USING DAILY RANGE DATA TO CALIBRATE VOLATILITY DIFFUSIONS
AND EXTRACT THE FORWARD INTEGRATED VARIANCE
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Abstract—A common model for security price dynamics is the continuougive claim can be expressed as the expected value of the
time stochastic volatility model. For this model, Hull and White (1987 _ ; ; i
show that the price of a derivative claim is the conditional expectation lack-Scholes price evall'_lated at the mtegrated VOIaU“tyZ
the Black-Scholes price with the forward integrated variance replacing thé1€ methods are extensions of techniques developed in

Black-Scholes variance. Implementing the Hull and White characteriz&allant and Tauchen (1998), who generated an estimator of
tion requires both estimates of the price dynamics and the conditiongl, ~; 4 i ; _
distribution of the forward integrated variance given observed variablgg.e dl_screte time Co,ndltlo_nal denSIty_Of the observe_d s_ecu
Using daily data on close-to-close price movement and the daily range, [i&y Pprice process given its past as implied by a diffusion

find that standard models do not fit the data very well and that a mgigodel. Here we estimate the conditional distribution of the

general three-factor model does better, as it mimics the long-mem ; o ;
feature of financial volatility. We develop techniques for estimating tr?éhObserVEd forward integrated volatility process given the

conditional distribution of the forward integrated variance given observé&served history. In our application, the observed history
variables. consists of lags of two series: the daily close-to-close log
price movement and high/low range series. The techniques

. Introduction are completely general, however, and do not require the

This paper has two objectives: The first is to extend angnde info.rmatio_n. They could be applied,_for examp'?' with
implement methods for estimating diffusion models dpist the price series anne,_and sampled either more finely or
securities prices with unobserved stochastic volatility. Co10r€ coarsely than the daily frequency.
sistent with several recent studies, we find that a two-factor
model can generally account for the dynamics of observa- Il.  Setup
tions on the daily close-to-close price movement for modest

. : Let p; denote the log of a financial price series evolving in
time spans (ten to twenty years). One of the factors is tregntinuous time. We shall describe and subsequently esti-

price process itself and the second is its local volatility, o . .
. ate a class of stochastic differential equation models for
However, we also find that the two-factor model canngt ; . . o
e price series. Our models are stochastic volatility diffu-

account for either the marginal dynamics of the daily range, : .
viewed as a single series, nor for the joint bivariate dynamifi's?n models. Abasic form is
of the daily close-to-close price movement series and daily do = a.dt + odW.
range series taken together. We implement a three-factor = B TptV
model in which local price volatility is represented as the d10g (o) = axdt + bydWy
sum of two separate volatility factors, each governed by its

own diffusion process. We find that the three-factor mod@ihere the first equation describes the evolution of the price
does a better job of fitting the data, and, in particular, mimiggocess and the second describes that of the volatility
the long-memory type behavior of financial volatility (DingProcess. In the abovey, is the local drift of the priceg is

et al., 1993; Baillie et al., 1996; Bollerslev & Mikkelsen the local volatility, whileay and by are the local drift and
1996). The three-factor model is Markov with two unobdiffusion of the log volatility process, and/,, and Wy are
served state variables. Among other things, the Mark#ydependent Brownian motions. The model (1) is a diffusion
property makes the model relatively easy to simulate asstochastic volatility model of the type studied by Nelson
circumvents all computational difficulties associated wittl992), Andersen and Lund (1997), and many others. In

fractional integration calculations (Bollerslev & Mikkelsenwhat follows, we let{piicjo.r; denote a realization from
1996; Gallant et al., 1997). model (1), we let pi—01.., denote a discrete, equispaced

The second objective is to develop methods for extracti®gg@mpling of length of the diffusion, and we Ig\pii-1,..n,

from observable data the conditional mean of—and, mowhereAp, = p; — p,—; denote the price movement series.

generally, the conditional distribution of—the integrated With rare exception, one observes only the discrete price

local price variance over an arbitrary horizon of finite lengtfrocesspii-o 1., and not the volatilitys, so the model (1)

This objective is motivated by Hull and White (1987), wh&ontains an unobserved Markov state variable. For reasons

show that, under certain assumptions, the price of a derigscussed in Hansen and Scheinkman (1995), Tauchen
(1997), and Gallant and Tauchen (1997a), models with
unobserved state variables are well adapted to estimation
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(Gallant & Tauchen, 1997a) on daily data on S&P returnB) the version we call the two-factor modél; is 2 X 1 and
the DM/$ exchange rate, and weekly Treasury Bill yieldss assumed to evolve as

Gallant and Long (1997) do so as well for daily DM/$ data,

while Andersen and Lund (1997) and Gallant and Tauch@&wo factor:

(1998) do so using weekly Treasury Bill yields.

In estimation using discretely sampled dépg—o 1., dUy = ayedt + Byoexp Uz) dW 3)
information on the level of volatilityry,, and the trajectory  dUy = apUxdt + (Bog + BooUa) dWhy
of volatility {opgsei—14 Over the sampling interval, comes
indirectly from the magnitude of the unexpected time pricghereW;; andW,, are independent Brownian motions. We take
movement Ap, — E,_1(Ap,)|. Typically, the magnitude of
the unexpected price movement is a very noisy indicator of Pt = Un
the trajectory of volatility over the sampling interval oy = Bio€Xp Uz).

