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Abstract

In order to use linguistic knowledge to build in-
telligent applications in large-scale environments
such as the World Wide Web (WWW), it is vital
that methods of determining meaning and recog-
nizing ambiguity should be automatic and empiri-
cal. Methods for learning meaning must be simple,
adaptive and scalable.

We introduce two complementary approaches for
categorizing words which exhibit these desireable
properties, and can recognize meaning and ambigu-
ity with great accuracy. Both methods use a graph-
theoretic representation of words and their paradig-
matic relationships. Ambiguity is specifically ad-
dressed and accommodated by allowing a word to
belong to several clusters.

The first approach is based on the concept ofcur-
vature and divides the word graph into classes of
similar words by removing words of low curvature
which connect several dispersed clusters. The sec-
ond method clusters the links in our graph instead
of clustering the nodes. Links contain more spe-
cific contextual information than nodes representing
words. We thus naturally accommodate ambiguity
by allowing multiple class membership.

1 Introduction

Graphs have been widely used to model many prac-
tical situations (Chartrand, 1985), including seman-
tic issues: The link structure of the WWW has been
investigated and manipulated to detect shared inter-
est communities (Eckmann and Moses, 2002), and
modeling WordNet as a graph has yielded insight
about semantic relatedness and ambiguity (Sigman
and Cecchi, 2002).

In this paper, we present a graph model for nouns
and their conceptual similarity collected from the

British National Corpus (BNC)1. Simple regular ex-
pressions were used to search the text for coordina-
tions (lists) of noun phrases whose constituents are
often related by shared characteristics.

The resulting semantic structure can be used for
classification of words (by gathering nodes into
clusters and labeling the clusters) and ambiguity
recognition (by determining when a node in the
graph connects several dense subgraphs represent-
ing different senses) which are important tasks in
large-scale web-type applications.

We introduce two tools to approach these tasks:
the curvature measure of Eckmann and Moses
(2002) and the Markov Clustering (MCL) of van
Dongen (2000). The first algorithm removes the
nodes of low curvature (the hubs of the graph), upon
which the word graph breaks up into disconnected
coherent semantic clusters. MCL decomposes the
word graph into small coherent pieces via simula-
tion of random walks in the graph which eventually
get trapped in dense regions, the resulting clusters.

Both methods effectively place each node into
exactly one cluster, breaking the graph into
equivalence classes. The shortcomings of any
such approach become apparent once we consider
ambiguity—when each word is treated as an indi-
visible unit in the graph, we need to split these se-
mantic atoms to account for different senses. We
then investigate an alternative approach which treats
each individual coordination pattern as a semantic
node, and agglomerates these more contextual units
into usage clusters corresponding closely to word
senses.

2 The graph model

To build a graph representing the relationships be-
tween nouns, we used simple regular expressions to

1http://www.natcorp.ox.ac.uk/
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Figure 1: Local graph aroundbody. Three areas of
meaning are visible, namelybody“torso”, body“social
group” andbody“matter”.

search the BNC, which is tagged for parts of speech,
for examples of lexicosyntactic patterns which are
often indicative of a semantic relationship (Hearst,
1992). The hypothesis is that nouns in coordinations
are semantically similar (cf. Riloff and Shepherd
(1997), Roark and Charniak (1998), Widdows and
Dorow (2002)). We collected coordinations of noun
phrases using simple patterns, dropped prenominal
modifiers, and built a word graph by

1. Introducing a node for each of the nouns;

2. Connecting two nouns by an edge if they co-
occurred in a coordination, more precisely, if they
are separated by “and”, “or”, and commas.

For example, the coordination

a recognised body or an individual solicitor or
registered foreign lawyer

gives rise to edgesbody↔solicitor, body↔lawyerand
solicitor↔lawyer in the word graph.

Figure 1 displays a particular example of the sub-
graph centered aroundbody and consisting of the
top 17 neighbors ofbody and the top8 neighbors
of these neighbors (where the neighbors are ranked
according to their frequency of co-occurrence with
body in lists). The word graph has this very sim-
ple interpretation: Words which are directly linked
are semantically close. The aim of our procedures
is to disentangle the several meanings of body vis-
ible in the graph. The graph thus obtained consists
of 88, 900 nodes (word types) and551, 745 edges.
We ignore the order in which two words co-occur in
a coordination, the edges in our graph are not given
any direction. In the next step we keep only those
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Figure 2: Neighborhood of a node of minimum,
medium and maximum curvature, Eq. (1). Left:
curv(v0) = 0, Right: curv(v0) = 0.4, Bottom:
curv(v0) = 1.

links in the graph which appear in a triangle. This
filters out the less important links, since by transi-
tivity a triangle’s links confirm each other’s signifi-
cance. This decreases the noise significantly, and re-
sults in a reduced word graph consisting of48, 727
nodes and505, 412 edges.

