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ABSTRACT

Two types of colnputer boards including custom-designed VLSI fuzzy ilfferencing chips

have been developed to add a qualitative reasoning capability to the real-time control of

autonomous lnobile robots. The design and operation of these boards are first described

and an example of their use for the autc, nomous navigation of a mobile robot is presc, nted.

The development of qualitative reasoning schemes enmlating hmnan-like navigation in a-

priori unknown environments is discus_d. An approach using superposition of elemental

sensor-based behaviors is shown to allow easy development and testing of the infcrencillg

rule base, while providing for progressive addition of behaviors to resolve situations of

increasing complexity. The efficiency of such schemes, which can consist of as little as a

dozen qualitative rules, is illustrated in experiments involving an autonomous mobile robot

navigating on the basis of very spar_ and inaccurate sensor data.

1. INTRODUCTION

One of the greatest challenges in the motion plamfing and control of autonomous mobile

robots in a-priori unknown or dynamic environments is to provide the reasoning 1nodules

with methods for handling and/or coping with the many imprecisions, inaccuracies, and

uncertainties present in the system. These typically are caused by: (1) errors in the

sensor data (current sensor systems are far ft'ore perfect) which lead to inaccuracies and

uncertainties in the repre_ntation of the environment, the robot:s estimated position;

etc., (2) imprecisions or lack of knowledge in our understanding of the system, i.e., we

are unable to generate complete and exact (crisp) mathematical and/or numerical

descriptions of all the phenomena contributing to the system's and environment's

behavior, and (3) approximations and imprecisions in the information processing schemes

* Department of Computer Science, University of North Carolina at Chapel Hill,

Chapel Hill, NC 27599
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(e.g., discretiza_ion, munerical truncation, convergence thresholds, etc.) that are used to

generate decisions or control output signals.

Qualitative reasoning (also termed approximate reasoMr, g) refers to a set. of

methodologies which have been developed to provide alternative solutions methcMs for

decision-making problems when the uncertainties can not be fully engineered away

from the system (e.g., there are limits on maximum sensor precision, predictability of

the environment,, etc.). The general approach underls,ing these methodologies consists

in capturing some aspects of the reasoning methc;ds typically exhibited by humans

when controlling systems; in particular, by implicitly incorporating uncertainties in

the information gathering and reasoning _rocesses, rather than attempting to explicitly

determine and propagate them through numerical calculations or representations. Several

approximate reasoning theories and associated mathematical algebra have bcc'li developed

over the past two decades [1], the most commonly used today for applications to control

systcms being Zadeh's Theory of Fuzzy Sets [2]-[5]. This tl_eory is at the basis of very

successful implementations varying from control of subway cars, elevators, cement kilns.

washing machines, cameras and camcorders, inverted pcn(t_ll_lms, to painting proce._scs

and col()r image reconstruction, to even ping-pong playing robots [6]-[12].

One of the important factors which have prevented the wide-spread utilization of

approximate reasoning in real-time systems has been the unavailability of computc'r

hardware allov,,ing processing and inferencing directly in terms of approximate or linguistic,

or "fuzzy" variables (e.g., far, fast, slow. left, faster, etc.) and approximate rules (e.g., if

obstacle is close, then go slower; if temperature is high and pressure is increasiilg, then

decrease power a lot., etc.). Prospective implementations tt,as had to rely on simulation

of the approximate reasomng schemes on conventional hardware and computers based on

"crisp" processing, with a resulting significant penalty in speed of operation, prohibiting

applications in most "hard real-time" systems.

In cooperation with Micro Electronics, Inc., unique computer boards have recently been

developed using custorn-designed VLSI chips [13],[14] v,,hich can be programmed to directly

communicate and interface in terms of qualitative variables and rules. Additionally, the

boards' architecture is reconfigurable c,n-line to allow several levels of reasoning (meta

level, non monotonic, etc.) and to allow full inferences with up to 350 rules and 28 input

channels to take place in 30 # sec, i.e., at a rate of 30,000 Hz (at least tv,,o orders of

magnitude faster than video frame rate). This paper provides an overview of the design

and operation of these boards and discusses their first implementation in the development

of approximate reasoning methodologies and schemes for CESAR's series of HEI_MIES