(Andersen & Bollerslev, 1998).

Financial economists have long known that the dailjhe first equation of (3) governs the evolution of the price
range of the price series contains extra information about $f¥ies. It allows for a drift componendt, although we
course of volatility over the day. Within a constant volatilitfyPically expect the drift to be very small (although above
framework, Garman and Klass (1980) and Parkinson (195;5_53 instantaneous risk-free rate) as financial price series
show that use of the range can improve volatility estimat§§p|aY_ very modest mean reversion and act more as
by as much as a factor of eight over the standard estimdi@nstationary integrated processes. The compotégnt
Beckers (1983) and Hsieh (1991) present related results &ffiects stochastic volatility in the evolution of the price
strong empirical documentation on the efficiency improvdrocess, and we refer to the second compolgnof the
ment. state as the volatility component, or just volatility for short.

This paper adopts the stochastic volatility framework ofhe absence of the intercept in the drift componeit
model (1). In this context, Andersen and Bollerslev (1998 er_cts a no_rma'llzatlon for identification. The s_pecmcatlon
present simulation evidence that there is extra informati¢®) iS the diffusion analogue of an exponential GARCH

he | il : t 2 .1 (E-GARCH) studied by Nelson (1992), I_Drost and Nijm_an
about't e integrated daily yanandél Tps d.s embodied in (1993), and Drost and Werker (1996), with the generaliza-
the daily range. In our notation, the range is

tion that the local volatility ol is itself state dependent.
d= max [p.— pd — min [p. — pd As \{vill be seen, the preceding se';up does a reasongbly
U Ci<a=t T B oty - good job of fitting the observed price movement series
t=1,2,.... [Apji=12.. However, it does a very poor job of fitting the

Using results on subordination and the running maximum of the two series togethelAp, dii—1... We find that
Brownian motion in Karatzas and Shreve (1991), one camtroduction of a second stochastic volatility factor—thus
show that bringing the total number of factors to three—improves the
fit. The most general model we consider is

b ¢ 1/2
d = (Hy + Hp) J;_l s ds (2) Three Factor:
where H; and H, are negatively correlated half-Gaussian AU = a10dt + Bioexp Uz + Ug) dWy,
random variables. Thus, the range is seen to be an indicatotlU, = a, Uy dt + (Bog + BooUs) dWhy (4)
variable for the integrated daily variance. dUy = agaUs dt + (Bag + BaaUs) dWs.

We extend previous work dealing with daily range data by

actually estimating and testing continuous-time models in aThe EMM estimator we employ is a Simulated Method of
stochastic volatility setting. We estimate various specificitoments (SMM) estimator. Such estimators work by using
tions of model (1) using price movement dai@i-1,.nand very long simulations from (3) or (4) to compute predicted
rang?_dat_f{ﬂt}tzl,..n, each taken separately. We also estimafgoments of observed discrete-time data. (Bh-o1. .,
specifications of model (1) and some generalizations usiggnote the observed log price series. As is typical of nearly
the joint price movement and range sefi&s, diji-1,... We  all financial levels series, this series is an I(1) process, so we
find that indeed the range series contains extra informatigge first differencel; — Pr_1)i-1..- Nonstationarity of the

about the appropriate specification of the diffusion modglyels series creates some mild complications in terms of the

and the trajectory of volatility. simulation strategy. What we do, in effect, is simulate the
For notational reasons, it proves convenient to consider @ily price movement process

underlying state vectdd; and specify its dynamics. We view
p: and its drift and diffusion as functions of the state vector. p; — p se[tt+1)
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for integert while preserving the trajectories by andUx The first step in computing the EMM estimafiyis to use
across the days. We use a weak order 2 scheme (Kloedeth& score generator
Platen, 1992) to generate simulated numerical approxima-

tions to the stochastic differential equations. A/ PR A )| (RSNC (6)
With the continuous-timéps} process thus generated, we
take to summarize the datdiji__, by computing the quasi-
maximume-likelihood estimate
Apt =P — Pi1 )
d,= max|ps— p1 — min - P ~ 12
P Pl P B = argma ) log [(3l% 1. -9 2, O]
0E® t=0
fort =1, 2,.... Theaxtremes are taken over the half-open

interval ¢ — 1,t] to be consistent with the way data areand the corresponding estimate of the information matrix

recorded; in the theory, the continuous extension is used if

needed to make the extremes well defined. .1 En:
l,=-

Ni=o

J ~
5100 (%%, en)} (7)
Ill. Efficient Method of Moments

A. Details X

a - !
20 log f (%:/%1, 9n)} ,

Let{y)i_.., s € MM, be a discrete stationary time series.
In this papery is either{Apy], {dJ, or {Ap, d. When, as wherex._; = (Yi_i, . . . ,Yi_1). The estimator (7) presumes
here[y;} comes from a discretely sampled SDE system, théime score generator (6) provides an adequate statistical
the SDE specification implicitly determines the densitgpproximation to the transition density of the data, so that
P(Ye-L, - - - »Wt|p) Of @ contiguous stretch of length + 1 {(9/00) log f(¥; |%_1, 0,)} is essentially serially uncorrelated.
from [y}, wherep € 9P is a vector of unknown systemlf (6) is not adequate, then one of the more complicated ex-
parameters, namely, theés andp’s of either (3) or (4). The pressions forl, set forth in Gallant and Tauchen (1996a)
fundamental problem that blocks straightforward applicaust be used, although the EMM estimator is still consistent
tion of standard statistical methods is that an analytémd asymptotically normal.
expression fop(y._., . . . ,Yo|p) is not available so that, e.g., Define
maximume-likelihood or Bayesian estimation is infeasible.
However, by using simulation, an expectation of the form