3 Graph curvature and quantifying
semantic ambiguity

Words which link several unrelated areas in the
graph are likely to be ambiguous. On the other
hand, words in tightly-knit node groups tend to be
quite definite in their meaning. Words in such strong
communities can be recognized because their neigh-
bors are often closely linked to one another.

We measure the semantic cohesiveness of a
word’s neighborhood (and as a result ambiguity) as
the curvature(also referred to asclustering coeffi-
cient (Watts and Strogatz, 1998)) of the word in the
graph. Curvature is a property of nodes in a graph
which quantifies the interconnectedness of a node’s
neighbors. The curvaturecurv(w) of a nodew is
defined by:

curv(w) =
#(trianglesw participates in)

#(trianglesw could participate in)
(1)

Curvature is the fraction of existing links among a
node’s neighbors out of all possible links between
neighbors. It assumes values between0 and1. A
value of 0 occurs if there is no link between any
of the node’s neighbors, and a node has a curva-
ture of1 if all its neighbors are linked (see Fig. 2).
Curvature measures whether neighbors of a word
are neighbors of each other. Very specific, unam-
biguous words have high curvature, because they
usually live in small, semantically very cohesive



Figure 3:Curvature vs. frequency. Note that countries
(black stars) have substantially higher curvature values
than other words of similar frequencies, meaning that
they are very specific. The outlier ismonaco.

communities in which many pairs of nodes have
mutual neighbors. These communities thus contain
a high density of triangles. Examples for tight word
communities are the days of the week, the world
religions, Greek gods, chemical elements, English
counties, the planets, the members of a rock band,
etc. Ambiguous words, on the other hand, are linked
to members of different communities (correspond-
ing to the different meanings ofw) which do not
know each other. An ambiguous word’s neighbor-
hood thus has a low density of triangles which re-
sults in a low curvature value.

In information theory, it is common to use the
negative logarithm of relative word frequency to
measure a word’s information content (info(w) =
−log(rf(w))) (Shannon, 1948). The intuition is that
very frequent words tend to be very general and un-
informative, and that very infrequent words tend to
be more specific. Among the most frequent words
in coordinations are countries, which according to
info(·) would be wrongly categorized as very unin-
formative, ambiguous words.

Figure 3 is a plot of curvature against frequency.
The countries among the nodes are indicated by
black stars. Very clearly, the curvatures of coun-
tries are considerably higher than the average cur-
vature of words with similar frequency, suggesting
that, despite their high frequency, they are all very
informative, i.e., unambiguous. The outlier in the
lower left corner of the plot ismonacowhich may
not seem ambiguous, but which has several differ-
ent meanings in the BNC: country, city, 14th cen-
tury painter and 20th century tenor (cf. Fig. 4).
To check how well curvature is suited for detect-
ing and assessing ambiguity, we took all words in
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Figure 4:Local graph aroundmonacoshowing its sev-
eral meanings.

Table 1:Rank correlations between any two out of num-
ber of WordNet senses, word frequency, degree and cur-
vature. The number of WordNet senses is more strongly
correlated with curvature.

senses freq deg curv
senses 1.000 0.475 0.480 -0.538
freq 1.000 0.963 -0.865
deg 1.000 -0.884
curv 1.000

our model which are listed in WordNet and checked
how strongly curvature and the number of WordNet
senses are related. Since the relationship does not
have to be linear, we replace curvature and num-
ber of WordNet senses by their ranks before com-
puting the Pearson correlation coefficient. We also
checked whether and to which degree curvature bet-
ter reflects ambiguity than a word’s frequency or its
degree(the number of links attached to it) in the
graph. Table 1 lists the mutual correlations between
any two quantities out of frequency, degree, curva-
ture and number of WordNet senses. Our analysis
shows that with a negative correlation of−0.538,
curvature is more strongly related to the number of
WordNet senses than frequency or degree2. This
demonstrates that our combinatoric analysis does a
significantly better job than raw frequency at pre-
dicting whether a word is ambiguous.

4 Inducing classes of similar words
A semantic category (also referred to as a semantic
field) is a grouping of vocabulary within a language,
organizing words which are interrelated and define
each other in various ways. The acquisition of se-
mantic categories from text has been addressed in
several different ways: Work in this direction can be

2Recall that the sign of the correlation is irrelevant.



found in (Pereira et al. (1993), Schütze (1998), Pan-
tel and Lin (2002), Dorow and Widdows (2003)).

