance structure analyses of change, extra waves of
data act to extend the length of the empirical growth record and
expand the dimensions of the sample between-wave covariance
matrix (thereby increasing the number of degrees of freedom
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available for fitting the model) but do not change the fundamen-
tal parameterization of the Level 1 and Level 2 models them-
selves. In this article, for instance, we have provided an example
in which 5 waves of longitudinal data were analyzed; the method
serves equally well with 3 waves or 30.

2. Occasions of measurement need not be equally spaced.
In our example, measures of adolescents' tolerance of deviant
behavior were each separated by 1 year throughout the entire
period of data collection. However, equal spacing of the occa-
sions of measurement is not a requirement of the method. Indi-
vidual change data may be collected at irregular intervals either
for convenience (at the beginning and end of each of several
school years, perhaps) or because the investigator wishes to es-
timate certain features of the trajectory more precisely (by clus-
tering data collection points more closely at times of greater
research interest). Such irregularly spaced data are easily ac-
commodated by the method, provided everyone is measured on
the same set of irregularly spaced occasions.

3. Individual change can be represented by either a straight-
line or a curvilinear trajectory. In this article, for convenience,
we have used a straight-line growth model to represent individ-
ual change over time, but we have demonstrated briefly how this
decision can be modified to include a quadratic curvature term
if required. In fact, the covariance structure approach can ac-
commodate not only polynomial growth of any order but also
any type of curvilinear growth model in which status is linear
in the individual growth parameters. An example of such a
model is the negative exponential growth model with instantan-
eous rate parameter fixed across population members (see Mer-
edith & Tisak, 1990; Rogosa & Willett, 1985). In addition, be-
cause goodness of fits of nested models can be compared di-
rectly under the covariance structure approach, one is able to
systematically evaluate the adequacy of contrasting individual
growth models in any particular empirical setting.

4. The covariance structure of the occasion-by-occasion mea-
surement errors can be modeled explicitly and its parameters esti-
mated. Unlike other popular methods for the analysis of longitudi-
nal data, the approach we have described does not restrict the pop-
ulation measurement error covariance matrix to a particular
shape or pattern. The investigator need not accept unchecked the
Level 1 independence and homoscedasticity assumptions of clas-
sical and HLM analyses nor the band-diagonal configuration re-
quired by repeated measures ANOVA. Indeed, under the covari-
ance structure approach, the researcher is completely in charge.
The effectiveness of a variety of reasonable error structures can be
systematically compared and the structure most appropriate for
the particular empirical problem adopted. In our data example,
for instance, we compared growth formulations in which the oc-
casion-by-occasion measurement errors were assumed to be, re-
spectively, (a) independent and homoscedastic, (b) independent
and heteroscedastic, and (c) pairwise autocorrelated and hetero-
scedastic. We found the latter configuration to be the most appeal-
ing in this particular example.

5. Multiple predictors of change can be included in the Level
2 model. The analysis of systematic interindividual differences
in change is not usually limited to the examination of the effect
of a single predictor of change. Within the normal constraints
imposed by the requirements of statistical power and the tenets

of common sense, multiple predictors of change can be included
under the covariance structure approach; the specifications that
we have described extend straightforwardly to these more com-
plex situations. Predictors can represent the main effects of im-
portant correlates of change, or, by suitable preprocessing of the
data set to create crossproducts among interesting combina-
tions of predictors, statistical interactions among potential cor-
relates can be included in the Level 2 model. In our example,
we described the configuration of the LISREL parameter ma-
trices for the case in which interindividual differences in change
are related to the main effects of two predictors.

6. The method of maximum likelihood is used to provide
overall goodness-of-fit statistics, parameter estimates, and as-
ymptotic standard errors for each hypothesized model, includ-
ing estimates of all Level 2 variance and covariance parameters
that are central to the detection of systematic interindividual
differences in change. By using the covariance structure
method, the investigator benefits from all of the flexibility and
utility of a well-documented, popular, and widely disseminated
statistical technique. Appropriate computer software is avail-
able on many systems, both mainframe and personal computer
based. In this article, we have relied on the well-known LISREL
computer package, but the techniques that we have reviewed
can easily be implemented with other well-known packages
such as EQS (Bentler, 1985), LISCOMP (Muthen, 1987), and
PROC CALIS (SAS Institute, 1991).

