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Abstract. Climate proxy data provide noisy, and spatially

incomplete information on some aspects of past climate

states, whereas palaeosimulations with climate models pro-

vide global, multi-variable states, which may however differ

from the true states due to unpredictable internal variabil-

ity not related to climate forcings, as well as due to model

deficiencies. Using data assimilation for combining the em-

pirical information from proxy data with the physical under-

standing of the climate system represented by the equations

in a climate model is in principle a promising way to obtain

better estimates for the climate of the past.

Data assimilation has been used for a long time in weather

forecasting and atmospheric analyses to control the states

in atmospheric General Circulation Models such that they

are in agreement with observation from surface, upper air,

and satellite measurements. Here we discuss the similari-

ties and the differences between the data assimilation prob-

lem in palaeoclimatology and in weather forecasting, and

present and conceptually compare three data assimilation

methods that have been developed in recent years for ap-

plications in palaeoclimatology. All three methods (selec-

tion of ensemble members, Forcing Singular Vectors, and

Pattern Nudging) are illustrated by examples that are re-

lated to climate variability over the extratropical Northern

Hemisphere during the last millennium. In particular it is

shown that all three methods suggest that the cold period
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over Scandinavia during 1790–1820 is linked to anomalous

northerly or easterly atmospheric flow, which in turn is re-

lated to a pressure anomaly that resembles a negative state of

the Northern Annular Mode.

1 Introduction

Estimates for past climate are usually either based on empir-

ical evidence contained in proxy data or on simulations with

climate models driven by reconstructions of climate forcing

factors. A third possibility is the combination of proxy data

and climate simulations using data assimilation (DA). Here

we give an overview on the atmospheric DA efforts that have

been undertaken to date in palaeoclimatology and of their

relevance to reconstructing the climate over Scandinavia, yet

we begin with a brief discussion of the links between proxy

data and climate simulations without DA.

Empirical reconstructions and standard simulations yield

independent results, because the proxy data used for recon-

structing the forcings for the simulations are independent

from those used for the empirical climate reconstructions.

As the errors associated with both approaches are difficult to

quantify, consistency tests between them are a key tool for as-

sessing the confidence we can have in estimates for past cli-

mates (Jansen et al., 2007). The mismatch between the local

to regional climate signals recorded in proxy data and the

coarse spatial scales on which palaeoclimate simulations can

be skillfull, which are on the order of thousand kilometers or

more, can be overcome by using networks of proxy data to
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reconstruct large-scale climate anomalies (Mann et al., 2008;

Cook et al., 2002; Jones and Widmann, 2003) or full spatial

fields (Mann et al., 1998; Luterbacher et al., 2002, 2004), or

by using downscaling techniques to estimate regional climate

from the simulations (Wagner et al., 2007).

Increasing computer power has led to a considerable num-

ber of simulations for the climate of the Holocene (Jansen

et al., 2007; Wanner et al., 2008). Mainly two types of mod-

els are used for these simulations, namely Earth system Mod-

els of Intermediate Complexity (EMICs), which are based

on substantially simplified atmospheric and ocean dynamics,

are computationally fast and thus allow very long or ensem-

ble simulations, and General Circulation Models (GCMs),

which include a representation of climate which is as realis-

tic as possible, but are computationally costly. In contrast to

GCMs, many EMICs do not include an adequate representa-

tion of the internal climate variability on interannual to mul-

tidecadal timescales, and the main use of these models is the

analysis of the long-term climate response to changes in ex-

ternal forcings (Claussen et al., 2002). The EMIC used here

to illustrate various data assimilation methods simulates the

internal climate variability reasonably well in mid and high

latitudes, but strongly underestimates it in tropical regions

because of the approximations applied in this model (e.g.

Selten et al., 1999; Goosse et al., 2002). Both types of mod-

els are usually forced with orbital parameters, and with es-

timates for solar irradiance, greenhouse gas concentrations,

and sometimes for volcanic aerosol concentrations. Simula-

tions with GCMs have been performed with constant forc-

ing factors for the Mid-Holocene (Bracconot et al., 2007),

with time-dependent forcings for the last 500 years to the

last millennium (von Storch et al., 2004; Tett et al., 2007)

and in some cases also for most of the Holocene (Lorenz and

Lohmann, 2004; Wagner et al., 2007). Due to the lower com-

puting costs most EMIC simulations are driven with time-

dependent forcing factors and cover the whole Holocene

(Crucifix et al., 2002; Brovkin et al., 2003; Weber et al.,

2004; Renssen et al., 2005; Wang et al., 2005).

As climate variability is over a large range of timescales

a combination of externally forced and of random, internally

generated components, empirical reconstructions and simu-

lations are of a different nature. Proxy-based reconstructions

represent the historic climate evolution, but only for a limited

set of variables, whereas climate simulations provide com-

prehensive representations of past climate, but usually only

for a combination of the forced component and model-based

internal variability. The latter is in the best case similar to the

true internal variabilty in a statistical sense. The fact that the

actual time evolution of random variability can not be sim-

ulated in forced simulations can in consistency tests either

be taken into account through comparing ensemble simula-

tions with empirical reconstructions, or through considering

temporal averages over periods that are long enough for the

climate variability to be dominated by the climate forcing.

The aim of DA in climatology is to combine dynamical

models and empirical information to find estimates for past

climate that are both consistent with the empirical knowledge

and with the dynamical understanding of the climate system.

Usually this implies representing the time evolution of ran-

dom variability components in climate simulations, but other

applications, which will be discussed in the next section, also

exist. Moreover, DA provides estimates for variables and lo-

cations for which no empirical information exists, including

large-scale atmospheric anomalies that are consistent with

the local information. Using DA in palaeoclimatology has

first been suggested by von Storch et al. (2000). Out of the

three methods discussed later in this paper one follows di-

rectly the ideas outlined in von Storch et al. (2000), and a

second one can be seen as a modification of it.

In palaeoclimatology the random variability component is

likely to be of high relevance in the mid-latitudes, as these

are in general characterised by a high level of natural vari-

ability. In Scandinavia natural variability is particularly high,

because it is located in an area of a strong precipitation and

temperature signal of the Northern Annular Mode (NAM) or

the North Atlantic Ocillation (NAO), which are the domi-

nant modes of extratropical atmospheric circulation variabil-

ity in the Northern Hemisphere (Hurrell, 1995; Thompson

and Wallace, 2000, 2001). The NAM/NAO variability char-

acterises not only the mean atmospheric flow and thus the

advection of air masses of different temperatures, but also

the position of the Atlantic stormtrack (with the synoptic-

scale variability potentially feeding back on the NAM/NAO

state), which both are key for the climate over Northern Eu-

rope. Random decadal variability of sea surface temperature

linked for instance to the Atlantic Multidecadal Oscillation

(Delworth and Mann, 2000; Knight et al., 2005) or to vari-

ability in the Meridional Overturning Circulation (Hawkins

and Sutton, 2008) can further strongly influence tempera-

tures over Scandinavia (Sutton and Hodson, 2005).