J
M(p, 6) = E, - 109 [F(Yoly-1. - - - Y1, 0)]
E(=J Joay ...y

X P(Y_L, - Yolp)dy_ - - -dyo which is computed by averaging over a long simulation
can be computed for givem That is, for giverp, one can 1N 5
generate a simulatidiy/l. _, from the system and put m(p, 0) = N E P log [f (S0, - - -, ¥i1, 0)].
t=0
l N
E,(g) = NE 9ty - - 50, The EMM estimator is
t=0
with N large enough that Monte Carlo error is negligible. ~ Pn = argminm’(p, 6,)(1,)~*m(p, 6,).
Gallant and Tauchen (1996a) proposed a minimaini pedtFe

squared estimator fqgr in this situation, which they termed
the efficient method of momen(EMM) estimator. Being
minimum chi-squared, the optimizedhi-square criterion )
can be used to test system adequacy. The moment equati _hen (1996a). Underthe null hypqthes_|s pGLL ...,
that enter the minimunchi-squared criterion of the EMM Yolp)1S the corr_ectmodeh times the ".“”'m'zed value of the
estimator are obtained from the score vectsof) log f(y,| OPIECtive function is asymptoticalighi-squared orp, — p,
Vil - - - Vi, ) of an auxiliary modef (yilyi_o, . . . , yi_1, 6) d€grees of freedom.

that is termed thecore generatoiGallant and Long (1997)
show that, if the score generator is the SNP densi
fu(VVieLs - - -, Yi-1, 0) described below, then the efficiency One way to ensure that the selected score generator is a
of the EMM estimator can be made as close to that gbod approximation is to use a sieve estimator based on a
maximum likelihood as desired by takikglarge enough.  nested sequence of finite dimensional parametric models

The estimator is consistent and asymptotically normally
distributed with asymptotic distribution given in Gallant and

?. Projection
y
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fk(y/x, 0), K = 1,2,.... Asnoted above, the quasi-formed from the polynomial
maximum-likelihood estimaté, of the parameter vectdr
in fx(y|x, 8) summarizes the data; the largeiisthe more Kz [ Kx

b

PIERG

p=0

detailed the summary. This data reduction is termed thePx(z X) = E
projection stepof the EMM estimation procedure. The o0
specific_ sieve that we employ ﬁs a quified Hermite serigsqre &) = (2m)~M2%e-772, |n equation (10), the term
expansion termeSNP.Thg basic |de§1 is that, becausg thPK(z, x)(d(2) is a Hermite function of degre, in zwhose
square root of a density is dn function and the Hermite coefficients are polynomials of degrég in x, which, as
functions are dense i, the square of a Hermite expansiomoted above, approximates the square root of a density and
can closely approximate any density. Theoretical details arRrefore enters (10) as the square. The shape of the
in Gallant and Nychka (1987). innovation densityi (z|x.1) varies withx,_; which permits
Recall that, under our assumptions, the stationary distriy{(z/x;_;) to exhibit general conditional shape heterogene-
tion of a contiguous subsequenge,, . . . ,Y; has a density ity. By putting selected elements of the mathix= [ag,] to
p(Y-L, - . .,Yo) defined overi!, wherel = M(L + 1). Put zero,Px(z X) can be made to depend on only = L lags
Y=VYoX=X1= (Y.L ...,Y_1), and write the stationary, from x. In applications wher#l is large, the coefficientsg,
marginal, and conditional densities@g®, y) = p(y-., ..., corresponding to monomials* that represent high-order
Vo), POX) = [ p(Y—L, - . . ,Yo) dyo, andp(y|X) = p(x, y)/p(x), interactions can be set to zero with little effect on the

respectively. Let/§)", denote the realization from the@dequacy of approximations. Léf = O indicate that no
processy,|” . that is available for analysis. interaction coefficients are set to zetg,= 1 indicate that

efficients corresponding to interactiorrsof order larger

anK, — 1 are set to zero, and so on; similarly férandl,.

The change of variableg = R, ,z + | , to obtain the
density

A standard method of describing a conditional densi
f(y|x, 0) is to set forth a location function,fand a scale
functionR, that reduce the procegg);- _.. to an innovation
processzl;. . via the transformation

z = R1 (yt — ) fK(yt‘thli 9)
PR 0 — b )% JPOIRE M — 1 )T (12

The description is completed by setting forth a conditional det R, )‘f [P« (U, X_1)]2b(u) du
density h(z|x) for the innovation process. We follow this o
recipe in describing the sequence of SNP densitiég|x,
0), whereK =1,2,....

