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Abstract—A common model for security price dynamics is the continuous-
time stochastic volatility model. For this model, Hull and White (1987)
show that the price of a derivative claim is the conditional expectation of
the Black-Scholes price with the forward integrated variance replacing the
Black-Scholes variance. Implementing the Hull and White characteriza-
tion requires both estimates of the price dynamics and the conditional
distribution of the forward integrated variance given observed variables.
Using daily data on close-to-close price movement and the daily range, we
find that standard models do not fit the data very well and that a more
general three-factor model does better, as it mimics the long-memory
feature of financial volatility. We develop techniques for estimating the
conditional distribution of the forward integrated variance given observed
variables.

I. Introduction

This paper has two objectives: The first is to extend and
implement methods for estimating diffusion models of
securities prices with unobserved stochastic volatility. Con-
sistent with several recent studies, we find that a two-factor
model can generally account for the dynamics of observa-
tions on the daily close-to-close price movement for modest
time spans (ten to twenty years). One of the factors is the
price process itself and the second is its local volatility.
However, we also find that the two-factor model cannot
account for either the marginal dynamics of the daily range,
viewed as a single series, nor for the joint bivariate dynamics
of the daily close-to-close price movement series and daily
range series taken together. We implement a three-factor
model in which local price volatility is represented as the
sum of two separate volatility factors, each governed by its
own diffusion process. We find that the three-factor model
does a better job of fitting the data, and, in particular, mimics
the long-memory type behavior of financial volatility (Ding
et al., 1993; Baillie et al., 1996; Bollerslev & Mikkelsen,
1996). The three-factor model is Markov with two unob-
served state variables. Among other things, the Markov
property makes the model relatively easy to simulate as it
circumvents all computational difficulties associated with
fractional integration calculations (Bollerslev & Mikkelsen,
1996; Gallant et al., 1997).

The second objective is to develop methods for extracting
from observable data the conditional mean of—and, more
generally, the conditional distribution of—the integrated
local price variance over an arbitrary horizon of finite length.
This objective is motivated by Hull and White (1987), who
show that, under certain assumptions, the price of a deriva-

tive claim can be expressed as the expected value of the
Black-Scholes price evaluated at the integrated volatility.
The methods are extensions of techniques developed in
Gallant and Tauchen (1998), who generated an estimator of
the discrete-time conditional density of the observed secu-
rity price process given its past as implied by a diffusion
model. Here we estimate the conditional distribution of the
unobserved forward integrated volatility process given the
observed history. In our application, the observed history
consists of lags of two series: the daily close-to-close log
price movement and high/low range series. The techniques
are completely general, however, and do not require the
range information. They could be applied, for example, with
just the price series alone, and sampled either more finely or
more coarsely than the daily frequency.

II. Setup

Let pt denote the log of a financial price series evolving in
continuous time. We shall describe and subsequently esti-
mate a class of stochastic differential equation models for
the price series. Our models are stochastic volatility diffu-
sion models. A basic form is

dpt 5 a1tdt 1 sptdW1t

d log (spt) 5 a2tdt 1 b2tdW2t

(1)

where the first equation describes the evolution of the price
process and the second describes that of the volatility
process. In the above,a1t is the local drift of the price,spt is
the local volatility, whilea2t andb2t are the local drift and
diffusion of the log volatility process, andW1t andW2t are
independent Brownian motions. The model (1) is a diffusion
stochastic volatility model of the type studied by Nelson
(1992), Andersen and Lund (1997), and many others. In
what follows, we let 5pt6t[[0,T ] denote a realization from
model (1), we let5pt6t50,1,...,n denote a discrete, equispaced
sampling of lengthn of the diffusion, and we let5Dpt6t51,...,n,
whereDpt 5 pt 2 pt21 denote the price movement series.

With rare exception, one observes only the discrete price
process5pt6t50,1,...,n and not the volatility,spt, so the model (1)
contains an unobserved Markov state variable. For reasons
discussed in Hansen and Scheinkman (1995), Tauchen
(1997), and Gallant and Tauchen (1997a), models with
unobserved state variables are well adapted to estimation
using simulation-based techniques such as Indirect Infer-
ence (Gourieroux et al., 1993), Simulated Method of Mo-
ments (Ingram & Lee, 1991; Duffie & Singleton, 1993), or
Efficient Method of Moments (EMM) (Gallant & Tauchen,
1997a, 1998). For example, Engle and Lee (1997) estimate
specifications of model (1) using the EMM technique

Received for publication September 2, 1998. Revision accepted for
publication May 20, 1999.

* University of North Carolina–Chapel Hill, Credit Suisse, and Duke
University, respectively.

This work was supported by the National Science Foundation. The
corresponding author is George Tauchen, Department of Economics, Duke
University, Box 90097, Durham NC 27708-0097 USA; e-mail get@
econ.duke.edu.

The Review of Economics and Statistics,November 1999, 81(4): 617–631

r 1999 by the President and Fellows of Harvard College and the Massachusetts Institute of Technology



(Gallant & Tauchen, 1997a) on daily data on S&P returns,
the DM/$ exchange rate, and weekly Treasury Bill yields.
Gallant and Long (1997) do so as well for daily DM/$ data,
while Andersen and Lund (1997) and Gallant and Tauchen
(1998) do so using weekly Treasury Bill yields.

In estimation using discretely sampled data5pt6t50,1,...,n,
information on the level of volatilityspt, and the trajectory
of volatility 5sps6s[[t21,t] over the sampling interval, comes
indirectly from the magnitude of the unexpected time price
movement0Dpt 2 Et21(Dpt) 0 . Typically, the magnitude of
the unexpected price movement is a very noisy indicator of
the trajectory of volatility over the sampling interval
(Andersen & Bollerslev, 1998).