The basic concepts of DA will be introduced in Sect. 2,

along with a discussion of the similarities and differences be-

tween the assimilation problem in palaeoclimatology and the

highly developed field of DA in meteorology and oceanogra-

phy. Specific approaches developed in the context of palaeo-

climatology will be presented in Sect. 3, including some re-

sults relevant to Europe, followed by a summary and conclu-

sion section.

2 Dynamical models and data assimilation –

the standard framework

In this section the standard framework of DA will be out-

lined. The purpose is not to present a comprehensive discus-

sion, which would be far beyond the scope of this paper, but

to introduce the main elements such that later it can be un-

derstood how the current status of DA in palaeoclimatology

differs from this framework.
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Generally speaking dynamical models transform a state of

a system at a given time (9(t)) into a state at a later time

(9(t+1t)). The time development may be influenced by

time-dependent forcing factors (forcing (t)), and the model

F often contains a set of parameters that specify a certain

model among a class of models. We thus can write

9(t +1t) = Fparameter(9(t),forcing(t)) (1)

In a standard forced simulation empirical knowledge about

the system is only used in a very general (yet often so-

phisticated) way during model development to formulate the

model itself, which includes determining the basic equations

that constitute the structure of the model, and setting specific

values for its parameters. The time evolution of the states

follows from the forcing as well as from the initial state from

which the model was started, with predictability limits due to

the usually chaotic nature of the system.

The purpose of DA is to use empirical knowledge of the

temporal development of the system states after the model

has been constructed. In principle DA can be used in two

different ways, namely to estimate the system state, or to

systematically improve model parameters. In this paper we

will focus on methods that are related to the first aim, and

either correct simulated states or select states from ensemble

simulations. Examples for the second case can be found for

instance in Annan et al. (2005).

The first type of problem, which is also known as state

estimation, is encountered in many scientific disciplines,

and a mathematically sound framework for it exists (for an

overview see for instance Swinbank et al. (2003)). The field

in which DA is most closely related to the DA problem in

palaeoclimatology is numerical weather prediction, where

DA is used to find the best estimate for the current state of the

atmosphere, which is then used to start the forecast. Informa-

tion about the state of the atmosphere at a given time can be

obtained in two ways, firstly from a forecast started earlier,

and secondly from the observations at that time or at a later

time. This key problem in weather forecasting of finding the

initial state for a forecast is solved by combining a previous

forecast with observations, which include direct surface and

upper air meteorological measurements, as well as indirect

observations of meteorological variables through satellites.

In an optimal combination of the forecast-based and the

observation-based estimates for the atmospheric state, the

relative weights of these two types of information depend

on their errors, with more weight given to the estimates with

less uncertainty. The formulation of the best estimate, which

is called the analysis, also needs to take into account the fact

that the observations and the simulated states usually consist

of different variables, and are defined at different locations.

The goal is to find a model state that is consistent with the ob-

servations and with the previous forecast. To a good approx-

imation this also means that the sequence of analysis states

is consistent with the model physics, which is not true for a

sequence of states that are obtained from a statistcial inter-

polation of direct observations. The fact that the simulated

states and the observations are fundamentally different quan-

tities is included in the formalism by an observation operator

h that transforms the simulated state 9 (all model variables

at all model locations) at a given time into the observations 2

(all observed variables at all observed locations) that would

be obtained given 9. Examples include the transformation

from temperature or pressure on model gridcells (often on

the order of 100 km×100 km) to local measurements, or the

transformation of a vertical temperature profile to satellite

microwave retrievals.

In the classical framework for state estimation it can be

shown that given N observations 2i at times ti , the optimal

analysis 9a at time t0(<ti) is obtained by minimising the

following cost function with respect to 9

min J (9) =
1

2
(9 −9b)T B−1(9 −9b)

+
1

2

N∑

i=1

(hi(9i)−2i)
T R−1

i (hi(9i)−2i), (2)

where 9b is the previous forecast (also known as the back-

ground field) at time t0, and 9i and hi are the simulated field

and the observation operator at times ti . The errors in the

simulation are given by the error covariance matrix B, while

the observation errors are described by the error covariance

matrix R.

In the special case of sequential data assimilation, in

which the observations are assimilated one at a time (i.e.

N = 1 in Eq. 2) the solution can be approximated by

9a = 9b +G(H(9b)−2) (3)

where H is the linearisation of the observation operator h,

and G is the so-called gain matrix. The gain matrix is calcu-

lated from the error matrices B and R. For linear dynamical

systems this approximation is exact.

Methods that directly minimise the cost function in Eq. (2)

are called variational data assimilation (3D-VAR for N=1,

4D-VAR for N>1), while sequential methods of the type

of Eq. (3) are known as filters. Two examples of filters are

briefly discussed in Sect. 3.2, namely the Kalman Filter and

the Particle Filter. Equation (3) only uses previous informa-

tion to estimate the state of the system at a past time t . How-

ever, in palaeoclimatology observations from this time t up

to the present are also generally available. Those additional

constraints on the system at time t can be used with so-called

smoothers (e.g., Wunsch, 2006), which propagate informa-

tion backward in time (whereas Eq. 3 only propagates it for-

ward), but to the authors’ knowledge such a technique has

not yet been used in palaeoclimatology. Although the exact
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solution for the analysis is theoretically clear, the main prob-

lem in practical applications with variational and sequential

approaches is to specify the time-dependent error matrices

such that useful solutions are obtained.

3 Data assimilation in palaeoclimatology

3.1 Differences between weather forecasting

and palaeoproblems

Numerical weather forecasts and palaeoclimatic simulations

both use GCMs. However, assimilation methods developed

for weather forecasting cannot be implemented in models

used in palaeoclimatology because of fundamental differ-

ences in the extent, temporal resolution and type of empirical

information about the system state. Additionally, the mecha-

nisms that cause a climate signal in proxy data are often only

incompletely understood.

Each day there are several hundred thousand in situ and re-

mote sensing observations of the state of the atmospere and

ocean available that can be assimilated to initialise weather

foreasts. All of these are physical measurements, either di-

rect or indirect, and it is thus well known how they are linked

to the state of the atmosphere or ocean, in other words the ob-

servation operator h is relatively well known. Decades of de-

velopment of assimlation methods at the main weather fore-

casting centres have led to the currently used variational as-

similation schemes that are optimised for this situation. The

same methods have also been used in the NCEP/NCAR (Na-

tional Center for Environmental Prediction/National Cen-

ter for Atmospheric Research) and the ERA40 (European

Reanalysis) atmospheric reanalysis projects, where constant

model versions have been used to assimilate observations

from the last decades (Kalnay et al., 1996; Kistler et al.,

2001; Uppala et al., 2005). These reanalyses provide the

most consistent and comprehensive estimates for the atmo-

spheric states from 1948 (NCEP/NCAR) or 1958 (ERA40)

to the present.