7. By comparing the goodness of fit of explicitly specified
nested models, the investigator can test complex hypotheses
about the nature of interindividual differences in true change.
An additional benefit of fitting an explicitly parameterized Co-
variance structure to data using a well-tested and flexible soft-
ware package such as LISREL is that selected parameters in the
model specification can be individually or jointly constrained
during analysis to particular values. This allows the investigator
to conduct a variety of nested tests on the specific shape of the
average growth trajectory and on the variability of the individ-
ual growth parameters across people. As with other common
analytic approaches such as HLM (Bryk & Raudenbush, 1992),
for instance, we can "fix" the value of one growth parameter
(e.g., the slope) to a value common across individuals but per-
mit another parameter (the intercept) to be random.

8. The flexibility of the general LISREL model permits the
covariance structure analysis of longitudinal data to be ex-
tended in several statistically and substantively interesting ways.
There are several potential extensions of the covariance struc-
ture approach that are facilitated by the flexibility of the general
LISREL model. First, multiple indicators can be used to repre-
sent each predictor of change, providing a ready maximum like-
lihood adjustment for errors in the predictors (cf. Fuller, 1987).
Second, individual change can be modeled simultaneously in
more than one domain (Willett & Sayer, 1993), engendering in-
vestigation of profiles of change (see Williamson, 1986; Wil-
liamson et al., 1991). This includes the investigation of (a) in-
terrelationships among the several types of change and (b) the
simultaneous and joint association of these several changes and
selected predictors of change. Third, the method enables the
modeling of intervening effects, whereby a predictor may not
act directly on change but indirectly through the influence of
intervening variables.
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Of course, other analytic methods are available for fitting these

hierarchical models that describe individual change and interin-
dividual differences in change. Each method has its own
strengths.12 Nevertheless, one particular method may offer bene-
fits over another in a specific research setting. For instance, the
HLM approach of Bryk and Raudenbush (1992) is also well doc-
umented and flexible, and software suitable for conducting the
analyses is widely available. And, like the covariance structure
approach, HLM can handle any number of unequally spaced
waves of longitudinal data; individual growth trajectories can be
linear or curvilinear; multiple predictors of change can be in-
cluded in the Level 2 model; a variety of goodness-of-fit statistics,
parameter estimates, and standard errors are provided; and com-
plex hypotheses about change overtime can be tested through the
analysis of contrasts and the program's ability to restrict individ-
ual growth parameter variances to zero at the investigator's be-
hest. In addition, HLM offers an advantage that cannot be
matched by the covariance structure method as we have de-
scribed it here: It does not require time-structured data; each
individual in the data set can possess an empirical growth record
containing different numbers of waves of data with randomly as-
signed temporal spacing (but see Muthen, 1992).

Nevertheless, we believe that there is no single analytic
method that can be declared unilaterally the best, nor have we
written this article to declare such a winner. Different empirical
settings demand different analytic decisions. When the data are
not time structured, either by accident or design, then the in-
vestigator may have to set aside the analytic methods that we
have described here. However, when equal numbers of waves
of data are available on each subject, the covariance structure
approach offers great flexibility in the investigation of system-
atic interindividual differences in change and an unparalleled
opportunity to model error covariance structure explicitly.
That a variety of analytic tools are available for such an impor-
tant task is a boon rather than a hindrance, leading us to con-
clude—to paraphrase Cronbach and Furby (1970)—that we
can measure "change"—and we should!

12 Within the limits posed by their methods of estimation, most of the
available analytic methods for the measurement of change—including the
covariance structure approach described here—produce convergent an-
swers. However, other popular methods of analysis, including the exploratory
methods of Rogosa and his colleagues (Rogosa, Brandt, & Zimowski, 1982;
Rogosa AWillett, 1985; Willett, 1985; Williamson, 1986), the weighted least
squares methods of Willett (1989), and the empirical Bayes methods of Bryk
and Raudenbush (1987,1988, 1992), are unable to model error covariance
structure explicitly because of the assumptions built into their statistical
models (and, consequently, their associated software). The heteroscedastic,
autocorrelated measurement errors that are a feature of our analyses are a
direct result of parameterizing the model specifically to allow for such struc-
ture on the errors and then locating appropriate software to estimate these
parameters. General covariance structure programs such as LISREL and
EQS provide the required flexibility, as compared with menu-driven pro-
grams such as BMDP-5 V or SAS PROC MIXED. For this reason, we have
not included comparison tables of parameter estimates obtained under
different methods of estimation, as a reviewer suggested. However, when
models could be fitted by multiple methods (Model 1, for instance, is identi-
cal to the unconditional model of Bryk & Raudenbush, 1987), parameter
estimates and standard errors obtained under the covariance structure ap-
proach and by other methods were either identical or almost identical. A
computer printout of these comparison analyses is available on request.
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Appendix

Sample LISREL VII Programs

In this appendix, we present the LISREL VII programs that were
used to fit Models 1 through 4. All have a similar structure. We present
the program used to fit Model 1 in its entirety. For the remaining
models, we present the title lines and then highlight the code that differ-
entiates each from the other.