Financial economists have long known that the daily
range of the price series contains extra information about the
course of volatility over the day. Within a constant volatility
framework, Garman and Klass (1980) and Parkinson (1980)
show that use of the range can improve volatility estimates
by as much as a factor of eight over the standard estimate.
Beckers (1983) and Hsieh (1991) present related results and
strong empirical documentation on the efficiency improve-
ment.

This paper adopts the stochastic volatility framework of
model (1). In this context, Andersen and Bollerslev (1998)
present simulation evidence that there is extra information
about the integrated daily varianceet21

t
sps

2 ds embodied in
the daily range. In our notation, the range is

dt 5 max
t21,t#t

5pt 2 pt216 2 min
t21,t#t

5pt 2 pt216,

t 5 1, 2, . . . .

Using results on subordination and the running maximum of
Brownian motion in Karatzas and Shreve (1991), one can
show that

dt 5
D (H1 1 H2) 1et21

t
sps

2 ds2
1/2

(2)

where H1 and H2 are negatively correlated half-Gaussian
random variables. Thus, the range is seen to be an indicator
variable for the integrated daily variance.

We extend previous work dealing with daily range data by
actually estimating and testing continuous-time models in a
stochastic volatility setting. We estimate various specifica-
tions of model (1) using price movement data5Dpt6t51,...,n and
range data5dt6t51,...n, each taken separately. We also estimate
specifications of model (1) and some generalizations using
the joint price movement and range series5Dpt, dt6t51,...n. We
find that indeed the range series contains extra information
about the appropriate specification of the diffusion model
and the trajectory of volatility.

For notational reasons, it proves convenient to consider an
underlying state vectorUt and specify its dynamics. We view
pt and its drift and diffusion as functions of the state vector.

In the version we call the two-factor model,Ut is 2 3 1 and
is assumed to evolve as

Two factor:

dU1t 5 a10dt 1 b10 exp (U2t)dW1t

dU2t 5 a22U2tdt 1 (b20 1 b22U2t)dW2t

(3)

whereW1t andW2t are independent Brownian motions. We take

pt 5 U1t

spt 5 b10 exp (U2t).

The first equation of (3) governs the evolution of the price
series. It allows for a drift componenta10dt, although we
typically expect the drift to be very small (although above
the instantaneous risk-free rate) as financial price series
display very modest mean reversion and act more as
nonstationary integrated processes. The componentU2t

reflects stochastic volatility in the evolution of the price
process, and we refer to the second componentU2t of the
state as the volatility component, or just volatility for short.
The absence of the intercept in the drift componentU2t

reflects a normalization for identification. The specification
(3) is the diffusion analogue of an exponential GARCH
(E-GARCH) studied by Nelson (1992), Drost and Nijman
(1993), and Drost and Werker (1996), with the generaliza-
tion that the local volatility ofU2t is itself state dependent.

As will be seen, the preceding setup does a reasonably
good job of fitting the observed price movement series
5Dpt6t51,2,.... However, it does a very poor job of fitting the
dynamics of the range series5dt6t51,2,...and the joint dynamics
of the two series together5Dpt, dt6t51,2,.... We find that
introduction of a second stochastic volatility factor—thus
bringing the total number of factors to three—improves the
fit. The most general model we consider is

Three Factor:

dU1t 5 a10dt 1 b10 exp (U2t 1 U3t)dW1t

dU2t 5 a22U2tdt 1 (b20 1 b22U2t)dW2t

dU3t 5 a33U3tdt 1 (b30 1 b33U3t)dW3t.

(4)

The EMM estimator we employ is a Simulated Method of
Moments (SMM) estimator. Such estimators work by using
very long simulations from (3) or (4) to compute predicted
moments of observed discrete-time data. Let5 p̃t6t50,1,...,n

denote the observed log price series. As is typical of nearly
all financial levels series, this series is an I(1) process, so we
use first differences5 p̃t 2 p̃t216t51,2,...,n. Nonstationarity of the
levels series creates some mild complications in terms of the
simulation strategy. What we do, in effect, is simulate the
daily price movement process

ps 2 pt s [ [t, t 1 1)
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for integert while preserving the trajectories ofU2t andU3t

across the days. We use a weak order 2 scheme (Kloeden &
Platen, 1992) to generate simulated numerical approxima-
tions to the stochastic differential equations.

With the continuous-time5ps6 process thus generated, we
take

Dpt 5 pt 2 pt21

dt 5 max
t21,s#t

5ps 2 pt216 2 min
t21,s#t

5ps 2 pt216
(5)

for t 5 1, 2, . . . . Theextremes are taken over the half-open
interval (t 2 1, t] to be consistent with the way data are
recorded; in the theory, the continuous extension is used if
needed to make the extremes well defined.

III. Efficient Method of Moments

A. Details

Let 5yt6t52`
` , yt [ RM, be a discrete stationary time series.