Word clustering techniques differ in the way they
assign words to clusters, either allowing words to
belong to several clusters (soft clustering), or as-
signing words to one and only one cluster (hard
clustering). Hard clustering techniques cannot de-
tect the multiple meanings of a word. We therefore
concentrate on soft clustering.

4.1 Graph clustering
We now describe two approaches to soft clustering
of words in our graph.

Curvature clustering: In our word graph, am-
biguous words function as bridges between differ-
ent word communities, e.g.,cancer is the meeting
point of the animal community, the set of lethal
diseases and the signs of the zodiac. By remov-
ing these “semantic hubs”, the graph decomposes
into small pieces corresponding to cohesive seman-
tic categories. In detail, the method for extracting
clusters of similar words is the following:

1. Compute the curvature of each node in the graph.
2. Remove all nodes whose curvature falls below a

certain threshold, set to0.5 from here on.3

3. The resulting connected components constitute
clusters of semantically similar words.

Application of this algorithm to our word graph
results in 700 clusters of size≥ 2. The resulting
clustering covers2, 306 of the nouns in our model
with 21, 218 of the nodes not making the curvature
threshold and25, 203 dangling nodes.

This method produces a hard clustering of the
high curvature words. Since high curvature words
have a well-defined meaning, we expect a hard clus-
tering approach to detect the (unique) semantic cat-
egory each of these words belongs to. Inspection of
the clusters obtained shows that this is indeed the
case to a very high degree of accuracy.

Curvature clustering in this form cannot give in-
formation on the semantically fuzzy low curvature
words. Therefore, we augment each of the clus-
ters with the nodes directly attached to it (includ-
ing also the nodes which are not part of a triangle).
Table 2 lists some of the enriched clusters. The
original cluster (the core of the extended cluster) is
printed in bold font, cluster neighbors which did not
pass the curvature threshold are highlighted in ital-
ics, and dangling neighbors (neighbors which do not
occur in a triangle) are printed in normal font. It is
worth noticing that the core words of high curvature

3Variation of the curvature threshold leads to clusterings of
different granularity.

Table 2:Clusters resulting from the curvature approach.

applewood fruitwood cherry ivory pine oak
jainism sikhism vaisnavismislam buddhism hinduism christianity
judaism
horseflies lacewingsbutterfly mosquito beetle centipedes ladybird
bird moth
freestyle backstrokebutterfly race medley
printmaker ceramicist sculptor painter draughtsman artist
pomelo papayabanana potato pineapple mango peach palm pear
parsnip
poliomyelitis tetanus tb kinase cough polio diphtheria malaria
disease tuberculosis pertussisanthrax
thiamin niacin riboflavin fibre protein iron calcium
oratorio cantata concert baroque opera aria motet play
morphine methadone chloroform heroin caffeine length phos-
phate cocaine lsdlibrium metabolite
hypnotherapy autosuggestionpsychotherapy exercise meditation
therapy counselling analysis
stepsister stepbrotherfriend father sister stepmother brother
cosine tangentarea sine torsion factor

(bold) are quite specific and unambiguous, suggest-
ing that high curvature is a desirable property for
‘seed words’ (cf. Roark and Charniak (1998)). By
extending the core clusters to their neighbors, cover-
age could be increased to9, 962 nodes in the graph.

Markov Clustering : A very intuitive graph clus-
tering algorithm isMarkov Clustering4 developed
by van Dongen (2000). Markov Clustering (MCL)
partitions a graph via simulation of random walks.
The idea is that random walks on a graph are likely
to get stuck within dense subgraphs rather than shut-
tle between dense subgraphs via sparse connections.

MCL computes a hard clustering. The nodes in
the graph are divided into non-overlapping clusters.
Thus, nodes between dense regions will appear in
a single cluster only, although they are attracted
by different communities. Inspired by Schütze’s
method (Schütze, 1998) we next replace clustering
of word stringsby clustering of wordcontexts.

4.2 Clustering thelink graph

We consider pairs of words which we linked ear-
lier, as word contexts. For example,organoccurs in
contexts (organ, piano), (organ, harpsichord), (or-
gan, tissue) and (organ, muscle). In contrast to the
semantic “fuzziness” oforgan, each of its contexts
has a sharp-cut meaning and refers to exactly one of
the senses oforgan. By clustering word contexts
as opposed to clustering the words themselves, a
word’s different meanings can be distributed across
different clusters which are then interpreted as word
senses. For example, we can assign (organ, piano)
and (organ, harpsichord) to one context cluster, and

4http://micans.org/mcl/
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Figure 5:FromG to G′. The original graph, new nodes
nl, new links, the graphG′.