(Hostile Environments Robotic .N_J.lachineIntelligence Experiments) test-bed robots.
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2. QUALITATIVE REASONING ON A VLSI CHIP

The qualitative reasoning methodology utilized for the VLSI in_plcmentation is insl)ired

from the Theory of Fuzzy Sets, in which the functions tl \.(z) defining the membership of

an element z to a subset X of a universe of discom'se U can take any value in the interval

[0, 1], rather than only the discrete {0, 1} values (0 for does not belong, 1 for belongs)

used in conventional (crisp) Set Theory. The function t_x(z) thus defines the degree of

membership of the element z in X. Such a subset X of U is termed a qualitative (or

approximate, conceptual, or fuzzy) variable for reasoning on the universe of discourse U.

For the current VLSI in_plementation, rea soaing is embodied in progrmnn_ab]e

"production rules" operating on four sets of qualitative input variables and two sets of

output qualitative variables, as in

IF (.4 is .4t and B is B_ and C is C1 and D is D_) THEN (E is .b-. and F is F_), (1)

v,'hcre .41, L?l,.../Pl are qualitative variables whose representative m..mbership functic)ns

define the rule, and A,B,C...F are the time-varying qualitative inpllt and output

variables analogous to memory elements in conventional pro:tuction systems.

With the above representation, the Fuzzy Set Theoretic Operations can be directly

applied to the qualitative variables on their universe of discom'se: given two sub,ts .4 and

B of U,

= rain(t,..,(*), (2)

t'.4UB(,T) = max(/_A(Z), tzB(.r)) (3)

The laws of logical inferences including modus ponens, cartesian product, projection

and compositional inferences (e.g., see [3] and [4] for detailed description of these laws

of inferencing) can also be applied to multivariable systems. In particular, the extension

principle [3],[4]is used in the mapping between a set A of the input universe of discourse

U and its extension through F to the output universe of discourm V, as:

= (4)
tt

v,'here v = .F'(u), ueU, t'eI 7.

For their VLSI interpretation, each qualitative variable is represented by its

membership function discretized over a (64 x 16) array of (x, t,(z)) values. Equations (1),

(2), (3), and (4) can thus be easily implemented using series of rain. and max. gates as

shown in Fig. 1 for one rule. Figure 2 schematically represents an inference with tv,'o rules

I
,, , , ,, , , _r, ,' II ' ' ' ', .... rl , , I_1 .... n ' ' II i ..... , ,
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of the form IF (A is .41 and B is B 1) THEN (E is E 1) operating on two input ,4 and t3

and producing a composite membership function for E.

I F._I Ioac'w

Fig. 1. Data path for rule execution.

1 1 1
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Fig. 2. Schematic of a qualitative inference using two rules operating on two input and

one output channels.
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Because conventional sensors typically provide data in "crisp" form (i.e., they provide

a single number which does not reflect the uncertainty involved in the measuring process),

it. is desirable to add this uncertainty on the measurement, effectively mapping it to a

qualitative variable, prior to processing through approximate reasoning. This step (which

has been termed fuzzification) is of course not necessa1"y if the data is already in the

form of a qualitative variable, such as in interchip communications, and therefore has

been implemented as a programmable optional data path on the VLSI chip. Similarly, an

optional defuzzying step which calculates the "center of weight" of the output composite

membership function (see Fig. 2), can be used to send "crisp" data to conventional

actuators if these are used in the process control hardware as depicted oll Fig. 3. To

provide added flexibility, the chip architecture is reconfigurable, allowing either _0 rules

oi)crating on four input and two output channels or 100 rules operating on tv,-o i_put and

one output channels. Since all rules are processed in parallel, the Sl)ccd of operation of the

d-tip is independent of the configuration or the number of rules involved in the infcrcnciilg,

and reaches 30,000 FFIPS (Full [:'uzzy Inferences Per Second) [13].[14]. In other words, full

qualitative data processing and inferencing schemes can take place at 30 I,;ttz, (i.e., at least

two orders of magnitude faster than the sampling rate of typical sensors) makillg feasible

the control of veD_ fast systems or motions, such as those iilvolved in reflex behaviors based

on very approximate or uncertain informations.