In the first part of any complete program, we list several title lines to
distinguish the particular model being fitted. Following the title lines is
the data definition (DA) line, in which we specify a single group rather
than multisample analysis (NO = 1), the number of input variables
(NI), and the sample size (NO). The next line identifies the file that
contains the input data. Then we label the input variables (LA) and,
when necessary, select those that are to be analyzed in the current run
(SE).

The model definition (MO) line describes the basic shape of the vari-
ous hypothesized LISREL variable and parameter matrices. The Y, tj,
X, and £ score vectors are dimensioned (NY, NE, NX, NE), and the
shape and initial contents of the ^y, TX, *, a, B, T, and * parameter
matrices are specified (TY, TX, PH, AL, BE, GA, PS) according to their
definitions in text. Afterward, the contents of the latent growth record
and the vector of latent exogenous predictors are labeled (LE, LK).

Then, in several lines, we specify the various fixed and free parameters
that constitute the particular measurement and structural models listed
in the text. We completely fix the contents of the A,, and A., matrices (in
the matrix of stated values following the MA LY and MA LX lines). We
free appropriate elements of the 0, vector (FR TE) according to the
hypothesized error covariance structure and elements of the T matrix
(FR GA) according to the hypothesized structural model. Occasionally,
parameter groups are constrained to be equal. For instance, when the
errors of measurement are assumed to be homoscedastic, selected diag-
onal elements of the 0, matrix are set equal (EQ TE). Similar con-
straints could be used to test specific hypotheses in a nested sequence of
models.

Finally, in the "output" line (OU), we indicate that we require the
estimation and printing of standard errors (SE) and / values (TV), as
well as the printing of a residual analysis (RS), all to six decimal places
(ND = 6). We limit the maximum number of iterations during estima-
tion (IT = 10,000).

Model 1: Linear individual growth in log deviance
Origin of time is age 13

No predictors

Independent homoscedastic errors

DA NG = 1 NI = 11 NO = 168
RA FI = A:\TOLERANC.DAT
LA

'ID' 'Yl' 'Y2' 'Y3' 'Y4' 'Y5' 'LnE' 'SEX'
SE
2 3 4 5 6/

MO NY = 5 TY = ZE NE = 2 TE = SY, FI AL = FR BE = ZE PS =
SY,FR
LE
'PiO"Pil'
MALY
1-2
1-1
10
1 1
12
FR TE(1,1) TE(2,2) TE(3,3) TE(4,4) TE(5,5)
EQ TE(1,1) TE(2,2) TE(3,3) TE(4,4) TE(5,5)
OUSETVRSND = 6IT= 10000
Model 2: Linear individual growth in log deviance
Origin of time is age 13
No predictors
Independent heteroscedastic errors
Eliminate the line in the Model 1 program that constrains the error vari-

ances to equality, i.e.,

EQ TE( 1,1) TE(2,2) TE(3,3) TE(4,4) TE(5,5)
Model 3: Linear individual growth in log deviance
Origin of time is age 13
No predictors
Pairwise autocorrelated heteroscedastic errors
Add the following line to the Model 2 program to free selected error co-
variances for estimation:
FR TE(2,1) TE(3,2) TE(4,3) TE(5,4)
Model 4: Linear individual growth in log deviance
Origin of time is age 13
Predictors are gender and initial log exposure to deviance at age 11
Pairwise autocorrelated heteroscedastic errors
Modify the select line in the Model 3 program to select the predictors:
SE
2 3 4 5 6 8 7/
Modify the model specification to include predictors of change:

MO NY = 5 TY = ZE NE = 2 TE = SY, FI NX = 2 TX = FR NK = 2
TD = ZE PH = SY, FR AL = FR BE = ZE
GA = FU, FI PS = SY, FR
Add lines to label the predictors and specify the\f matrix:
LK
'Sex' 'LnE'
MALX
10
01
Add lines to free the appropriate elements of the T matrix:

FRGA(1,1)GA(1,2)GA(2,1)GA(2,2)
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