In this paper,5yt6 is either 5Dpt6, 5dt6, or 5Dpt, dt6. When, as
here,5yt6 comes from a discretely sampled SDE system, then
the SDE specification implicitly determines the density
p( yt2L, . . . ,yt 0r) of a contiguous stretch of lengthL 1 1
from 5yt6, wherer [ Rpr is a vector of unknown system
parameters, namely, thea’s andb’s of either (3) or (4). The
fundamental problem that blocks straightforward applica-
tion of standard statistical methods is that an analytic
expression forp(yt2L, . . . ,y0 0r) is not available so that, e.g.,
maximum-likelihood or Bayesian estimation is infeasible.
However, by using simulation, an expectation of the form

Er( g) 5 e · · ·e g( y2L, . . . ,y0)

3 p( y2L, . . . ,y0 0r)dy2L · · ·dy0

can be computed for givenr. That is, for givenr, one can
generate a simulation5 ŷt6t52L

N from the system and put

E r( g) 5
1

N o
t50

N

g( ŷt2L, . . . , ŷt),

with N large enough that Monte Carlo error is negligible.
Gallant and Tauchen (1996a) proposed a minimumchi-

squared estimator forr in this situation, which they termed
the effıcient method of moments(EMM) estimator. Being
minimum chi-squared, the optimizedchi-square criterion
can be used to test system adequacy. The moment equations
that enter the minimumchi-squared criterion of the EMM
estimator are obtained from the score vector (­/­u) log f ( yt 0
yt2L, . . . ,yt21, u) of an auxiliary modelf (yt 0yt2L, . . . , yt21, u)
that is termed thescore generator.Gallant and Long (1997)
show that, if the score generator is the SNP density
fK( yt 0yt2L, . . . ,yt21, u) described below, then the efficiency
of the EMM estimator can be made as close to that of
maximum likelihood as desired by takingK large enough.

The first step in computing the EMM estimatorr̂n is to use
the score generator

f ( yt 0yt2L, . . . ,yt21, u) u [ Q (6)

to summarize the data5 ỹt6t52L
n by computing the quasi-

maximum-likelihood estimate

ũn 5 argmax
u[Q

1

n o
t50

n

log [ f ( ỹt 0 ỹt2L, . . . , ỹt21, u)],

and the corresponding estimate of the information matrix

Ĩn 5
1

n o
t50

n

3 ­

­u
log f ( ỹt 0 x̃t21, ũn)4 (7)

3 3 ­

­u
log f (ỹt 0 x̃t21, ũn)48 ,

wherext21 5 ( yt2L, . . . ,yt21). The estimator (7) presumes
the score generator (6) provides an adequate statistical
approximation to the transition density of the data, so that
5(­/­u) log f ( ỹt 0 x̃t21, ũn)6 is essentially serially uncorrelated.
If (6) is not adequate, then one of the more complicated ex-
pressions forĨn set forth in Gallant and Tauchen (1996a)
must be used, although the EMM estimator is still consistent
and asymptotically normal.

Define

m(r, u) 5 Er 5 ­

­u
log [ f ( y0 0y2L, . . . ,y21, u)]6

which is computed by averaging over a long simulation

m(r, u) 8
1

N o
t50

N ­

­u
log [ f ( ỹt 0 ỹt2L, . . . , ỹt21, u)].

The EMM estimator is

r̂n 5 argmin
r[Rpr

m8(r, ũn)( Ĩn )21m(r, ũn).

The estimator is consistent and asymptotically normally
distributed with asymptotic distribution given in Gallant and
Tauchen (1996a). Under the null hypothesis thatp( y2L, . . . ,
y0 0r) is the correct model,n times the minimized value of the
objective function is asymptoticallychi-squared onpu 2 pr

degrees of freedom.

B. Projection

One way to ensure that the selected score generator is a
good approximation is to use a sieve estimator based on a
nested sequence of finite dimensional parametric models
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fK( y0x, u), K 5 1, 2, . . . . As noted above, the quasi-
maximum-likelihood estimateũn of the parameter vectoru
in fK( y0x, u) summarizes the data; the larger isK, the more
detailed the summary. This data reduction is termed the
projection stepof the EMM estimation procedure. The
specific sieve that we employ is a modified Hermite series
expansion termedSNP.The basic idea is that, because the
square root of a density is anL2 function and the Hermite
functions are dense inL2, the square of a Hermite expansion
can closely approximate any density. Theoretical details are
in Gallant and Nychka (1987).

Recall that, under our assumptions, the stationary distribu-
tion of a contiguous subsequenceyt2L, . . . ,yt has a density
p( y2L, . . . ,y0) defined overRl, wherel 5 M(L 1 1). Put
y 5 y0, x 5 x21 5 ( y2L, . . . , y21), and write the stationary,
marginal, and conditional densities asp(x, y) 5 p( y2L, . . . ,
y0), p(x) 5 e p( y2L, . . . ,y0) dy0, andp( y0x) 5 p(x, y)/p(x),
respectively. Let5 ỹt6t51

n denote the realization from the
process5yt6t52`

` that is available for analysis.
A standard method of describing a conditional density

f ( y0x, u) is to set forth a location function µx and a scale
functionRx that reduce the process5yt6t52`

` to an innovation
process5zt6t52`

` via the transformation

zt 5 Rxt21

21 ( yt 2 µxt21
).

The description is completed by setting forth a conditional
density h(z0x) for the innovation process. We follow this
recipe in describing the sequence of SNP densitiesfK( y0x,
u), whereK 5 1, 2, . . . .

The location function µx is given by

µxt21
5 b0 1 Bxt21. (8)

It is presumed to depend onLu # L lags which is
accomplished by putting leading columns ofB to zero as
required.