User

]
Fuzzy logic,
controller

host

Processor

,,

_.

24 I

...71---__ fuzzlfy --- Inference ---defuzzify.. ,_
engine

.......

i
i

--------- _ensor ---- process ---- controller -----

i
I ,,

Fig. 3. Schematic of a typical qualitative control system for a real-time process.
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Two types of VMEbus-compatible printed boards and associated software were

developed to allow interfacing of the chips with sensors and actuator data channels for

application to "intelligent machines" and, in particulm', to autonomous mobile robots.

The first type of board includes one chip and is therefore limited to inferencing involving

only 4 input and 2 output chamaels. The second type of board includes 7 chips and some

multiplexer circuits which allow tru-line reconfiguration of the input, output and intercl_p

communication paths [14]. This provides the capal)ility to implement qualitative reasoning

schemes with up to 350 rules and 2S input channels (with all chips in parallel), m_llti-level

reasoning schemes (e.g., 4 clfips in a first layer feeding into 2 chips in the second layer

feeding into 1 chip in the third layer), or non-monotonic reasoning (e.g., with feedback

of the output of some of the downstream chips into the input of some of the upstream

chips, in a series or "cascade" of chips). The speed of operation of each layer of parallel

clfips remains the same than on the single chip board, with the multi-layer configurations

reaching rates in the KHz order of magnitude.

3. TEST IMPLEMENTATION FOR MOBILE

ROBOTS NAVIGATION

The problem of autonomous mobile robots navigating in a-priori unknown and

unpredictable environments was selected for initial testing of the qualitative reasoning

systems because its characteristics rank veI3, high on the list of criteria that typically

indicate suitability of a reasoning problem for representation and resolution using

qualitative logic: the input to the control system, particularly when provided by sonar

range finders and odometry wheel encoders, is extremely inaccurate, sparse, uncertain

and/or unreliable; there exist no complete mathematical and/or numerical representation

of the behavior termed navigation, although, as demonstrated by humans, a logic for

this behavior exists which can typically be represented and successfully processed in

terms of linguistic varial)les; by its given nature the behavior of the environment is

unpredictable, leading to large uncertainties in its representation; the approximations

invoh'ed in the numerical representation of the system and its environment (e.g., geometric

representations, map discretization in grid, etc.) are significant.

The single chip board and a recently designed omnidirectional mobile platform [15],[16]

were used for these initial experiments. Because of the limitations to 4 input channels

using this board, data from only 3 frontal sonars were used for perceptmn of the

environment, while the fourth channel produced information on angular direction to the

given navigation goal based on odometry sensor data. The output channels provided

translational speed and steering velocity commands to be sent to the motor controls. No
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a-priori environmental data or maps were input to the system, nor were any generated

during motion, a.rid in this sense, the initial investigations focussed on reactive navigation.

The development and testing of the first series of qualitative rule-ba.ses led to empirical

findings providing significant insights for efficient implementation of qualitative reasoning

schemes in autonomous robots:

• Modularity and consistency of the rule-base can best be actfieved througll

decomI_o:dtion of the decision-making scheme into elcmeIltal and independ_-,nt

"behaviors."

• Independence of these elemental behaviors is assured if each can be formulated as

a direct mapping between a subset of the input and a subset of the output, with

no redundancy in the qualitative values spanned by the input variables of vario_ls

behaviors.

• Independent behaviors can be singly developed and tested, and their independence

experimentally verified prior to merging with other behaviors.

• Once developed, tested and verified, each behavior can be assigned a normalized

"weight" (in [0,1]) corresponding to its relative importance with respect to other

behaviors with which it is to be merged, (e.g., safety from obstacle vs. speed of

operation, etc.). The weighting is implemented by a direct scaling of the membership

functions of either the input or the output variables.

• .hlerging of the behaviors is handled directly and continuously through the laws of

combinatorial inferencing, therefore providing a formal resolution to one of the major

problems with which the "behaviorist" community (e.g., see [17] and [18] and references

therein) has struggled: the real-time selection and/or conflict resolution in multi-

behavior systems.