More recently DA has also been applied to use the surface

meteorological observations that extend back to the begin-

ning of the 20th century for a reanalysis (Whitaker et al.,

2004; Compo et al., 2006, 2010). During the development of

this “100 year reanalysis” it became clear that the variational

methods used for the NCEP/NCAR and ERA40 reanalyses

are not suitable for dealing with the much sparser set of ob-

servations available for the longer analysis, whereas an En-

semble Kalman Filter methdod performed well under these

circumstances.

The situation in palaeoclimatology is different in many

respects. Even for the last millennium the number of cli-

mate proxy data is a few orders of magnitude lower than in

the early 20th century. In addition, the type of data is fun-

damentally different as it typically includes seasonal or an-

nual climate signals rather than instantaneous information.

Changing the implementations of the variational techniques

such that they take into account the fact that the observa-

tions represent temporal means is a theoretical and techni-

cal challenge that has not yet been addressed. In the case

of using proxy data the observation operator would describe

how climate states are transformed into the climate signals

contained in proxy data, which in this context is also known

as forward modelling. Forward modelling of proxy data is

a developing field (Reichert et al., 1999, 2001; Weber and

Oerlemans, 2003; Evans et al., 2006), but for most proxy

data the observation operator would not be readily avail-

able. An intermediate solution, which is used in the methods

discussed in the following sections, is to infer regional or

large-scale climate states from the proxy data through trans-

fer functions (regional) or upscaling methods (large-scale).

It should however be noted that these approaches are po-

tentially problematic because the (unknown) forward mod-

els may be non-invertible and because many methods have a

tendency to underestimate variability (e.g. Christiansen et al.,

2009). The final key ingredient for the standard DA ap-

proach outlined above are realistic estimates for the model

and the observation errors, which usually also do not exist in

paleoclimatology.

Because of these multiple challenges and because DA for

palaeoclimatology is an emerging field which has not been

worked on by the major modelling centres, the methods used

are only loosely linked to the methods used in the mature

field of weather forecasting and atmospheric reanalyses. The

approaches taken are fairly pragmatic and are discussed in

the following two sections.

3.2 Ensemble member selection

The goal of ensemble techniques is to approximate the sta-

tistical behavior of the system from a finite number of N

randomly generated states. In practice these N states are

obtained by performing an ensemble of N simulations with

a model, varying initial conditions, model parameters and

forcing, in a reasonable range. The update of this reason-

able range as time goes by is generally a key element of the

method. Ensemble techniques appear well adapted for DA in

paleoclimatology as it is possible to perform DA even in the

presence of strong non-linearities (e.g., Evensen, 1997; Pitt

and Shepard, 1999; Cappe et al., 2007). Furthermore, en-

semble techniques are relatively easy to implement, as they

generally do not require strong modifications in the code of

the climate model nor strong development (as the methods

presented in Sects. 3.3.1 and 3.3.2).

Mainly two groups of ensemble methods have been used

up to now in paleoclimatology: Ensemble Kalman filters

(EnKF) and particle filters. EnKF can easily be described in

the classical framework described in Sect. 2 (Evensen, 1997;

Burgers et al., 1998; Evensen, 2003). Both the background

state and the gain matrix are computed from statistics of the

ensemble, obtaining then the analysis and estimate of the
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uncertainty as in many sequential methods. These ensemble

statistics are also used to generate the new ensemble for the

next analysis step. In particle filters, the gain matrix is not

necessarily computed explicitly. Instead, a time-dependent

weight is computed for each member of the ensemble from

its ability to reproduce the observations used to constrain the

model. Resampling of the ensemble is often necessary to

cover well the domain of variation of the system while keep-

ing the total number of particles reasonable. From the en-

semble of simulations and the weights, it is easy to compute

the (weighted) mean and the dispersion of the ensemble, pro-

viding an estimate of the state of the system and of the un-

certainty on this estimate (e.g., Pitt and Shepard, 1999; Liu

and West, 2001; Cappe et al., 2007).

Up to now, none of those methods has been used to per-

form transient simulations over the Holocene or even the

last millennium. However, a technique applied recently can

be interpreted as a degenerated particle filter (Collins, 2003;

Goosse et al., 2006, 2009, 2010). Indeed, as in the parti-

cle filter method, at the end of each step (1 year up to 50

years), all the simulations are compared to the available ob-

servations. Nevertheless, the weights are obtained in a much

simpler way than in the full particle filter algorithm: the sim-

ulation that is the closest to observations, i.e. that minimises

a cost function, receives a weight of 1 while all the others

have a weight of 0. The next step is then performed using

this best simulation as initial condition, adding some noise in

order to sample the uncertainty of the system and generate a

new ensemble.

This method has been tested over various periods of the

past millennium, using instrumental as well as proxy data

(e.g., Goosse et al., 2006, 2009, 2010; Crespin et al., 2009).

To illustrate the method here, we will show its performance

over Scandinavia from 11 simulations performed over the

past 600 years using the EMIC LOVECLIM (Goosse et al.,

2010). These eleven simulations differ in some model pa-

rameters, the forcing applied, as well as in some parameters

of the DA technique but they are all constrained by the same

set of 56 Northern Hemisphere proxy series derived from a

recent compilation (Mann et al., 2008). These time series

have been selected from a larger set in order to keep only

those that are significantly correlated with instrumental time

series over the years 1850–1995 and have been decadally

smoothed. As a consequence, model results have also been

decadally smoothed before plotting them. This means that

the observation operator h is relatively simple here. How-

ever, it would be interesting to use a more sophisticated one,

in particular through the inclusion of forward models that di-

rectly simulate the proxy variable from the model results.

As imposed by the DA method, the simulations follow

very well the available proxy data over Scandinavia (Fig. 1a).