The location function yis given by

completes the description of the SNP density. The vettor

contains the coefficientd = [ag,] of the Hermite function,

the coefficients I, B] of the location function, and the

coefficients py, P] of the scale function. To achieve identifi-
He, = bo + BX-a. (8) cation, the coefficiendy o is set to 1. The tuning parameters
_ _ ~arely, L, Ly, Ky, I, Ky, andly, which determine&K and the

It is presumed to depend oh, = L lags which is dimensionp of 6.

accomplished by putting leading columns Bfto zero as  Some characteristics &f(y:|%_1, 6) may be noted. IK,,

required. Ky, andL, are put to 0, theffi (%1, 0) defines a Gaussian
The scale functiofR is given by vector autoregression. IK, and L, are put to 0, then
fx(yi/%_1, 0) defines a non-Gaussian vector autoregression
vech R, ) = po + Plef_4 (9) model with homogeneous innovations Kif andK, are put

to 0, thenfx(y;/%.1, 0) defines a Gaussian ARCH model. If
where vechR) denotes a vector of lengtM(M + 1)/2 K« is put to 0, thenfx(yi%-1, 0) defines a non-Gaussian
[(Yor — e, )r--o» (1~ i )] and|-| denotes el- K«>0,Lp>0,L,>0,and, >0, thenfi(y{x.1, 0) defines

ementwise absolute value with the corner at zero smoothé eral nonlinear process with heterogeneous innovations.

slightly to permit differentiation. The scale function depenq% ow b¢3t to select the tuning parameteysl, Ly, Ky, |7,
: ; : « andl, is an open question. A strategy found to work well
on L, lagged (unnormalized) innovationsy; (- Ly ,) and

L, + L, = L laggedy in total. is to move upward along an expansion path using the BIC

. L criterion
For o with nonnegative integer elements, #t= z{* . . .

M — M . - - B - - -
Zw and|a| = S similarly for x®. Consider the density BIC = 5,(8) + (1/2)(pd/n) log (n),

[Pc(z X)]%b(2) -1 . _
he(zx) = T P70 a0 (10)  s(0) = nglog[fK(yt\yH,...,yH, o),
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FIGURE 1—TopP: IBM DAILY LoG PRICE MOVEMENTS, [AP;}; BoTTOM: DAILY HiGH/Low SPREAD |d.
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(Schwarz, 1978) to guide the search, models with small IV. Data

values of BIC being preferred.
The expansion path has a tree structure. Rather th
examining the full tree, the strategy is to expand firsLjn

IWe estimate the diffusion models described above using
ally data on IBM from January 1, 1985, to January 31,
with L, = L, = K, = K, = 0 until BIC turns upward. Next 1997, for 3,152 observations before differencing. The top

expand., with L, = K, = K, = 0, then expani, with K, = panel of figure 1 shows the close-close seigg series; the
0, and lasthyL, andK,. Itis useful to expand iK,, L,, andk, Pottom panel shows the daily high-low range sefigswe
at a feW |ntermed|ate Va'ues d].fr because |t Sometlmesconcentrate on a S|ng|e series because we eXpeCt users to
happens that the smallest value of BIC lies elsewhere wittgfnploy the methodology for pricing put/call options on
the tree. individual stocks, which are widely traded. Furthermore, the
Itis essential thafi(y:/ %1, 6n) not represent an explosiveso-called “leverage effect” (Nelson, 1991)—which is an
process, as discussed in detail by Tauchen (1998). Followiagymmetric relationship between price movements and
Gallant and Tauchen (1997b), we use a transformation \flatility—is much less pronounced in individual stock
each component of_; by a logarithmic spline that substan-{rice series than it is in broad stock price index series. Kim
tially enhances numerical stability and has a negligible effeand Kon (1994) present direct evidence on the very weak
on either evaluation df.(y;/x -1, 6,) over the data or on the leverage effect for most of the component stocks of the
value computed fod,,. DOW. Likewise, Tauchen et al. (1996) find no evidence for a
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leverage effect in four stock series, one of whichis IBM fora  TasLe 1.—OBJECTIVE FUNCTION VALUES: Two-FACTOR MODEL
time period that overlaps with the data here. The absence of a0 a2 B Pao Bz N x2(p) df p-value
a leverage effect is important because the HuII/Whithosemdose[Apd

formulae presume independence between the driving Brow- xx ok x 50k 23.156 9 0.006
nian motions of the stock series and its volatility. oxoow o 75k 23.013 9 0.006
* % % % % 50k 19640 8 0.012
* % % x x 75k 18415 8 0.018

V. Estimation of the Score Generator (Projection Step)
] ] ] spread|d;/
To implement the EMM estimator, we require a score

generator that adequately describes the dynamics of the
observed discrete time series. For reasons discussed in

Section 11.B, we use the SNP model. To determine a@ivariate{m "
appropriate SNP specification, we follow the protocol de- Y x % % x » 5Ok 147.935 60 2.2e-9
scribed in detail in Gallant and Tauchen (1998). We use the * % % * % 75k 145754 60 4.3e-9
BIC to move upwards along the upward expansion path unthote: * denotes a freely estimated parameter.