Building upon the experience and empirical results gained during the development

of the first series of rule-bases, a new rule-base conforming with the observations listed

above was developed for the single ctSp board and the CESAR's omnidirectional platform

pictured in Fig. 4. _£he photograph in the figure shows the ring of accoustic range sensors

at the edge of the platform deck (only frontal sensors are used) and the disk drive unit, the

battery pack (rear right) and the seven-slot VME-bus (rear left) whict_ hosts the qualitative

inferencing board. The control system of the platform (detailed in [15] and [16]) includes a

velocity loop servoing at 100 Hz on the commanded translational and rotational veiocities,

which will be hereafter referred to as speed control and turn control, respectively. Thus,

behaviors corresponding to speed control (S.C.) and turn control (T.C.) as functions of

goal orientation (G.O.) and obstacle proximity (O.P.) where developed as follows:
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G.O. ---* $.C. (1 rule)

O.P. --* S.C. (4 r_des)

G.O. --_ T.C. ( 2 rules)

"far" O.P. ---_ T.C. (2 r_llcs)
"near" O.P. _ T.C. (2 rules)

"very close" O.P. ---. T.C. (3 rlllcs)

where the three latter behaviors embody the fact. that difl'ercnt, navigation l>ehaviors are

utilized depending on whether ali obstacles are still "far;" "near," or "very close." thus

reflecting differences in safety concerns (i.e., prioIqty of the 1-_chavior) implclnentcd using

different weights. For each sampling period and decision, several behaviors are typically

triggered and merged through the Fuzzy Set. Theoretic laws of Combinatorial Infcrcncing,

resulting in a smooth and continuous sensor-based navigation contrc)l.

b

?.
-4

i
.2

.

•"a..'_d.2 •

- ;J4, "

Fig. 4. The CESAR omnidirectional robotic platform prototype.

The rules for TC and SC as a function of GO express the very intuitive fact that if the

goal is to the left (respectively right ). then a small incrclnent (_f turn to tlle loft (rcsl>cctively

right) needs to be made during the loop rate cycle: and ',vllc11 the dirccti(m (_f _he goal

increases from 0° (front) to + 1S0 °. then the speed is corrcsi._ondingly decreased. The rules

for SC as a function of OP express that when the distances to any obstacles (i.,'.. the scllsor
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returns in ali three directions) are increasing, then the speed can be increa_d toward its

maximum value (one rule), while when distance to an obstacle (sonar return)in any of the

three sonar directions (thus, three rules) decreases toward a safety threshold (here selected

as 30 eta), then the speed needs to be decreased, down to zero at or below that threshold.

Once these speed control and goal tracking behaviors were designed, they were merged

and tested in environments with no obstacles. Since the clfip used for this initial

implementa.*:ion allowed only four input chmmels, no information related to distance to the

goal could be provided t.o the qualitative reasoning scheme in order to make the robot stop

when reaching the goal. This was easily remedied in these tests by using the odomet:'y

data in the master program to stop both the reasolfing scheme and the robot when it

approached to within a given radius (2.5 cre) of the goal. In future implementations _lsing

the seven-chip board allowing up to 28 input channels, the distance to the goal could be

input to the qualitative inference scheme and the stopping at the goal could be simply

implemented as an additional behavior in the reasoning scheme.

Once these behaviors were tested, the rules for the TC as a function oi" OP behaviors

were developed. When all sonar returns are "far" (further away than 2 m), the turn

should be away from the closest obstacle. However, the weight on that behavior must be

less than that for the TC as a function of GO, to ensure that when it is far away from

any obstacles, the robot's priority is still to move in the general direction of the goal.

When at least one of the sonar returns is "near" (between 30 cm and 2 m), the turn is

away from the obstacle, increasing in magnitude with decreasing distance, such that at the

lowest distance of 30 cre, this obstacle avoidance behavior has more weight on TC than

the goal tracking behavior. Finally when any sonar return is less than 30 cm (the robot

is stopped as required by the behavior on SC as a function of OP), the turn is always to

the right.. Note that setting the turn away from the closest obstacle in this latter behavior

would often result in the dead-lock situations in which the robot reaches a limit cycle,

and continuously oscillates between two orientations. This type of situation constitutes

one of the very serious drawbacks of the reactive navigation methods using potential fiel,t

techniques, and has been alleviated here using the TC as a function of "very close" O P

behavior. Also note that this behavior allows the robot to travel to the end of dead-e _d

corridors, turn around, and backtrack to a more open area, a situation which would lead

to a (local minimum) dead-end point in potential field techniques.