The scale functionRx is given by

vech (Rxt21
) 5 r0 1 P0e*t21 0 (9)

where vech (R) denotes a vector of lengthM(M 1 1)/2
containing the elements of the upper triangle ofR, e*t21 5
[( yt2Lr

2 µxt2Lr21
), . . . , (yt21 2 µxt22

)], and 0 · 0 denotes el-
ementwise absolute value with the corner at zero smoothed
slightly to permit differentiation. The scale function depends
on Lr lagged (unnormalized) innovations (yt 2 µxt21

) and
Lr 1 Lu # L laggedyt in total.

For a with nonnegative integer elements, letza 5 z1
a1 . . .

zM
aM and 0a 0 5 Sk51

M ak; similarly for xb. Consider the density

hK(z0x) 5
[PK(z, x)] 2f(z)

e [PK(u, x)] 2f(u) du
(10)

formed from the polynomial

PK(z, x) 5 o
a50

Kz

1o
b50

Kx

abaxb2 za

where f(z) 5 (2p)2M/2e2z8z/2. In equation (10), the term
PK(z, x)Îf(z) is a Hermite function of degreeKz in z whose
coefficients are polynomials of degreeKx in x, which, as
noted above, approximates the square root of a density and
therefore enters (10) as the square. The shape of the
innovation densityhK(zt 0xt21) varies withxt21 which permits
hK(zt 0xt21) to exhibit general conditional shape heterogene-
ity. By putting selected elements of the matrixA 5 [aba] to
zero,PK(z, x) can be made to depend on onlyLp # L lags
from x. In applications whereM is large, the coefficientsaba

corresponding to monomialsza that represent high-order
interactions can be set to zero with little effect on the
adequacy of approximations. LetIz 5 0 indicate that no
interaction coefficients are set to zero,Iz 5 1 indicate that
coefficients corresponding to interactionsza of order larger
thanKz 2 1 are set to zero, and so on; similarly forxb andIx.

The change of variablesyt 5 Rxt21
zt 1 µxt21

to obtain the
density

fK( yt 0xt21, u)

5
5PK[Rxt21

21 (yt 2 µxt21
), xt21]62f[Rxt21

21 (yt 2 µxt21
)]

0det (Rxt21
) 0e [PK(u, xt21)] 2f(u) du

(11)

completes the description of the SNP density. The vectoru
contains the coefficientsA 5 [aba] of the Hermite function,
the coefficients [b0, B] of the location function, and the
coefficients [r0, P] of the scale function. To achieve identifi-
cation, the coefficienta0,0 is set to 1. The tuning parameters
areLu, Lr, Lp, Kz, Iz, Kx, andIx, which determineK and the
dimensionpK of u.

Some characteristics offK( yt 0xt21, u) may be noted. IfKz,
Kx, andLr are put to 0, thenfK( yt 0xt21, u) defines a Gaussian
vector autoregression. IfKx and Lr are put to 0, then
fK( yt 0xt21, u) defines a non-Gaussian vector autoregression
model with homogeneous innovations. IfKz andKx are put
to 0, thenfK( yt 0xt21, u) defines a Gaussian ARCH model. If
Kx is put to 0, thenfK( yt 0xt21, u) defines a non-Gaussian
ARCH model with homogeneous innovations. IfKz . 0,
Kx . 0,Lp . 0,Lu . 0, andLr . 0, thenfK( yt 0xt21, u) defines
general nonlinear process with heterogeneous innovations.

How best to select the tuning parametersLu, Lr, Lp, Kz, Iz,
Kx, andIx is an open question. A strategy found to work well
is to move upward along an expansion path using the BIC
criterion

BIC 5 sn(ũ) 1 (1/2)(pK/n) log (n),

sn(u) 5 2
1

n o
t50

n

log [ fK( ỹt 0 ỹt2L, . . . , ỹt21, u)],
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(Schwarz, 1978) to guide the search, models with small
values of BIC being preferred.

The expansion path has a tree structure. Rather than
examining the full tree, the strategy is to expand first inLu

with Lr 5 Lp 5 Kz 5 Kx 5 0 until BIC turns upward. Next,
expandLr with Lp 5 Kz 5 Kx 5 0, then expandKz with Kx 5
0, and lastlyLp andKx. It is useful to expand inKz, Lp, andKx

at a few intermediate values ofLr because it sometimes
happens that the smallest value of BIC lies elsewhere within
the tree.

It is essential thatfK( yt 0xt21, ũn) not represent an explosive
process, as discussed in detail by Tauchen (1998). Following
Gallant and Tauchen (1997b), we use a transformation of
each component ofxt21 by a logarithmic spline that substan-
tially enhances numerical stability and has a negligible effect
on either evaluation offK( yt 0x t21, ũn) over the data or on the
value computed forũn.

IV. Data

We estimate the diffusion models described above using
daily data on IBM from January 1, 1985, to January 31,
1997, for 3,152 observations before differencing. The top
panel of figure 1 shows the close-close series5Dpt6 series; the
bottom panel shows the daily high-low range series5dt6. We
concentrate on a single series because we expect users to
employ the methodology for pricing put/call options on
individual stocks, which are widely traded. Furthermore, the
so-called ‘‘leverage effect’’ (Nelson, 1991)—which is an
asymmetric relationship between price movements and
volatility—is much less pronounced in individual stock
price series than it is in broad stock price index series. Kim
and Kon (1994) present direct evidence on the very weak
leverage effect for most of the component stocks of the
DOW. Likewise, Tauchen et al. (1996) find no evidence for a

FIGURE 1—TOP: IBM DAILY LOG PRICE MOVEMENTS, 5DPT 6; BOTTOM: DAILY HIGH/LOW SPREAD 5dt6.
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leverage effect in four stock series, one of which is IBM for a
time period that overlaps with the data here. The absence of
a leverage effect is important because the Hull/White
formulae presume independence between the driving Brow-
nian motions of the stock series and its volatility.