Although the average over the 11 simulations with data as-

similation appears to underestimate multi-decadal variations,

its correlation with the mean of the proxy data reaches 0.89

over the period 1400–1995. It should be noted that averaging

a

b

c

Time (year)

Te
m

p
e

ra
tu

re
 a

n
o

m
a

ly
 (

°C
)

Te
m

p
e

ra
tu

re
 a

n
o

m
a

ly
 (

°C
)

Te
m

p
e

ra
tu

re
 a

n
o

m
a

ly
 (

°C
)

Fig. 1. Time series (◦C) of the anomaly in annual mean surface

temperature averaged over the 11 simulations using DA (black) for

Scandinavia (defined here as the region 5◦–35◦ E, and 55–75◦ N)

and (a) the average of the 6 proxies used to constrain model re-

sults in this region (green), (b) the instrumental data compiled in

the HadCRUT3 data set (green, Brohan et al., 2006), and (c) the av-

erage over Stockholm and Uppsala long instrumental time series,

(Moberg et al., 2003). For (a), model results are averaged only

over the points where proxy data are available. Reference period

is 1850–1995. All the time series have been decadally smoothed. A

21-year running mean has been applied for panel (c).

of ensemble members from DA simulations does not neces-

sarily lead to a reduction of multi-decadal variability. If the

assimilated information fully constrained the multi-decadal

variability, all ensemble members would have the same tem-

poral development and no variability reduction would oc-

cur. If the constraints were weak, the ensemble members

would differ strongly, similar to simulations without DA,

which at best capture forced but not internally generated

multi-decadal variability, and thus averaging would reduce

variability. The average over the 11 simulations with data as-

similation is also in very good agreement with instrumental

observations over 1850–1995 in this region (Brohan et al.,

2006), with a correlation between the two time series of

0.74, i.e. more than all the local correlations between the

proxies and the instrumental observations (Fig. 1b). Only a

few instrumental data are available before 1850. We have

compared our model results with two of the longest ones

(Fig. 1c), Stockholm and Uppsala, that include the second

half of the 18th century and whose quality and homogene-

ity has been carefully checked (Moberg et al., 2003). These

simulations with data assimilation are not able to reproduce

well the high-frequency variations recorded at those two lo-

cations (not shown) but the long-term trend is in good agree-

ment with model results (Fig. 1c).
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a

b

Fig. 2. (a) Difference in winter geopotential height (m) averaged over the 11 simulations using data assimilation between the periods 1401–

1500 and 1601–1700. (b) Anomaly of winter geopotential height (m) averaged over the 11 simulations using data assimilation in the period

1790–1820 compared to the reference period 1850–1995.

This comparison is instructive as it shows that, although

the data assimilation method is simple, the data constraint

is efficient. However, because of the decadal smoothing, the

number of degree of freedom is relatively low, partly explain-

ing the good correlation achieved by the ensemble member

selection. Furthermore, temperature estimates for Scandi-

navia, derived from the proxies, are directly used to constrain

model results. As a consequence, in the present framework,

the temperature in Scandinavia obtained in the simulation

with DA does not bring clear new information compared

to the proxy data themselves (Fig. 1a). This is not always

the case. Data assimilation can be considered as a sophisti-

cated way to obtain reconstructions in areas where no proxy

is available or to derive large-scale reconstructions. Those re-

constructions based on simulations with DA are constrained

by available proxies (as any reconstruction based on statisti-

cal methods) but, in addition, they ensure that the dynamics

of the system represented by model equation is respected.

Finally, in some areas where different proxies show incom-

patible time series, DA can be a way to select the ones that

are the most compatible with model dynamics and thus most

likely represent a good large-scale estimate of past climate

changes.

As simulations with DA provide also estimates of vari-

ables that cannot be directly derived from the proxy records,

a first step to evaluate DA simulations is to measure the

quality and robustness of these estimates as they are less

constrained by proxies than the variables directly assimi-

lated. The mechanisms responsible for the changes in simu-

lations with DA can then be analysed. For instance, when

comparing the winter atmospheric circulation between the

15th century and the 17th century (which are relatively warm

and cold periods in Scandinavia, respectively, Fig. 1a) a

relatively weak but clear signal resembling a shift from a
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positive to a negative phase of the North Atlantic Oscilla-

tion emerges (Fig. 2a). When focusing on the years 1790–

1820, as in van der Schrier and Barkmeijer (2005), a pattern

resembling the negative phase of the North Atlantic Oscil-

lation is obtained for this cold period in Europe (Fig. 2b).

This circulation anomaly in the simulations with DA presents

clear similarities with the reconstruction of van der Schrier

and Barkmeijer (2005), in particular over Northern Europe

(see Fig. 3). However, their pattern is associated with much

stronger northerly wind anomalies East of Britain, in the

North Atlantic, than the one displayed in Fig. 2b.

3.3 Upscaling and control of large-scale circulation

We now consider two methods that allow assimilation of

large-scale climate anomalies without using an ensemble

technique. Both methods have been applied to assimilate

atmospheric circulation patterns but in principle they could

also be used to assimilate temperature. We note that large-

scale anomalies could also be assimilated with ensemble

techniques, but these would be computationally very costly

when applied to GCMs.

Focusing on circulation is motivated by two reasons.

Firstly, simulated continental-scale temperature variability

is closely linked to the forcings, while decadal circulation

variability has a large random component which leads to

considerable spread of regional temperatures or precipita-

tion among different simulations (Wagner and Zorita, 2004;

Yoshimori et al., 2005; Raible et al., 2005). In particular the

Northern and Southern Annular Modes (NAM/SAM) have

been shown in modelling studies to be caused by internal at-

mospheric processes (Limpasuvan and Hartmann, 1999) and

empirical NAM and SAM reconstructions have also shown

considerable variability that is apparently not linked to forc-

ings (Cook et al., 2002; Jones and Widmann, 2004; Fogt

and Bromwich, 2006; Jones et al., 2009). Secondly, there

is ample evidence for a forced component of decadal and

longer scale circulation variability (e.g., Hartmann et al.,

2000; Shindell et al., 2001; Thompson and Solomon, 2002;

Zorita et al., 2004; Arblaster and Meehl, 2006; Stendel et al.,

2006; Fogt et al., 2009), but it is difficult to simulate due to

the complexity of processes involved, which include for in-

stance stratospheric dynamics and chemistry. A comparison

of observed and simulated Northern Hemisphere, large-scale

winter circulation trends for the period 1955–2005 showed

for instance that none of the currently used GCMs is able to

simulate the observed trends, which are likely to be a combi-

nation of a response to the forcings and of random variabil-

ity (Gillett, 2005). Until forced circulation variabilty can be

successfully simulated, it may partly be taken into account in

paleoclimate simulations through assimilation of empirical

circulation estimates.

The methods described in this section control the large-

scale atmospheric circulation variability in simulations such

that it is close to prescribed target patterns. In principle it

might be possible to indirectly control the circulation through

assimilating temperature patterns, but so far this has not been

tested. In the examples discussed here the target anomaly

patterns are constant and the goal is to simulate the aver-

age conditions during a certain period and to test hypothe-

ses about processes that caused past temperature anomalies.

However, the methods are also designed to specifiy time-

dependent anomalies in transient simulations, but this has

not yet been done. The assimilated large-scale circulation

anomalies are either hypothetical situations or are based on a

statistical upscaling of available early instrumental and proxy

data.

This general approach has first been suggested by von

Storch et al. (2000). The Pattern Nudging (PN) approach pre-

sented in Sect. 3.3.2 follows directly the Data Assimilation

Through Upscaling and Nudging (DATUN) idea outlined in

von Storch et al. (2000), whereas the Forcing Singular Vec-

tor (FSV) method presented in Sect. 3.3.1 uses a different

method to control the atmospheric circulation in the model.

