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ABSTRACT 

As higher education diversifies its delivery modes, our ability to use the predictive and analytical power of 
educational data mining (EDM) to understand students’ learning experiences is a critical step forward. The 
adoption of EDM by higher education as an analytical and decision making tool is offering new opportunities to 
exploit the untapped data generated by various student information systems (SIS) and learning management 
systems (LMS). This paper describes a hybrid approach which uses EDM and regression analysis to analyse live 
video streaming (LVS) students’ online learning behaviours and their performance in their courses. Students’ 
participation and login frequency, as well as the number of chat messages and questions that they submit to their 
instructors, were analysed, along with students’ final grades. Results of the study show a considerable variability 
in students’ questions and chat messages. Unlike previous studies, this study suggests no correlation between 
students’ number of questions / chat messages / login times and students’ success. However, our case study 
reveals that combining EDM with traditional statistical analysis provides a strong and coherent analytical 
framework capable of enabling a deeper and richer understanding of students’ learning behaviours and 
experiences.  

 
Keywords 

 Educational data mining, Data mining, Live video streaming, Clustering analysis  
 

Introduction 
 
According to a recent survey conducted by Campus Computing (campuscomputing.net) and WCET (wcet.info), 
almost 88% of the surveyed institutions reported having used an LMS (Learning Management System) as a medium 
for course delivery for both on-campus and online offerings. In addition to various student information management 
systems (SISs), LMSs are providing the educational community with a goldmine of unexploited data about students’ 
learning characteristics, behaviours, and patterns. The turning of such raw data into useful information and 
knowledge will enable institutes of higher education (HEIs) to rethink and improve students’ learning experiences by 
using the data to streamline their teaching and learning processes, to extract and analyse students’ learning and 
navigation patterns and behaviours, to analyse threaded discussion and interaction logs, and to provide feedback to 
students and to faculty about the unfolding of their students’ learning experiences (Hung & Crooks, 2009; Garcia, 
Romero, Ventura, & de Castro, 2011). To this end, data mining has emerged as a powerful analytical and exploratory 
tool supported by faster multi-core 64 CPUs with larger memories, and by powerful database reporting tools. 
Originating in corporate business practices, data mining is multidisciplinary by nature and springs from several 
different disciplines including computer science, artificial intelligence, statistics, and biometrics. Using various 
approaches (such as classification, clustering, association rules, and visualization), data mining has been gaining 
momentum in higher education, which is now using a variety of applications, most notably in enrolment, learning 
patterns, personalization, and threaded discussion analysis. By discovering hidden relationships, patterns, and 
interdependencies, and by correlating raw/unstructured institutional data, data mining is beginning to facilitate the 
decision-making process in higher educational institutions.  
 
This interest in data mining is timely and critical, particularly as universities are diversifying their delivery modes to 
include more online and mobile learning environments. EDM has the potential to help HEIs understand the dynamics 
and patterns of a variety of learning environments and to provide insightful data for rethinking and improving 
students’ learning experiences.  
 
This paper is focused on understanding live video streaming (LVS) students’ learning behaviours, their interactions, 
and their learning outcomes. More specifically, this study explores how the interaction of students with each other 
and with their instructors predicts their learning outcomes (as measured by their final grades). By investigating these 
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interrelated dimensions, this study aims to enrich the existing body of literature, while augmenting the understanding 
of effective learning strategies across a variety of new delivery modes.  
 
This paper is divided into four sections. It begins by reviewing the literature dealing with the use of data mining in 
administrative and academic environments, followed by a short discussion of the way in which data mining is used to 
understand various dimensions of learning. The second section explains the purpose and the research questions 
explored in this paper. The third section describes the background of the study and details its methodological 
approach (sampling, data collection, and analysis). The paper concludes by highlighting key findings, by discussing 
the study's limitations, and by proposing several recommendations for distance education administrators and 
practitioners. 
 
 
Data mining applications in administrative and academic environments 
 
At the intersection of several disciplines including computer science, statistics, psychometrics (Garcia et al., 2011), 
data mining has thrived in business practices as a knowledge discovery tool intended to transform raw data into high-
level knowledge for decision support (Hen & Lee, 2008). To this end, a wide range of tools that can be used for 
collecting, storing, analysing, and visualizing data, such as the SPSS Modeler (formerly Clementine) and the SAS 
Enterprise Miner, have been developed in the business world.  These tools use sophisticated computing paradigms 
including decision tree construction, rule induction, clustering, logic programming, and statistical algorithms.  
 
Although data mining has been widely used in business environments to predict future trends and consumer 
behaviours (Harding, Shahbaz, Srinivas, & Kusiak, 2006; Ngai, Xiu, & Chau, 2009), the data mining method has 
been dramatically under-used in education research in general (Faulkner, Davidson, & McPherson, 2010). Only 
recently have higher education institutions started to exploit the potential of this powerful analytical tool (Black, 
Dawson, & Priem, 2008).  