V. Estimation of the Score Generator (Projection Step)

To implement the EMM estimator, we require a score
generator that adequately describes the dynamics of the
observed discrete time series. For reasons discussed in
Section III.B, we use the SNP model. To determine an
appropriate SNP specification, we follow the protocol de-
scribed in detail in Gallant and Tauchen (1998). We use the
BIC to move upwards along the upward expansion path until
an initial tentative model is identified. Because BIC is
known to be conservative and therefore sometimes select an
overly parsimonious model, this model is then subjected to a
battery of diagnostics to see if further expansion is war-
ranted. The diagnostic on the conditional mean is a regres-
sion of each of the standardized residuals

ẑt 5 diag [Ŝt21(yt)]21/2[ yt 2 µ̂t21( yt)]

on a constant and the unique elements of5yt2k, yt2k ^ yt2k,
yt2k ^ yt2k ^ yt2k6k51

5 , where diag [Ŝt21( yt)] is the diagonal
elements from the estimated conditional variance and µˆ t21(yt)
is the estimated conditional mean, both of which conditional
on xt21. The diagnostic on the conditional variance is taken
from the same regression, except that the dependent variable
is the squared standardized residuals. This test provides
power against general nonlinear misspecification of either
the conditional mean or the conditional variance function.

For the univariate close-to-close data,yt 5 Dpt, the initial
candidate models selected by the BIC criterion isLu 5 1,
Lr 5 6, Lp 5 0, Kz 5 4, Kx 5 0. For this SNP specification,
the adjustedR2’s in the diagnostic regressions in mean as
well as variance are less than 1%, so no further expansion is
made.

For the univariate range series,yt 5 dt, the initial
candidate model specification isLu 5 6,Lr 5 6,Lp 5 0,Kz 5
9, Kx 5 0. All these SNP specifications pass the diagnostic
tests with the adjustedR2’s less than 1%, so again we do not
expand the model further.

In the case of the bivariate seriesyt 5 (Dpt dt), the initial
candidate SNP specification selected by the BIC criterion is
Lu 5 5, Lr 5 6, Lp 5 0, Kz 5 9, Iz 5 4, Kx 5 0. These SNP
specifications also pass the diagnostic tests with the adjusted
R2’s less than 1%.

In the following, we use these data-determined score
generators to implement EMM estimation of various stochas-
tic volatility diffusion models of financial price movements.

VI. Estimation of the SDEs

We employ the EMM method to estimate specifications of
the stochastic volatility models using the univariate close-to-

close, the univariate range, and the bivariate score genera-
tors. In the computations, we scale timet such that the
interval (t, t 1 1] is one day and the simulation step size is
D 5 1/24. Throughout we report the results based on
simulation sizeN 5 50,000 andN 5 75,000.

Table 1 shows the value of the EMM objective function
under various specifications of the two-factor model (3). As
seen from the top portion of the table, the specification with
b22 5 0 fails to fit the scores defined by the score generator
fitted to the5Dpt6 series alone. Relaxing the restrictionb22 5
0 provides an acceptable fit. Table 2 shows the parameter
estimates, Wald-type standard deviations, and 95% confi-
dence intervals obtained by inverting criterion difference
test based on the concentrated (profile) objective function
using an approximation procedure described in Gallant and
Tauchen (1997a, 1997c). Such confidence intervals inherit
the invariance properties of criterion difference test, and,
unlike intervals based on the Wald test, they can be quite
asymmetric when the objective function surface is quite
asymmetric in that particular parameter. As seen from the
top portion of table 2, the point estimates of the two-factor
model fitted to the5Dpt6 series appear reasonable, with all
parameters savea10 quite statistically significant. The find-
ing that a two-factor stochastic volatility diffusion model can
adequately describe the marginal dynamics of a price
movement series5Dpt6 alone is consistent with the findings of
Melino and Turnbull (1990), Engle and Lee (1996), Gallant
and Long (1997), among others.

However, as seen from the middle and bottom portions of
table 1, the two-factor model has considerable problems
accounting for either the marginal dynamics of the range
series5dt6 or the joint dynamics of5Dpt, dt6. Also, in table 2,
the point estimates are different depending upon whether the
score generator for the marginal5dt6 series or the joint
5Dpt, dt6 series is used. Taken all together, the evidence in
tables 1 and 2 suggest that the success in fitting the marginal
dynamics of the price movement series is misleading, and, in
fact, the two-factor model misses important aspects of the
price dynamics.

TABLE 1.—OBJECTIVE FUNCTION VALUES: TWO-FACTOR MODEL

a10 a22 b10 b20 b22 N x2 (r̂) df p-value

close to close,5Dpt6
* * * * 50k 23.156 9 0.006
* * * * 75k 23.013 9 0.006
* * * * * 50k 19.640 8 0.012
* * * * * 75k 18.415 8 0.018

spread,5dt6
* * * * 50k 387.406 19 0.000
* * * * 75k 392.206 19 0.000
* * * * * 50k 44.138 18 5.5e-4
* * * * * 75k 44.860 18 4.3e-4

bivariate,5Dpt, dt6
* * * * * 50k 147.935 60 2.2e-9
* * * * * 75k 145.754 60 4.3e-9

Note: * denotes a freely estimated parameter.
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Table 3 shows the values of the objective function for the
three-factor model (4) fitted to the scores for the bivariate
5Dpt, dt6 series; Table 4 shows the parameter estimates. The
three-factor model is formally rejected at conventional
significance levels, so perhaps one should view the fitted
model as a calibrated model. One should also keep in mind
the recent Monte Carlo evidence (Chumacero, 1997;
Andersen et al., 1998; Zhou, 1998) that EMM generally
provides quite reliable parameter estimates but, like other
minimumchi-squared estimators, the omnibusx2 test can be
biased towards rejection.