an initial tentative model is identified. Because BIC is

known to be conservative and therefore sometimes select an

overly parsimonious model, this model is then subjected tola th L d the bivari i
battery of diagnostics to see if further expansion is w glose, the univariate range, and the bivariate score genera

ranted. The diagnostic on the conditional mean is a regrlr%tr-;\/::I (:hte f;’ﬂggﬁgo dnas, ;\:ﬁj ?ﬁ:lgi;:m;?ocnhsizatstigi i
sion of each of the standardized residuals ' Y P

A = 1/24. Throughout we report the results based on
. . oA N simulation sizeN = 50,000 andN = 75,000.
2 = diag e 1(Y)l ¥t = Pe-a (Y0l Table 1 shows the value of the EMM objective function
i under various specifications of the two-factor model (3). As
on a constant ansd the unique elgment$ygfk, Y-k @ Vi seen from the top portion of the table, the specification with
Yi-k ® Y1« ® Y1, where diag¥i_1(y)] is the diagonal g, — 0 fails to fit the scores defined by the score generator
elements from the estimated conditional varianceand¥) fitted to the{Ap | series alone. Relaxing the restrictipg, =
is the estimated conditional mean, both of which condltlonglpro\,ideS an acceptable fit. Table 2 shows the parameter
onx_;. The diagnostic_on the conditional variance is tak_eé%timates, Wald-type standard deviations, and 95% confi-
from the same regression, except that the dependent varigflce intervals obtained by inverting criterion difference
is the squared standardized residuals. This test providgs; pased on the concentrated (profile) objective function
power against general nonlinear misspecification of elthgging an approximation procedure described in Gallant and
the conditional mean or the conditional variance function. 15chen (1997a, 1997c). Such confidence intervals inherit
For the univariate close-to-close daya= Apy, the initial  the invariance properties of criterion difference test, and,
candidate models selected by the BIC criteriojs= 1, yplike intervals based on the Wald test, they can be quite
L, =6,L, = 0,K, = 4,K, = 0. For this SNP specification, gsymmetric when the objective function surface is quite
the adjustecR®s in the diagnostic regressions in mean agsymmetric in that particular parameter. As seen from the
well as variance are less than 1%, so no further expansioRds portion of table 2, the point estimates of the two-factor

50k 387.406 19 0.000
75k 392.206 19 0.000
* 50k  44.138 18 b5.5e-4
* 75k 44860 18 4.3e-4

E R
E R

* % % ok
* % % ok

made. o _ . model fitted to theAp,| series appear reasonable, with all
For the univariate range serieg, = d, the initial yarameters save;, quite statistically significant. The find-
candidate model specificationlig= 6,L,; = 6,L, = 0,K; = jnq that a two-factor stochastic volatility diffusion model can

9, Ky = 0. All these SNP specificati%ns pass the diagnostijequately describe the marginal dynamics of a price
tests with the adjustel”s less than 1%, so again we do noovement serigdp;| alone is consistent with the findings of

expand the model further. , ~ Melino and Turnbull (1990), Engle and Lee (1996), Gallant
In the case of the bivariate serigs= (Ap; &), the initial 5ng Long (1997), among others.

candidate SNP specification selected by the BIC criterion iSHowever, as seen from the middle and bottom portions of
Lu=51L =6,L,=0,K,=9,1,=4,K,=0.These SNP (5pe 1, the two-factor model has considerable problems
specifications also pass the diagnostic tests with the adlusé%eounting for either the marginal dynamics of the range
R?s less than 1%. , series(d;} or the joint dynamics ofAp, di}. Also, in table 2,
In the following, we use these data-determined scofige point estimates are different depending upon whether the
generators to implement EMM estimation of various stochagsqre generator for the margin,] series or the joint
tic volatility diffusion models of financial price movementS{Aph dy series is used. Taken all together, the evidence in
tables 1 and 2 suggest that the success in fitting the marginal
dynamics of the price movement series is misleading, and, in
We employ the EMM method to estimate specifications @édct, the two-factor model misses important aspects of the
the stochastic volatility models using the univariate close-tprice dynamics.

VI. Estimation of the SDEs
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TABLE 2.—PARAMETER ESTIMATES: Two-FACTOR MODELS

Q1o Q22 B1o B2o B2z
close to closelAp)
0.017 -0.156 1.258 0.181 0.180
S Dev 0.022 0.052 0.039 0.037 0.031
95% lower —-0.019 -0.239 1.185 0.099 0.115
95% upper 0.061 -0.066 1.339 0.239 0.246
spread|d;/
1.108 -0.100 0.557 0.883 —-0.773
S Dev 0.068 0.096 0.480 0.869 0.258
95% lower 1.108 —0.132 0.557 0.732 —0.773
95% upper 1.146 —-0.100 0.649 0.883 -0.727
bivariate,|Ap;, di}
—0.002 -0.164 1.237 0.171 0.085
S Dev 0.016 0.021 0.012 0.012 0.010
95% lower —-0.027 —0.227 1.214 0.156 0.067
95% upper 0.024 -0.138 1.260 0.202 0.102

623

(1997). This characteristic of financial data volatility shows
up directly in our estimation of the three-factor diffusion
model.