In both cases an artificial forcing f is added to the model

tendencies to keep the simulated states close to the target

patterns, but the two methods differ in the construction of

the artificial forcing terms. If differences between simulated

and target states originate from an incomplete or incorrect

representation of the response to forcings, the forcing term

can be interpreted as a crude way to account for the missing

processes in the model equations. If the differences are due

to non-predictable chaotic variability, they are the means by

which the simulated states are kept close to reality.

Statistical upscaling models have been used extensively

in palaeoclimatology to link proxy data for the last mille-

nium or long instrumental records from multiple sites to the

intensities of hemispheric- or continental-scale temperature

(Mann et al., 1998, 2008) or circulation patterns (Cook et al.,

2002; Luterbacher et al., 2002; Jones and Widmann, 2003;

Jones et al., 2009). They are based on statistical relation-

ships between the local data and large-scale climate variabil-

ity obtained from spatially (almost) complete fields which are

available for large parts of the 20th century. These relation-

ships are then applied to the past to infer large-scale climate

variability from the local data. Compared to the use of lo-

cal data in the assimilation framework outlined in Sects. 2

and 3.2 the obvious advantage and original reason for these

methods is that large-scale climate information can be ob-

tained without running climate models and without dealing

with the theoretical and technical challenges of assimilation.

The FSV and PN methods are designed to use this existing

large-scale information in simulations directly and at rela-

tively low computational costs.

The statistical link is usually formulated via linear

methods, such as Multiple Linear Regression, Principal

Component Regression, pattern-based regression methods

(e.g. Canonical Correlation Analysis), or via Regularised Ex-

pectation Maximation. The key assumption on which the

upscaling approach relies is the stability of the statistical
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relationships over time, which however can not be fully

tested with empirical data. Moreover there are questions

related to how details of the statistical methods affect the

reconstructions, which have mainly been discussed with re-

spect to temperature reconstructions (von Storch et al., 2004;

Rutherford et al., 2004; Bürger et al., 2006; Lee et al., 2008;

Christiansen et al., 2009), but which in principle also apply

to circulation variables. In addition upscaling assumes the

invertability of the relationship between the large-scale state

and the local information (which is closely linked to the ob-

servation operator), in other words it assumes that two dif-

ferent large-scale states lead to different local observations.

Although these issues need to be taken seriously and may be

seen as suggesting that DA based on upscaling is less prefer-

able than DA based on forward modelling of local informa-

tion, it should be noted that in the context of palaeoclimatol-

ogy the question arises how stable over time a given forward

operator is, and how the choice of forward operators affects

the DA results. Thus similar methodological challenges are

present in both cases, yet avoiding the invertability problem

is a clear principle advantage of forward modelling.

3.3.1 Forcing singular vectors

This section describes a technique that determines small per-

turbations to the time evolution of the prognostic variables of

the model (the tendencies) that lead the atmospheric model

to a pre-defined target pattern. In terms of Eq. (1), a model

forcing perturbation f is added to the model F on the right-

hand side of this equation. These tendency perturbations are

determined to result in large perturbation growth during a

short period of time (of several days length). The tendency

perturbations f are referred to as forcing singular vectors

(Barkmeijer et al., 2003). In the examples discussed here

the method is used to assimilate only one large-scale circula-

tion pattern, although multiple patterns are possible. Appli-

cations to patterns of variability in physical aspects of the at-

mosphere (like temperature) or ocean dynamics are theoreti-

cally possible, but put demanding requirements on the model

used.

If 9T denotes the proxy-based reconstruction of atmo-

spheric circulation and 9M the circulation in the model, then

these fields can be expressed as

9T (x,t)= 9̄T (x)+αT (t)8T (x) (4)

9M(x,t)= 9̄M(x)+αM(t)8T (x)+
∑

i

αi(t)8i(x), (5)

where 9̄T is a (modern) climatology and 9̄M the model’s

equivalent. The two climatologies need not to be similar,

and when using intermediate complexity models, usually are

not. The pattern 8T is referred to as the target pattern and

its time dependency is captured in the target time expansion

coefficient αT . The set of patterns 8i(x) can be any basis

of the state space orthogonal to 8T . There is no fundamen-

tal reason for separating the time dependence and the spatial

pattern as is done here, it is merely convenient for the appli-

cations where only the amplitude of the target pattern 8T (x)

is time-dependent. This is the case in three out of the four

FSV examples discussed below, while in one example a tar-

get pattern is assimilated that has both temporal and spatial

variability on a year-to-year timescale. In this case, the term

αT (t)8T (x) needs to be written in the more general from

8T (x,t) and the remainder of this section can easily be gen-

eralised to include this case as well.

The aim is to bring, in a time-averaged sense, the coeffi-

cient αM close to the target value αT , while the expansion

coefficients αi(t) can assume any values. The tendency per-

turbations f are constructed to produce after some optimisa-

tion time a deflection of the model atmospheric state in the

direction of the target pattern 8T . The amplitude of this de-

flection is aimed at reducing the difference between the target

value αT and the projection coefficient αM . If the target value

has a time dependency, it will usually vary on timescales far

larger than the typical time step of the model, which is a con-

sequence of the fact that large spatial scales are associated

with long timescales. The optimisation time will be on the

order of days, which is much larger than the model time step

and much smaller than the typical timescale of the target co-

efficient.

If the tendency perturbations are sufficiently small, the

evolution of deviations of the model atmospheric state

that results from tendency perturbations can be computed

by a linearisation of the dynamical model along a (time-

dependent) solution of this model. Thus the linear evolution

of a perturbation ε, measuring the deviation between a con-

trol and perturbed model run, satisfies

dε

dt
= Lε+f , (6)

where L is the time-dependent linearisation of the model

along a solution. For a forcing perturbation f , the vector

ε(t=T )≡Mf is simply determined by integrating Eq. (6)

to time t=T with initial condition ε(t=0)=0. The forcing

perturbation is now determined by minimisation of

|P(Mf −(αT −αM)8T )| (7)

where 8T is the target pattern and P is a projection operator.

Through the use of the latter only information over the spatial

domain that is available in the reconstruction enters the cost

function. A fast minimisation routine requires the derivative

of Eq. (7) with respect to f , which can be efficiently com-

puted using the adjoint ofM. The requirements of having

a linearisation of the climate model, or a part of the climate

model, and an adjoint of this linearisation makes the FSV

approach not applicable to every model. Although numeri-

cal methods exist that automatically generate the code of the

adjoint model from the model code (Giering and Kaminski,

1998; Heimbach et al., 2005) not many atmosphere GCMs
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a

b

Fig. 3. Stream function anomaly 9 (m2 s−1): (a) target pattern in the data assimilation, and (b) mean difference in winter (DJF) between

the data assimilated run and the control run.

have this feature. An extensive and more technical discussion

of this approach can be found in Barkmeijer et al. (2003) and

van der Schrier and Barkmeijer (2005).