The parameter estimates shown in table 4 are reasonable
and generally statistically significant. The most-interesting
parameter estimates are those ofa22 and a33. The two
components in the volatility process have very different
dynamics: The factorU2t is strongly mean reverting while
the factor U3t is extremely persistent. The existence of
long-run and short-run volatility components has been
proposed by Andersen and Bollerslev (1997), Ding and
Granger (1996), Engle and Lee (1993), and Liesenfeld

(1997). This characteristic of financial data volatility shows
up directly in our estimation of the three-factor diffusion
model.

Figure 2 shows the autocorrelation function of0Dp̃t 2
Dp̃*t 0 for the observed series5Dp̃t6t52

3152, where Dp̃*t is the
predicted value from an AR(1) regression. The contribution
of Dp̃*t is essentially negligible apart from the constant, but
it is used to ensure appropriate centering of the price
movement series before taking the absolute value. The
autocorrelation function of the absolute centered price
movement damps sharply at the first few lags and then very
slowly drifts towards zero at the longer lags. This pattern is
entirely consistent with that of the figures in Ding et al.
(1993), who attribute the shape to long memory in volatility.

The top panel of figure 3 shows the exact analogue of
figure 2 as predicted by the two-factor model at the point
estimates. Specifically, the top panel shows the autocorrela-
tion function of0Dp̂t 2 Dp̂*t 0 computed on a simulated series
5Dp̃t6t52

75000. Evidently, the two-factor model cannot mimic the
characteristic shape of the autocorrelation function of the
absolute centered price movement. Likewise, the bottom
panel of figure 3 shows, along with a reference GARCH, the
autocorrelation function of end-of-day volatility evaluated
on the simulated trajectory of length 75,000. Evidently, the
two-factor model is more GARCH-like in appearance and
does not capture the appearance of long memory.

Figure 4 contains plots of the same quantities as in figure
3 except the computations are done on a simulated trajectory
of length 75,000 from the three-factor model. The three-
factor model can mimic the appearance of long memory. We
emphasize that the three-factor model is Markov, not
long-memory model, and it is considerably easier to manipu-
late and simulate. Nonetheless, its ability to mimic long
memory is striking.

Figure 5 indicates why the three-factor model with two
stochastic AR(1) components mimics so much better the
appearance of long memory in volatility. The top panel
shows the spectral density of a fractionally integrated

TABLE 2.—PARAMETER ESTIMATES: TWO-FACTOR MODELS

a10 a22 b10 b20 b22

close to close,5Dpt6
0.017 20.156 1.258 0.181 0.180

S Dev 0.022 0.052 0.039 0.037 0.031
95% lower 20.019 20.239 1.185 0.099 0.115
95% upper 0.061 20.066 1.339 0.239 0.246

spread,5dt6
1.108 20.100 0.557 0.883 20.773

S Dev 0.068 0.096 0.480 0.869 0.258
95% lower 1.108 20.132 0.557 0.732 20.773
95% upper 1.146 20.100 0.649 0.883 20.727

bivariate,5Dpt, dt6
20.002 20.164 1.237 0.171 0.085

S Dev 0.016 0.021 0.012 0.012 0.010
95% lower 20.027 20.227 1.214 0.156 0.067
95% upper 0.024 20.138 1.260 0.202 0.102

Notes: (1) Simulation size is 75,000.
(2) S. Dev. denotes Wald standard deviation.
(3) 95% lower and 95% upper denote boundaries of 95% confidence interval obtained by inverting the

criterion difference test.

TABLE 3.—OBJECTIVE FUNCTION: THREE-FACTOR MODELS FITTED TO IBM BIVARIATE SCORE GENERATOR

a10 a22 a33 b10 b20 b22 b30 b33 N x2 (r̂) df p-value

bivariate,5Dpt, dt6
* * * * * * * * 50k 124.725 57 5.78e-7
* * * * * * * * 75k 126.454 57 3.52e-7

Note: * denotes a freely estimated parameter.

TABLE 4.—PARAMETER ESTIMATES: THREE-FACTOR MODEL

a10 a22 a33 b10 b20 b22 b30 b33

bivariate5Dpt, dt6
20.007 20.231 20.268e-3 1.383 0.184 0.142 0.0076 0.026

S Dev 0.019 0.024 0.275e-3 0.133 0.009 0.035 0.0021 0.006
95% lower 20.010 20.233 20.269e-3 1.382 0.183 0.134 0.0076 0.026
95% upper 20.001 20.228 20.259e-3 1.387 0.185 0.148 0.0077 0.027

Notes: (1) Simulation size is 75,000.
(2) S. Dev. denotes Wald standard deviation.
(3) 95% lower and 95% upper denote boundaries of 95% confidence interval obtained by inverting the criterion difference test.
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process with parameterd 5 0.40 along with the best
least-squares approximation from an AR(1) model. The
AR(1) approximation is obtained via

min
a1,s1

o
j51

100

53 1

1 2 cos (lj)4
0.40

2
s1

2

1 1 a1
2 2 2a1 cos (lj)

6
2

wherelj 5 ( j/100)p. Evidently, the AR(1) cannot match
very well the spectral density of the fractionally integrated
process over the entire domain. However, the lower panel
shows the best least-squares approximation of the spectral
density of the sum of two AR(1) processes to that of the

fractionally integrated process. The best approximation is
obtained via solving

min
a1,s1,a2,s2

o
j51

100

53 1

1 2 cos (lj)42
0.40

2
s1

2

1 1 a1
2 2 2a1 cos (lj)

2
s2

2

1 1 a1
2 2 2a1 cos (lj)

6
2

.