Figure 2 shows the autocorrelation function |afy —
Apt| for the observed serieg\p)2!5% where Apt is the
predicted value from an AR(1) regression. The contribution
of APt is essentially negligible apart from the constant, but
it is used to ensure appropriate centering of the price
movement series before taking the absolute value. The
autocorrelation function of the absolute centered price
movement damps sharply at the first few lags and then very
slowly drifts towards zero at the longer lags. This pattern is
entirely consistent with that of the figures in Ding et al.
(1993), who attribute the shape to long memory in volatility.

The top panel of figure 3 shows the exact analogue of
figure 2 as predicted by the two-factor model at the point
(3) 95% lower and 95% upper denote boundaries of 95% confidence interval obtained by inverting the . ‘g
criterion difference test. estimates. Specifically, the top panel shows the autocorrela-
tion function of|Ap, — Apt| computed on a simulated series
P 25% Evidently, the two-factor model cannot mimic the

aracteristic shape of the autocorrelation function of the

Notes: (1) Simulation size is 75,000.
(2) S. Dev. denotes Wald standard deviation.

Table 3 shows the values of the objective function for tH
three-factor model (4) fitted to the scores for the bivaria . . ,
(Ap,, di] series; Table 4 shows the parameter estimates. olute _centered price movement. Likewise, the bottom
three-factor model is formally rejected at convention&@nel of figure 3 shows, along with a reference GARCH, the
significance levels, so perhaps one should view the ﬁtt@HtocorrgIatlon funcfuon of end-of-day volatility _evaluated
model as a calibrated model. One should also keep in mif@ the simulated trajectory of length 75,000. Evidently, the
the recent Monte Carlo evidence (Chumacero, 199tvo-factor model is more GARCH-like in appearance and
Andersen et al., 1998; Zhou, 1998) that EMM general§)0€s not capture the appearance of long memory.
provides quite reliable parameter estimates but, like otherFigure 4 contains plots of the same quantities as in figure
minimumchi-squared estimators, the omnikyftest can be 3 except the computations are done on a simulated trajectory
biased towards rejection. of length 75,000 from the three-factor model. The three-

The parameter estimates shown in table 4 are reasondBrior model can mimic the appearance of long memory. We
and generally statistically significant. The most-interestirgimphasize that the three-factor model is Markov, not
parameter estimates are those ogh and azz. The two long-memory model, and itis considerably easier to manipu-
components in the volatility process have very differetate and simulate. Nonetheless, its ability to mimic long
dynamics: The factoty is strongly mean reverting while memory is striking.
the factor Uy is extremely persistent. The existence of Figure 5 indicates why the three-factor model with two
long-run and short-run volatility components has beeatochastic AR(1) components mimics so much better the
proposed by Andersen and Bollerslev (1997), Ding arappearance of long memory in volatility. The top panel
Granger (1996), Engle and Lee (1993), and Liesenfettiows the spectral density of a fractionally integrated

TABLE 3.—OBJECTIVE FUNCTION: THREE-FACTOR MODELS FITTED TO IBM BIVARIATE SCORE GENERATOR

Q10 a2 o33 B1o B2o B2z Bso Ba3 N X2 (p) df p-value
bivariate[Ap;, dy}
* * * * * * * * 50k 124.725 57 5.78e-7
* * * * * * * * 75k 126.454 57 3.52e-7
Note: * denotes a freely estimated parameter.
TABLE 4.—PARAMETER ESTIMATES. THREE-FACTOR MODEL
Qo a2 az3 B1o B2o B2z B3o Bs3
bivariate{Ap, di}
—-0.007 —-0.231 —0.268e-3 1.383 0.184 0.142 0.0076 0.026
S Dev 0.019 0.024 0.275e-3 0.133 0.009 0.035 0.0021 0.006
95% lower —0.010 —0.233 —0.269e-3 1.382 0.183 0.134 0.0076 0.026
95% upper —0.001 —0.228 —0.259e-3 1.387 0.185 0.148 0.0077 0.027

Notes: (1) Simulation size is 75,000.
(2) S. Dev. denotes Wald standard deviation.
(3) 95% lower and 95% upper denote boundaries of 95% confidence interval obtained by inverting the criterion difference test.
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FIGURE 2—SAMPLE AUTOCORRELATION FUNCTION OF CENTEREDABSOLUTE PRICE MOVEMENTS, | AP — Ap*|.
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Top panel is the raw autocorrelegram function; bottom panel is with smoothing at longer lag lengths.

process with parameted = 0.40 along with the best fractionally integrated process. The best approximation is
least-squares approximation from an AR(1) model. Thabtained via solving
AR(1) approximation is obtained via