(organ, tissue) and (organ, muscle) to another dif-
ferent context cluster.

In the setting of Sect. 2,words correspond to
nodesin the word graph andword contextscoin-
cide with the graph’sedges(with each edge being a
context of the two nodes it joins). We now consider
edgesas the fundamental nodes of thelink graphG′,
and define the edges ofG′ as follows: We construct
the word graph’s associatedlink graph, G′, by (see
Fig. 5):

1. Introducing a nodenl for each linkl in the original
graphG.

2. Connecting any two nodesnl1 andnl2 in G′ if l1
andl2 co-occurred in a triangle inG.

The two component wordsu andv of a contextl =
(u, v) disambiguate each other, e.g. in the (organ,
harpsichord) context, bothorgan and harpsichord
are instruments, since this is the intersection of all
the possible meanings oforganand all the possible
meanings ofharpsichord. The nodesnl introduced
in step 1 therefore have a much narrower meaning
than the nodes inG.

The links of a triangle inG constitute mutually
overlapping word contexts. We therefore expect the
links in such a context triangle to have the same
“topic”, and the nodes at the corners of the trian-
gle to have the same meaning. This means, step 2
connects two nodesnl1

andnl2
if the corresponding

contextsl1 andl2 are semantically similar.
Figure 6 shows the local word graph around

organ. Its associated link graph is illustrated in
Fig. 7 (only the connected components containing
organ and consisting of more than one node are
displayed). Note that in the link graph, neighbors
which correspond to different senses oforgan are
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Figure 6: Local word graph aroundorgan based on
the original graphG. Unrelated areas of meaning (body
parts, musical instruments, administrative unit) are con-
nected to one another.

no longer linked. Transition to the link graph ele-
gantly sliced the initially fuzzy graph into semanti-
cally consistent pieces.

Instead of clustering words by partitioning the
original graphG, we cluster word contexts by par-
titioning G’s associated link graphG′. The nodes
nl in G′ are built with contextual information, and
thus typically have a clear-cut meaning. With little
(if any) ambiguity left in the link graph, a hard clus-
tering algorithm, such as MCL, is fit for dividing the
contexts into (non-overlapping) similarity classes.
In detail, our algorithm is:

1. Start with the original graph.
2. Construct the associated link graphG′.
3. Apply Markov Clustering toG′.
4. Merge clusters whose overlap in information ex-

ceeds a certain threshold.

The clustering resulting from step 3 is a bit too
fine-grained. Several of the context clusters de-
scribe the same “topic”. We merge these multiple
clusters via another application of MCL, this time
applied to a graph of context clusters which are
linked if their shared information content (the neg-
ative logarithm of the probability of the words they
have in common) exceeds50% of the information
contained in the smaller of the two clusters. Step 4
reduced the12, 786 clusters resulting from step 3 to
a total of5, 849 clusters.

5 Conclusions
We have found empirical methods which are capa-
ble of recognizing very coherent classes of words,
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recognizing ambiguity, and automatically splitting
a word up into its senses. We have done this with
simple regular expressions and combinatoric mea-
sures that are easy to understand and implement.

On one hand, curvature has turned out to be a
quantity particularly suited for measuring the de-
gree of ambiguity of words, as shown by Fig. 3
and Tab. 1; on the other hand, the clustering scheme
based on curvature does especially well for words
which are unambiguous. We thus expect curvature
clustering to do well in recognizing the meanings of
words unknown to WordNet. In contrast, link clus-
tering is particularly suited for splitting ambiguous
words into their different meanings. It confers im-
portance to the contextual implication of two words
rather than to the word itself. That appears to us
to be an important step towards the assignment of
meaning to words by contextual association alone.

Both the curvature method and the link clustering
determine the number of word senses purely empiri-
cally. All we control is how tightly clustered a sense
should be. This is a great support to a user who
wants to decide what level of lumping or splitting
is appropriate for a whole domain, rather than on a
word-by-word basis.

In summary, we have shown that graphs can be

learned directly from free text and used for ambi-
guity recognition and lexical acquisition. We intro-
duced two new techniques,graph curvatureandlink
clustering, combinatoric methods for analyzing the
geometry and topology of graphs that can improve
the automatized assignment of word meaning.
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