As seen from the bottom panel of figure 5, the approxima-
tion is superb. One can even view the situation the other way
around: Arguably, the truth is a two-component volatility

FIGURE 2—SAMPLE AUTOCORRELATIONFUNCTION OFCENTEREDABSOLUTEPRICE MOVEMENTS, 0Dp̃ 2 Dp̃* 0 .

Top panel is the raw autocorrelegram function; bottom panel is with smoothing at longer lag lengths.
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model that is well approximated by a fractionally integrated
process.

VII. Extracting the Integrated Volatility

A. Background

Consider the price,pt, at timet of a derivative asset that
depends upon the value of a security priceSt1J 5 ept1J, J .
0, and assume the dynamics of the processp are

dpt 5 atdt 1 sptdWt, (12)

wherespt represent stochastic volatility andWt is Brownian
motion. Assume the risk-neutral dynamics are

dpt 5 1r 2
1

2
spt

2 2dt 1 sptdWt (13)

wherer is the interest rate, assumed to be constant. Hull and
White (1987) show that, under the assumption of no-risk
premium on the volatility factor, the pricept of the claim is
given as

pt 5 E t[ B (St, Jvt,t1J, r, J)] (14)

FIGURE 3—AUTOCORRELATIONFUNCTIONS AT TWO-FACTOR MODEL.

Top: Autocorrelation function of0Dp 2 Dp 0 implied by the two-factor model; bottom: autocorrelation function of end-of-day volatility implied by the two-factor model with a reference GARCH.
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whereE t(·) is the conditional expectations operator,B (·) is
the Black-Scholes price of the derivative claim, and

vt,t1J 5
1

J
e

0

J
sp,t1s

2 ds (15)

is the mean integrated local variance over the life of the
derivative. Note thatvt,t1J is, in general, a nontrivial random
variable at timet which is integrated out in equation (14).

Let F t denote the information available to the analyst at
time t. To be specific, in our empirical work,F t is
5pt2j, dt2j 6 j50

t21. We extend the reprojection technique devel-

oped in Gallant and Tauchen (1998) in order to estimate
p(vt,t1J 0F t), the conditional density ofvt,t1J given F t. This
density can be used to compute the empirical analogue of
equation (14):

p*t 5 E [ B (St, Jvt,t1J, r, J) 0 F t]

5 e B (St, Jvt,t1J, r, J) p(vt,t1J 0F t) dvt,t1J.
(16)

There is a subtle distinction between equation (14) and (16),
as the former expectation is taken with respect to a larger
information set. Among other things, this larger information
set includes the unobservable stochastic local variance

FIGURE 4—AUTOCORRELATIONFINDINGS AT THREE-FACTOR MODEL

Top: Autocorrelation function of0Dp 2 Dp 0 implied by the three-factor model; bottom: autocorrelation function of end-of-day volatility implied by the three-factor model with a reference GARCH.
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processst
2. The econometric estimator ofp(vt,t1J 0 F t) devel-

oped here is potentially useful for many purposes, including,
for example, forecasting the course of the local variance

v*t,t1J 5 E (vt,t1J 0 F t)

5 e vt,t1Jp(vt,t1J 0F t) dvt,t1J

(17)

or the pricing calculations in equation (16).

As a simpler alternative yet, one might consider estimat-
ing

v**t,t1J 5 P (vt,t1J 0F t) (18)

whereP (·0·) denotes the linear projection operator, i.e., the
linear regression operator. The linear projection ofvt,t1J onto
F t provides an easy-to-compute forecast of the course of
variance over the life of the derivative. Also, it might be used

FIGURE 5—SPECTRALDENSITY APPROXIMATIONS

The top panel shows the best approximation of the spectral density of an AR(1) process (solid) to that of a fractionally integrated process (*) with parameterd 5 0.40; the bottom panel shows the best approximation
of the spectral density of the sum of two AR(1) processes (solid) to that of a fractionally integrated process (*) with parameterd 5 0.40.
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in a pricing calculation like

p***t 5 B (St, Jv*t,t1J, r, J) (19)

as a practical compromise to either equation (14) or (16).

B. The Conditional Distribution of the Integrated
Local Variance

The task is to estimate the conditional distribution of the
mean integrated forward variancevt,t1J 5 (1/J) e0

J
sp,t1s

2 ds
conditional on5Dpt2j, dt2j 6 j50,1,.... Given that we are using a
simulation estimator, this is conceptually straightforward.
The idea is to generate a long simulation from the estimated
SDE model, nonparametrically estimate the conditional
distribution on that simulation, and then evaluate the condi-
tional distribution at the observed data.

The mechanics of the calculation are this: Let5Dp̂t, d̂t6t51
N

denote a realized simulated trajectory ofDpt, dt, and let5ŝp,t
2 6t[[0,N]

denote the corresponding continuous record ofsp,t
2 . The simula-

tion is generated using the EMM estimates of the diffusion.
These quantities are readily available from the simulation
process used to implement the EMM estimator, except that
the continuous record5ŝp,t

2 6t[[0,N] is actually approximated by
a very fine weak-2 discretization. Define

v̂t,t1J 5
1

J
e

0

J
ŝp,t1s

2 ds, t 5 1, 2, . . . ,N 2 J,

which is theJ-step ahead mean integrated forward variance,
and let

x̂t 5 (Dp̂t2L, d̂t2L, . . . ,Dp̂t, d̂t).