This method has been used in several palaeoclimatic stud-

ies (van der Schrier and Barkmeijer, 2005, 2007; van der

Schrier et al., 2007; Luterbacher et al., 2010; Palastanga

et al., 2010). To illustrate the method, we show results using

the intermediate complexity model ECBilt-Clio. A linearisa-

tion of the dynamic core of the atmospheric part (ECBilt) of

the climate model and its adjoint exist. They have been used

earlier in predictability studies, e.g. Barkmeijer et al. (1993).

The effect of parameterised processes is not included in the

computation of f ; an accurate approximation if the optimi-

sation time T is sufficiently small.

One application (van der Schrier and Barkmeijer, 2005)

assimilated the averaged atmospheric circulation over the

North Atlantic sector for the 1790–1820 period, sometimes

referred to as the Dalton Minimum, and one of the cold spells

in the Little Ice Age. Figure 3 shows the target pattern 8T , in

terms of the 800 hPa stream function anomaly, for the winter

season. Stream function is a mathematical expression that

describes the pattern of a two-dimensional flow. Lines in

the horizontal plane where the stream function is constant

give the direction of the flow. The target pattern is assimi-

lated only in winter in the model, the model evolves freely

in the remaining seasons. The lower panel shows the winter

stream function anomaly at the 800 hPa level, averaged over

the length of the simulation and relative to the control clima-

tology 9̄M . There is a distinct qualitative similarity between

the two patterns, with a reproduction of the tripole of the tar-

get pattern. The FSV approach successfully assimilates the

information contained in the target pattern with repect to the

strength and position of the negative and positive anomalies

over Labrador and Iceland, whereas the negative anomaly

over the European continent is not reproduced.

The simulation shows very large changes in 2 m temper-

atures over the European continent compared to the control

simulation (Fig. 4a and b). In the winter (DJF) season, tem-

peratures are more than 3◦C colder over northern Scandi-

navia to around 0.5◦C colder over Spain. In the summer

(JJA) season, temperatures are lower in the eastern half of the

North Atlantic ocean with minima of circa −0.9◦C over the
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(a) (c)

(b) (d)

Fig. 4. Left-hand panels: difference in 2 m temperature (K) between the data assimilated and the control run, averaged over 25 years,

(a) winter (DJF) and (b) summer (JJA). All temperature changes shown are statistically significant at the 5% level. Right-hand panels:

difference in reconstructed surface air temperature (K) for the period 1790–1820 AD with respect to 1971–2000, (c) winter (DJF), and (d)

summer (JJA). Reconstructed temperatures are from Luterbacher et al. (2004).

UK. Positive anomalies are found over Poland and western

Russia. Reconstructed temperatures for this period (Luter-

bacher et al., 2004) show a compelling similarity with the

simulated temperatures (Fig. 4c and d) for both the win-

ter and summer season. In van der Schrier and Barkmei-

jer (2005) it is shown that the winter temperature response

is related to the anomalous atmospheric circulation, whereas

the summer response is related to a feedback via ocean and

soil-moisture dynamics. This illustrates the strength of the

DA, where different climatic components are coupled and

the simulated climate remains dynamically consistent with

the assimilated data. We note however that we do not exclude

an additional direct effect of the solar and volcanic radiative

forcing, in particular on larger spatial scales, and that the cir-

culation anomaly itself could be a response to the forcings.

A problem associated with the FSV methodology is stum-

bled upon by van der Schrier and Barkmeijer (2007). In

that study, positive and negative phases of the Pacific-North

American (PNA) pattern were assimilated. None of the dom-

inant natural modes of variability of the ECBilt-Clio model

bears a direct similarity with the PNA pattern, but the first

few natural modes of variability have a nonzero projection

on the PNA.

This results in an over-amplification of parts of the PNA-

pattern, while other parts of the PNA-pattern are suppressed.

In order to reach a time-averaged atmospheric circulation

with persistent negative or positive PNA conditions, it was

required to artificially enhance or weaken the monopoles of

the target pattern in order to counteract the model’s tendency

to distort the PNA pattern. This problem seems to be asso-

ciated with unrealistic aspects of the model rather than with

a conceptual problem in the DA approach. Data assimilation

with the FSV method has not been tested with a model more

complex than ECBilt-Clio.

The drawback associated with the model deficiency de-

scribed above puts some limitations to the applicability of

this method for DA. In Luterbacher et al. (2010), a sea-level

pressure (SLP) pattern is discussed which is constant for the

JFM season, but has a year-to-year variability. This sea-level

pressure pattern is assimilated into the ECBilt-Clio model to

produce a climate that is dynamically consistent with the re-

constructed atmospheric circulation. The SLP pattern is first

related to stream function, which is the prognostic variable

of the ECBilt model, and then the yearly varying pattern is

assimilated in the ECBilt-Clio model using the FSV tech-

nique. For each year, the JFM-averaged stream function is
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Fig. 5. Pattern correlations between fields of the simulated stream

function at the 800 hPa level, averaged over JFMA, and the recon-

struction of stream function as derived from a SLP reconstruction.

Fig. 6. Zonally averaged zonal velocity (m s−1) for the control sim-

ulation (upper panel), and the data assimilated experiment (lower

panel). The zonal velocity is averaged over the North Atlantic sec-

tor (60◦W, 40◦E) and averaged over the December–February pe-

riod. Both contours and colourbar denote zonally averaged zonal

velocity.

determined as deviation from the mean of the control cli-

mate, and compared to the target pattern. The pattern cor-

relation coefficients are shown in Fig. 5, which shows that

for many years the pattern correlation is reasonably high, but

the pattern correlation drops to near-zero (or below zero) val-

ues for some years. The lack of a resemblance between the

target pattern and the model’s natural modes of variability

are related to the poor performance in these years.

Finally, the FSV as well as PN approach discussed in the

next section, can be used for experiments where hypotheti-

cal atmospheric circulations are assimilated. One example is

given by van der Schrier et al. (2007), where tendency per-

turbations are calculated that nearly double the strength of

the North Atlantic subtropical jet. These tendency perturba-

tions were calculated and applied on the 200 hPa level of the

model only. The study aimed to test an alternative hypothesis

(Seager and Battisti, 2007) for rapid climate change involv-

ing strong variations in the North Atlantic subtropical jet that

trigger a reorganisation of the atmospheric circulation in the

North Atlantic sector and a cessation of the northward atmo-

spheric heat transport. Figure 6 shows the zonally averaged

zonal velocity over the North Atlantic sector for the DJF sea-

son, for the control simulation and one of two experiments.