Figures 5 and 6 show plots of sample runs made with the robot to illustrate the

overall reactive navigation using the qualitative inferencing scheme and, in particular, the

two characteristics just discussed. In the figures, the lightly shaded areas represent the

obstacles which were placed in the room, while the path of the robot is illustrated using the

dark succession of circles. In Fig. 5, the robot initially moves along a first wall toward the

goal and passes the point directly opposite to the goal on the perpendicular to the wall (at

,,,,,............... _n_m_'_'_nmmumm_wnnI_nu_nn_'num_n_p_n_nun_m_m!mn_n|_mn_in_mn_|_|i_i_i_illINIum|_|_m_ui_iM_nIiIIm_|_|
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wlfich a dead-lock would be encountered using potelltial field techniq_ws). It t]wn coiltinucs

until it reaches the end of the wall where it can turn toward the goal, and encounters a

second wall. The robot also passes a point opposite the goal on the perpendicular to

the second w_!, and continues in the corridor until it can turn. It t.hcn avoids the small

obstacles and reaches the goal. In Fig. 6, the robot starts toward the goal and, when facing

obstacle A head-on, moves in the opening on its right which is closest to the goal direction.

\Vhen reaclfing the end of this blocked corridor, the robot turns around (using the TC as

a function of "very close" OP behavior), exit the corridor, turns in a direction closest to

the goal direction, avoids the small obstacles and then moves to the goal.

4. SUMMARY AND CONCLUDING REMARKS

Autonomous robot control in a-priori unknown, unpredictable, and dynmllic

,,nvironments requires many calculational and reasoning schemes to c,perate on the basis of

very imprecise, incomplete, sparse or unreliable da_a, knowledge or in%nnation. In such

systems, for which engineering ali the uncertainties away from the hardware is not c_lrrently

fully feasible, approximate reasoning may provide an alternative to the complexity and

computer requirements of conventional _mcertainty analysis and propaga.ion techniques.

Two types of computer boards including custom-designed VLSI chips have been

developed to investigate the implementation and real-time use of approximate reasoning in

autonomous robotic systems. The methodologies embodied on the VLSI hardware utilize

the Fuzzy Set Theoretic operations to implement a production rule type of inferencing on

input and output variables that can directly be specified as qualitative variables through

membership functions. All rules on a chip are processed in parallel, allowing rill inferences

to take place in about 30 F_sec. This speed of operation makes rea!-time reasoning feasible

at rates much faster than sensor data acquisition, therefore, making control of "reflex-t:pe"

of motions envisionable.

One of the qualitative inferencing boards, incorporating one chip with four input

channels and two output channels, was installed on a test-bed platform to investigate

the use of qualitative reasoning schemes for the autonomous navigation of a mobile robot

in a-priori unknown environments on the basis of sparse and imprecise data. Experiments

in which the robot uses only three accoustic range (sonar) sensors have demonstrated the

feasibility of basic reactive navigation with a scheme including six elemental behaviors

represented in fourteen-qualitative-rules. The approach using superposition of behaviors

allows to progressively merge additional behaviors into the scheme to resolve any specific

additional situation which may be encountered in particular environments of increasing

complexity. Our ongoing work focusses on this area, utilizing the recently completed

multi-chip board (which allows up to 28 inputs and 14 outputs) to investigate schemes with
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additional input variables and greater nmnbers of behaviors, for which we ',',,cre limited in

this first series of experiments by the four-input-only restriction of the single-d_ip board.

o,i

Fig. 5. Sample run of the platform illustrating basic obstacle avoidances wall following,

and no "trapping" in local minima. S and G denote the start and goal locations.
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Fig. 6. Sample run of the platform illustrating obstacle avoidance in more complex

environments, motion in corridors, and no "trapping:: in the local minlxlm_l_ at "',_tl,_.... ,_.u" t,,-"

the blocked corridor•
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