100 1 0.40
100 0.40 2 2 min -
min E ! - o a1,01,82,02 j=1 {1 — cos {) )
ao {51 (|1 — cos ) 1+ a2 — 2a, cos () ) ) ,
(O] (o
where\; = (j/100)w. Evidently, the AR(1) cannot match 1+a—2acosq;) 1+ a2—2acos)

very well the spectral density of the fractionally integrated

process over the entire domain. However, the lower parfed seen from the bottom panel of figure 5, the approxima-
shows the best least-squares approximation of the specti@h is superb. One can even view the situation the other way
density of the sum of two AR(1) processes to that of treround: Arguably, the truth is a two-component volatility
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FIGURE 3—AUTOCORRELATION FUNCTIONS AT TWO-FACTOR MODEL.
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Top: Autocorrelation function ofAp — AB | implied by the two-factor model; bottom: autocorrelation function of end-of-day volatility implied by the two-factor model with a reference GARCH.

model that is well approximated by a fractionally integrateathereo,; represent stochastic volatility antk is Brownian
process. motion. Assume the risk-neutral dynamics are

VII.  Extracting the Integrated Volatility dp = dt + o dW (13)

r — Eo-gt
A. Background ) )
' _ ' o wherer is the interest rate, assumed to be constant. Hull and
Consider the pricer, at timet of a derivative asset thatwhite (1987) show that, under the assumption of no-risk

depends upon the value of a security pi&g = €™+, J>  premium on the volatility factor, the price, of the claim is
0, and assume the dynamics of the progesse given as

dp = adt + o dW, (12)  m=EJ(B (S a1, )] (14)
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FIGURE 4—AUTOCORRELATION FINDINGS AT THREE-FACTOR MODEL
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Top: Autocorrelation function afAp — Ap|implied by the three-factor model; bottom: autocorrelation function of end-of-day volatility implied by the three-factor model with a refere@ie. GA

whereE ((-) is the conditional expectations operatBr(-) is oped in Gallant and Tauchen (1998) in order to estimate
the Black-Scholes price of the derivative claim, and P(Ver+3/F 1), the conditional density ofy.; given F . This
L density can be used to compute the empirical analogue of
J equation (14):
Vitrs = 3_’; 0'p2),t+s ds (15) | o
W?: E[B (31 ‘]Vt,t+J1 r! ‘])‘ Ft]
is the mean integrated local variance over the life of the = f B (S, Vegea 1, I) P(Verra|F o) dVipss.
derivative. Note that,,. ; is, in general, a nontrivial random
variable at timd which is integrated out in equation (14). There is a subtle distinction between equation (14) and (16),
Let F denote the information available to the analyst @s the former expectation is taken with respect to a larger
time t. To be specific, in our empirical workF, is information set. Among other things, this larger information
[Py dt_j]j‘;é. We extend the reprojection technique devebet includes the unobservable stochastic local variance

(16)
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FIGURE 5—SPECTRAL DENSITY APPROXIMATIONS

One Component Approximation to Long Memory with d=0.40
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The top panel shows the best approximation of the spectral density of an AR(1) process (solid) to that of a fractionally integrated processdMetétipa0.40; the bottom panel shows the best approximation
of the spectral density of the sum of two AR(1) processes (solid) to that of a fractionally integrated process (*) with paranfeter.

processsZ. The econometric estimator pfv,, ;| F ;) devel- As a simpler alternative yet, one might consider estimat-
oped here is potentially useful for many purposes, includinigg
for example, forecasting the course of the local variance

Vitrs = P (VeeolF o) (18)

* —
Vies = Bl B (17) whereP (-|-) denotes the linear projection operator, i.e., the
= VigraP (Ve g F o) Vg linear regression operator. The linear projectiompf; onto
F. provides an easy-to-compute forecast of the course of
or the pricing calculations in equation (16). variance over the life of the derivative. Also, it might be used
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in a pricing calculation like Under conditions given in Gallant and Tauchen (1989, 1998)
and Gallant and Long (1997)(v,/X) is a consistent estimate
= B (S, Va1, J) (19) of the conditional density of the mean integrated variance.

_ _ _ _ Apart from pricing calculations such as equation (16), the
as a practical compromise to either equation (14) or (16). conditional density (20) can be used directly for extracting
from the observed data the latent mean integrated variance

B. The Conditional Distribution of the Integrated via the computation
Local Variance
The task is to estimate the conditional distribution of the J VpM,[%)dv;,  t=L+1,...,n, (21)

mean integrated forward varianeg, ; = (1) fOJ Ooysds o

conditional On{Apth; dt*j}jzol . Given that we are US|ng aWhere, it will be recalled thai( denotes the observed gata
simulation estimator, this is conceptually straightforwarg@lue. To summarize, simulated data are used to detenine
The idea is to generate a long simulation from the estimat@fd thereby the functional form g#(vy|x). Then, p(v,|%)
SDE model, nonparametrically estimate the conditiongives us the predictive density af.; at observation poirtt
distribution on that simulation, and then evaluate the condi-Figure 6 shows this variance-extraction calculation using
tional distribution at the observed data. the estimated two-factor model. The three panels show time