The idea is to determine the conditional densityp(vt,t1J 0 F t)
by nonparametrically estimating within the simulation the
conditional density ofp(v̂t,t1J 0 x̂t). To avoid clutter, at times
we drop thet subscript and writep(vJ 0x) for the conditional
density. To determinep(vJ 0x), we adapt the SNP density of
Gallant and Tauchen (1989) as described above. The SNP
estimate density estimate isfK(w0x, û), wherew 5 log (vJ),

û 5 argmax
u

o
t5L11

N2J

log [ fK(ŵt,t1J 0 x̂t, u)],

ŵt,t1J 5 log (v̂t,t1J), andfK(·0·, u) is defined in equation (11).
As for the tuning parameters, we setLr 5 0, because, in this
context, the explanatory variables are not lags of the
dependent variable, and we set the others generously large in
an effort to pin down the density with high numerical
accuracy. (N is huge; we useN 5 75,000.) Put

p̂(vJ 0x) 5 fK[log (vJ) 0x, û]
1

vJ
. (20)

Under conditions given in Gallant and Tauchen (1989, 1998)
and Gallant and Long (1997),p̂(vJ 0x) is a consistent estimate
of the conditional density of the mean integrated variance.
Apart from pricing calculations such as equation (16), the
conditional density (20) can be used directly for extracting
from the observed data the latent mean integrated variance
via the computation

e vJp̂(vJ 0 x̃t)dvJ, t 5 L 1 1, . . . ,n, (21)

where, it will be recalled thatx̃t denotes the observed data
value. To summarize, simulated data are used to determineû
and thereby the functional form ofp̂(vJ 0x). Then, p̂(vJ 0 x̃t)
gives us the predictive density ofvt,t1j at observation pointt.

Figure 6 shows this variance-extraction calculation using
the estimated two-factor model. The three panels show time
series plots of the square roots of the conditional means of
the integrated forward variance (e vJp̂(vJ 0 x̃t) dvJ)1/2, for J
corresponding to one day ahead, one month ahead, and one
year ahead, with each integrated variance annualized to aid
interpretation. Interestingly, the daily forward variance is
quite active, as is the monthly, while the yearly is nearly
constant.

Figure 7 shows this variance-extraction calculation using
the estimated three-factor model. As is perhaps not surpris-
ing, both the two- and the three-factor models give nearly
the same conditional means of the daily and monthly
integrated forward variance. However, the two models differ
substantially for the yearly integrated forward variance, with
the three-factor model still showing the effects of shocks one
year out. This contrast is directly attributable to the capabil-
ity of the three-factor model to mimic the appearance of long
memory in volatility.

The reprojection technique presented here is a model-
based procedure that makes use of the daily price movement
and range data. It is different from the direct measurement of
realized volatility approach pioneered by French et al.
(1987) and followed to the ultrahigh frequency by Andersen
and Bollerslev (1998) and Andersen, Bollerslev, et al.
(1998). Direct measurement relies on the fact thatspt

2 could,
in principle, be extracted from continuous record5ps6s[[0,t].
Doing so is not actually feasible in practice as the continuous
record is not available. However, for a very largeK—i.e., for
smalld 5 1/K—one has

o
k51

K

( pt211kd 2 pt211(k21)d)2 < e
t21

t
sps

2 ds.

Clearly, there is more information in ultrahigh-frequency
data than there is in close-to-close and range data, so direct
measurement produces a more accurate integrated variance
measure, as documented by simulation in Andersen and
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Bollerslev (1998). A potential drawback, however, is that
direct measurement entails storage and manipulation of
huge data sets, and it still leaves open the matter of obtaining
the conditional distribution of the integrated variancevt,t1J

which is needed to compute the expectation required to
implement equation (14). On the other hand, our approach is
potentially useful for understanding volatility dynamics
using very long historical data sets in which the daily range
has been recorded but the within-day tick data were dis-
carded long ago. Finally, we emphasize the reprojection
approach delivers a diffusion model’s predicted integrated
variance. The prediction can indeed disagree with actual
integrated variance, if the model is misspecified. This
situation is one the model’s user certainly needs to know
about, and figures like figure 7 would be useful for making
such assessments.

VIII. Conclusion

Implementation of the Hull and White options-pricing
formula requires both an estimate of the stochastic volatility
model governing price dynamics and an estimate of the
conditional distribution of the forward integrated variance
given the observed variables. This paper addressed both of
these requirements. Using daily stock price data on close-to-
close log price movement and the high/low range, we found
that the standard two-factor stochastic volatility models did
not fit all aspects of the data very well and that a more
general three-factor model did better. In particular, the
three-factor model captured the extreme persistence in
financial volatility attributed to fractional integration (long-
memory) by Ding et al. (1993), Baillie et al. (1996),
Bollerslev and Mikkelsen (1996), and others. We also

FIGURE 6—TWO-FACTOR MODEL: ROOT EXPECTEDINTEGRATEDFORWARD VARIANCE

(e vJp̂(vJ 0 x̃t, ũ) dvJ)1/2, one day, one month, and one year forward, annualized.
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adapted and extended the reprojection technique of Gallant
and Tauchen (1998) to estimate the conditional distribution
of the forward integrated variance given the observed
variables.
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