Next to the increase in the strength of the subtropical jet, the

disappearance of the eddy-driven jet at mid-latitudes is ob-

served in the assimilated experiment. The disappearance of

the eddy-driven jet has dynamical origins in which a double

jet situation is replaced with a single jet as the subtropical

jet increases in strength. The latter study indicates that DA

methods as discussed in this study may also prove useful for

studies into atmospheric dynamics.

3.3.2 Pattern nudging

The aim of PN is very similar as in the FSV approach,

namely to bring the model time expansion coefficient αM(t)

of a target pattern in Eq. (5) close to a target coefficient αT (t).

Analogously to the FSV approach the method is designed

such that the time expansion coefficients αi(t), which are re-

lated to the other patterns, are not affected, in other words

PN aims at simulated states that have a specified projection

onto the target pattern rather than being identical to the target

pattern. The motivation is the fact that large-scale circulation

indices such at the NAM and SAM indices describe such a

projection rather than represent the full spatial field. The dif-

ference to the FSV approach is how the simulation is con-

trolled. Pattern nudging does not use knowledge about the

dynamical evolution of a perturbation, and is based on the

expectation that if a perturbation is introduced the circulation

anomalies will change in the direction of this perturbation.

The approach taken is a simple Newtonian relaxation in

which the additional forcing term f , which is called nudging

term, is proportional to the difference between the simulated

and the target state in the one-dimensional subspace defined

by the target pattern. The nudging term is thus given by

f = G(αT (t)−αM(t))8T , (8)

where G is a constant that determines the strength of the

nudging and has the dimension 1/time. The simulated field

9mod,old(x,t) is modified by the nudging to

9mod,new(x,t) = 9mod,old(x,t)+21tf , (9)
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where 1t is the time step of the model. A generalization to

nudging with respect to multiple, mutually orthogonal target

patterns is straightforward.

This simple nudging approach has the advantage that it

does neither require linearisations of the dynamical model

nor adjoint models and can thus be implemented with-

out very large technical effort, which makes it suitable for

GCMs. PN is implemented in the ECHAM4 atmosphere

GCM and has been used with a T30 horizontal resolution

(approx. 3.75 lat×3.75 lon or 400 km lat×400 km lon) and

19 hybrid sigma-pressure levels with the highest at 10 hPa.

The ECHAM4 model with a finer T42 resolution is described

in Roeckner et al. (1996), and Stendel and Roeckner (1998)

showed that it still performs well with the lower T30 resolu-

tion, which is computationally less expensive and thus partic-

ularly suited for long simulations in palaeoclimatology. The

T30 version of ECHAM4 has been coupled to the HOPE-G

ocean model by Legutke and Voss (1999) and this so-called

ECHO-G model has been used for a 1000 year long equilib-

rium simulation with present day forcing conditions, which

has been described and validated in Min et al. (2005a,b), as

well as for transient simulations for the last 500 years and the

last 1000 years (von Storch et al., 2004; Zorita et al., 2004;

Fischer-Bruns et al., 2005; González-Rouco et al., 2006).

The experiments discussed here have been conducted with

the uncoupled ECHAM4 and climatological sea surface tem-

peratures, in order to analyse the atmospheric response to PN

without ocean feedbacks and to save computing time during

the test phase. Experiments with the coupled model are in

preparation.

In applications it is likely that the target pattern and coeffi-

cient describe circulation patterns such as the NAM or SAM,

and are thus based on SLP fields. However, PN is not directly

applied to SLP (or surface pressure, which is the equiva-

lent prognostic variable in ECHAM), because all circulation-

related variables above the surface would still be free, and

internally generated variability could potentially make it dif-

ficult to keep the atmosphere close to the target state. In addi-

tion particular care would be needed to ensure conservation

of mass if the surface pressure was nudged. Therefore the

nudging is used in the lower and middle troposhere and is ap-

plied to the horizontal vorticity of the wind field. The wind

field in the free, extratropical atmosphere is approximately

geostrophic and divergence-free, and thus well defined by

vorticity. The vorticity target patterns are the linear signals

of the SLP target time expansion coefficient.

This approach works generally well in test experiments

in which the model is nudged towards positive and nega-

tive states of the NAM. The exception is the summer season,

where it appears that the smaller spatial structures of the tar-

get pattern do not allow geostrophic adjustment. In the other

seasons the simulated SLP anomalies are close but not iden-

tical to the target patterns. Discrepancies may partly be ex-

plicable by the non-constrained orthogonal components, but

it also seems that the model tends to respond to the nudging

with anomalies that are close to its internal variability pat-

terns, for instance with a NAM pattern that has similarities

to EOF1 of SLP in ECHAM. In this respect PN behaves sim-

ilar to FSV, which, as discussed above, is problematic if the

target patterns are very different from the model’s own dom-

inant variability patterns. The nudging constant G can be

chosen such that the simulation is close to the target index,

but still retains considerable variability of the target pattern

time expansion coefficient on daily timescales. A key prop-

erty of PN is that aspects of circulation variability that are

different from the target pattern, for instance synoptic-scale

variability, evolve freely, but are consistent with the nudged

state of the target pattern.

Here we present an experiment in which the atmospheric

circulation has been nudged towards a negative NAM index

of one (monthly) standard deviation. This simulation repre-

sents a target circulation anomaly similar to the one used for

the FSV simulations discussed in the previous section. As

the current version of PN has only been developed and tested

with respect to nudging the NAM pattern, and as the first

transient simulations will be based on specifying the NAM

index, the NAM pattern rather than the full reconstructed

SLP anomaly during the Dalton Minimum has been used as a

target pattern. Figure 7 shows the winter NAM pattern (for a

positive index of one standard deviation) and the SLP winter

(DJF) anomaly in a 20 year long nudged simulation relative

to a non-nudged simulation. The target pattern and the re-

sponse have a clearly similar spatial structure and the ampli-

tudes of the local response anomalies are consistent with the

prescribed negative NAM index. Differences in the structure

between target and response pattern can indicate the limita-

tions of PN, but can also be due to sampling effects and to the

fact that PN only prescribes the amplitude of the target pat-

tern and does not constrain the amplitudes of all orthogonal

patterns.

The response pattern is similar to the reconstructed Dalton

Minimum anomaly (Fig. 3a) as it shows positive pressure

anomalies over Iceland and Northern Europe, and negative

anomalies over Southern Europe, the northwest Atlantic and

northeastern America. Over western Europe both patterns in-

dicate anomalous flow from northeasterly or easterly direc-

tions. However, the exact locations of maxima and minima,

and the directions of the geostrophic flow are different. Over

the North Pole this seems clearly a consequence of the hemi-

spheric PN target pattern, whereas the locations of the two

simulated negative anomalies in the Atlantic sector and the

strong Pacific anomaly are features that are not part of the

NAM target pattern and that appear to be a model-specific

response to the NAM forcing.