The mechanics of the calculation are this: [, a[}tN:l series plots of the square roots of the conditional means of
denote a realized simulated trajector\pf, d, and 1467 ieon — the integrated forward variancd ¢5p(vs|%) dvy)Y2, for J
denote the corresponding continuous recore;pfThe simula-  ¢orresponding to one day ahead, one month ahead, and one
tion is genera_lt_ed using the_ EMM _estlmates of the dlffuslc_)g}ear ahead, with each integrated variance annualized to aid
These quantities are readily available from the simulatiGerpretation. Interestingly, the daily forward variance is
process.used to implement th_e EMM estimator, except tktfﬂite active, as is the monthly, while the yearly is nearly
the continuous record@? Jicjo. is actually approximated by constant
avery fine weak-2 discretization. Define Figure 7 shows this variance-extraction calculation using

1 the estimated three-factor model. As is perhaps not surpris-
J . .
Vi = —f (}gﬁs ds t=1,2,... N—J, ing, both the '[W(_)—. and the three-factor m(_)dels give nearly
J 0 the same conditional means of the daily and monthly
integrated forward variance. However, the two models differ
C§Jbstantial|y for the yearly integrated forward variance, with
the three-factor model still showing the effects of shocks one
year out. This contrast is directly attributable to the capabil-
ity of the three-factor model to mimic the appearance of long
memory in volatility.

The reprojection technique presented here is a model-
ased procedure that makes use of the daily price movement
we drop thet subscript and writg(v,|X) for the conditional and'range datg: Itis different frqm the direct measurement of
density. To determing(v;|x), we adapt the SNP density offealized volatility approach p|qneered by French et al.
Gallant and Tauchen (1989) as described above. The S{#87) and followed to the ultrahigh frequency by Andersen

estimate density estimatefigw|x, 8), wherew = log (v;), @nd Bollerslev (1998) and Andersen, Bollerslev, et al.
(1998). Direct measurement relies on the fact &f@tould,

which is theJ-step ahead mean integrated forward varian
and let

%= (AP, Oy, - .. APy, db).

The idea is to determine the conditional dengify; . ;| F 1)
by nonparametrically estimating within the simulation thg
conditional density op(V;..;/%). To avoid clutter, at times

R N-J in principle, be extracted from continuous recOpdscio-
6 = argmax E log [ (W4 5/%, 0)], Doing so is not actually feasible in practice as the continuous
6 t=L+1 record is not available. However, for a very laige-i.e., for

- - . . . ) smalld = 1/K—one has
Wirsy = log (Vie+), andfy (-], 0) is defined in equation (11).

As for the tuning parameters, we $gt= 0, because, in this K

context, the explanatory variables are not lags of the 2 J‘ vt d
. i 146 — Pt ~ s

dependent variable, and we set the others generously large él(pt 116~ Pt 1) -1 7ps

an effort to pin down the density with high numerical

accuracy.lis huge; we usél = 75,000.) Put Clearly, there is more information in ultrahigh-frequency
data than there is in close-to-close and range data, so direct
(20) measurement produces a more accurate integrated variance

~ 1
p(v; xX) = f[log (v5)|x, 6] —. . S
b(vs1x) = fllog (v) ]vJ measure, as documented by simulation in Andersen and
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FIGURE 6—Two-FACTOR MODEL: ROOT EXPECTED INTEGRATED FORWARD VARIANCE
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(f V3P (vs| %, 5) dv;)12, one day, one month, and one year forward, annualized.

Bollerslev (1998). A potential drawback, however, is that VIII.  Conclusion
direct measurement entails storage and manipulation of . . . -
huge data sets, and it still leaves open the matter of Obtain-wémplement.atlon of the Hl.J” and White optlon_s-prlcmg
the conditional distribution of the integrated variange, ormula requires both an estlmgte of the stochgstlc volatility
which is needed to compute the expectation required TPd€! governing price dynamics and an estimate of the
implement equation (14). On the other hand, ourapproacﬁ:qu't'onal distribution 'of the for\_/vard integrated variance
potentially useful for understanding volatility dynamic&iven the observed variables. This paper addressed both of
using very long historical data sets in which the daily randBese requirements. Using daily stock price data on close-to-
has been recorded but the within-day tick data were di@ose log price movement and the high/low range, we found
carded long ago. Finally, we emphasize the reprojectigﬁﬁt the standard two-factor stochastic volatility models did
approach delivers a diffusion model's predicted integraté@t fit all aspects of the data very well and that a more
variance. The prediction can indeed disagree with actggneral three-factor model did better. In particular, the
integrated variance, if the model is misspecified. Thifree-factor model captured the extreme persistence in
situation is one the model's user certainly needs to kndimancial volatility attributed to fractional integration (long-
about, and figures like figure 7 would be useful for makingnemory) by Ding et al. (1993), Baillie et al. (1996),
such assessments. Bollerslev and Mikkelsen (1996), and others. We also
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FIGURE 7—THREE-FACTOR MODEL: ROOT EXPECTED INTEGRATED VARIANCE
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adapted and extended the reprojection technique of Gall&aillie, R. T., T. Bollerslev, and H. O. Mikkelsen, “Fractionally Integrated

and Tauchen (1998) to estimate the conditional distribution ~ Generalized Autoregressive Heteroskedasticitgfirnal of Econo-
metrics73 (1996), 3-33.

of the forward integrated variance given the observeflckers, s., “variances of Security Price Returns Based on High, Low,
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