The simulated temperature anomaly (Fig. 8) is very similar

to the well-known NAM temperature signal (Thompson and

Wallace, 1998) and is consistent with anomalous advection

of air masses according the circulation anomaly. It shows

lower than normal temperatures over Western and Northern

Europe and higher temperatures over Turkey and the Black
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Fig. 7. Left: winter SLP anomaly for a positive NAM index of one standard deviation (hPa). Right: mean winter (DJF) SLP difference

(hPa) between a 20 year long simulation with ECHAM4 nudged towards a negative NAM index of one standard deviation and a 20 year long

control simulation.

Sea region. Compared to the temperature reconstruction in

Fig. 4 there is agreement over Western and Northern Eu-

rope and over Turkey, whereas Eastern Europe has strong

negative anomalies in the reconstruction and small negative

to positive anomalies in the simulation. The simulated posi-

tive temperature anomalies are consistent with the advection

of warm air from Northern Africa into Eastern Europe and

the Black Sea region according to the simulated circulation

anomaly, which in this aspect is not in agreement with the

reconstructed anomaly (Fig. 3a).

PN has also been implemented in the HadCM3 model and

a simulation nudged towards a negative winter NAO index,

which aims at representing the circulation during the Maun-

der Minimum, is discussed in Palastanga et al. (2010). This

experiment is idealised to the point that radiation changes,

due to changes in volcanic dust loading or solar activity, are

ignored. The Palastanga et al. (2010) study aims to assess

whether a persistently negative NAO-type circulation could

be the primary driver of climate change as seen in the Maun-

der Minimum period. The resulting temperature anomaly has

a similar structure to the one obtained with the ECHAM4

model, but the cold anomaly over Europe is shifted eastward,

with the consequence that simulated temperatures are still

lower than normal over Northern Europe, but close to av-

erage over western and central Europe, whereas temperature

reconstructions during this period show negative anomalies

over all of Europe. The partly unrealistic simulated temper-

ature anomaly is tentatively attributed by Palastanga et al.

(2010) to a too strong mean westerly flow in HadCM3.

Fig. 8. Mean winter (DJF) 2 m temperature difference (K) between

a 20 year long simulation with ECHAM4 nudged towards a negative

NAM index of one standard deviation and a 20 year long control

simulation.
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4 Summary and conclusions

The temporal evolution of quasi-random internal climate

variability on decadal timescales can not be simulated in

climate models, and complex climate responses to external

forcings are difficult to simulate. Details of internal variabil-

ity in simulations and climate reconstructions can only be

brought in agreement through DA, and in cases where forc-

ing signals are unrealistically simulated DA may also be use-

ful. Although DA has the potential to improve estimates of

past climate variability for regions in which proxy data are

available, the main added value compared to purely statistical

climate reconstructions is that it yields spatially complete

fields in a dynamically consistent way. Simulations with DA

provide information for variables and at locations for which

no proxy data are available, and thus allow the analysis of

dynamical processes that caused the local climate variability

at the locations covered by proxy data.

Here we have presented three methods for performing

DA in the context of palaeoclimatology, namely selection

of ensemble members, Forcing Singular Vectors, and Pat-

tern Nudging. The first two methods are implemented using

EMICs, while the third method is implemented in GCMs.

All methods have been successful in bringing the simulations

closer to reconstructions. However, as could be expected,

DA has a tendency to produce anomalies that are within the

model’s range of internal variability for a given external forc-

ing. For the ensemble method this is the case by construction,

but with the FSV and PN methods it is also difficult to assim-

ilate target patterns that are different from internal variabil-

ity patterns. Moreover, the PN simulations with HadCM3

show that biases in the mean simulated climate can affect

the temperature response to circulation variability. This is

also not surprising as the influence of the mean flow on links

between circulation and temperature anomalies has been al-

ready discussed in Groll et al. (2005) and Groll and Wid-

mann (2006). Thus the different methods are associated with

similar methodological challenges. It should be noted that

problems linked to an unrealistic simulation of the mean cli-

mate and of the statistical properties of climate variability

can be expected to become less important as increasing com-

puting power allows to use higher resolution and more so-

phisticated models for DA in palaeoclimatology. An advan-

tage of the ensemble member selection is that in principle it

uses forward modelling to link the simulations and the prox-

ies and thus avoids the potential non-invertability problem

associated with the upscaling that is used in the FSV and PN

approach. However, current implementations still use very

simple forward models.

Despite these issues all DA simulations presented here

were consistent with empirical knowlege over large parts

of Europe. These simulations demonstrate the value that

DA adds compared to statistical reconstructions of individ-

ual variables by providing physically consistent and spatially

complete information for a large number of variables, which

can aid process understanding. In particular it has has been

shown that the cold periods in Europe around 1680–1720

and around 1790–1820 can be produced by anomalous at-

mospheric circulation that is associated with a negative NAO

or NAM index and northerly or easterly wind anomalies. It

has also been shown that the cold period around 1790–1820

is associated with colder eastern Atlantic SSTs which help to

maintain cold conditions all year long over Northern Europe.

DA also provides a framework to test the compatibility be-

tween proxies and models. In order to satisfy its constitutive

equations a model may not be able to simultaneously fol-

low all the constraints given by a set of proxy data. Prox-

ies that are not in good agreement with the simulation have

then to be carefully analysed in order to determine the rea-

son for the discrepancies, which could for instance be re-

lated to model biases, or instationarities and misinterpreta-

tion of the proxies. FSV and PN are much simpler than

the filter or variational methods used in numerical weather

prediction, while the selection of ensemble members is con-

ceptually related to filters. A major obstacle for applying

variational methods in palaeoclimatology is that the current

implementations in weather prediction use adjoint models,

which are based on linear approximations for the climate dy-

namics. On the timescales given by the temporal resolution

of proxy data (e.g. interannual) the standard linear approxi-

mations are not valid. We note however that FSV is able to

use adjoints by prescribing reconstructed climate anomalies

related to long timescales periodically at intervals of several

days, which means that the linear approximation of the cli-

mate dynamics can still be used between the intervals. Some

high-frequency temporal variability of the amplitude of the

target pattern is maintained by choosing sufficiently long in-

tervals. Similarly PN prescribes target values at every model

time step and maintains high-frequency variability through a

sufficiently small nudging constant. We thus do not exlude

that modifications of the methods used in weather prediction

could be used in palaeoclimatology.

The methods currently used in palaeoclimatology are not

formulated within the standard DA framework and would

therefore not be able to provide estimates for the uncer-

tainty of the DA results even if the uncertainties of models

and proxy data were known, which however usually is not

the case. The potential of DA to provide uncertainties that

are lower and better defined than those of statistical climate

reconstructions is not yet explored and further progress to-

wards exploiting this advantage of DA can be expected. It

would require not only further development of DA methods

but also of forward models for proxy data that provide error

estimates.
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