 
However, according to Romero and Ventura (2010), educational data mining (EDM) has emerged as a new field of 
research capable of exploiting the abundant data generated by various systems for use in decision making. The 
enthusiastic adoption of data mining tools by higher education has the potential to improve some aspects of the 
quality of education, while it lays the foundation for a more effective understanding of the learning process (Baker & 
Yacef, 2009). EDM, when integrated into an iterative cycle (Romero, Ventura, & Garcia, 2008) in which mined 
knowledge is integrated into the loop of the system not only to facilitate and enhance learning as a whole, but also to 
filter mined knowledge for decision making (Romero et al., 2008) or even to create intelligence upon which students, 
instructors, or administrators can build, can notably change academic behaviour (Baepler & Murdoch, 2010). 

 
From an administrative perspective, Chang (2006) argues that the predictive capacity of data mining can further 
enhance enrolment management strategies by increasing the HEIs’ understanding about their admitted applicants. 
Similarly, Delavaria, Phon-Amnuaisuka, and Reza Beikzadehb (2008) contend that data mining knowledge 
techniques are capable of enabling higher learning institutions to make better decisions, to put more advanced 
planning into place to direct students, and to predict individual behaviours with higher accuracy, and, in so doing, to 
enable the institutions to allocate resources and staff more effectively. Without inflating the merits of data mining in 
rethinking administrative and academic processes, it is clear that data-mining is gaining ground and is providing 
powerful analytical tools capable of converting untapped LMS and EPR data into critical decision-making tools with 
the potential of enhancing students’ learning experiences (Garcia et al., 2011).   

 
From a learning perspective, according to Castro, Vellido, Nebot, and Mugica (2007), data mining is being used in 
higher education  
 to assess students’ learning performance 
 to provide feedback and adapt learning recommendations based on students’ learning behaviours  
 to evaluate learning materials and web-based courses, and  
 to detect atypical students’ learning behaviours. 
 
Following this line of thinking, Perera, Kay, Koprinska, Yacef, and Zaiane (2009) used clustered data mining 
techniques to support the learning of group skills by building automated mirroring tools capable of facilitating group 
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work. In a similar study, Sun, Cheng, Lin, and Wang (2008) used rules based on data mining results to form high 
interaction-learning groups.  
 
For their part, Hung and Zhang (2008) applied data mining techniques to server logs, both to reveal online learning 
behaviour patterns and to support online learning management, facilitation, and design. Their study’s results revealed 
students’ behavioural patterns and preferences, which helped them to identify active and passive learners and which 
extracted important parameters for the prediction of the students’ performance (Hung & Zhang). Using a similar 
approach, Ba-Omar, Petrounias, and Anwar (2007) analysed web access logs to identify learning patterns and offline 
learning styles. In a recent study, Abdous and He (2011) used text mining as a detection tool for the common 
technical problems faced by students taking video streaming courses.  

 
Elsewhere, Zaiane and Luo (2001) analysed server logs to understand online learners’ behaviours in an effort to 
improve their web-based learning environments. Later, Zaiane (2002) used association rule mining to construct a 
recommender-system based on data from online learners’ profiles, access histories, and collective navigation 
patterns. This system can “intelligently” recommend learning activities or shortcuts to learners, based on the actions 
of previous learners. Similarly, Burr and Spennemann (2004) have pointed out that analysis of the patterns of user 
behaviour is important from both the technical and the pedagogical perspectives in order to predict network and 
traffic load, to align pedagogy with users’ behaviours, and to plan and deliver services in a timely manner.  
 
For their part, Dringus and Ellis (2005) proposed a data mining approach for “discovering and building alternative 
representations for the data underlying asynchronous discussion forums.” This approach is intended to improve the 
instructor’s ability to evaluate the progress of a threaded discussion. More recently, Lin, Hsieh, and Chuang (2009) 
conducted a study to investigate the potential of an automatic genre classification system (GCS) that can be used to 
facilitate the coding process of the content analysis of a threaded discussion forum, 
 
Of particular relevance to our study, we discovered several studies which have used various EDM techniques to 
predict students’ performance as measured by final grades. Minaei-Bidgoli and Punch (2003) used web-use features 
such correct answers, number of attempts for doing homework, total time spent on problems, participation in 
communication, and reading of material as predictors of students’ final grades. Their prediction accuracy varied 
between 51% and 86.8%, depending on the type of classifier used.  Similarly, Falakmasir & Jafar (2010) used data 
mining to rank students’ activities which affected their performance, as measured by their final grade. Their findings 
suggest that students’ participation in virtual classrooms had the greatest impact on their final grades.  
 
For their part, Zafra and Ventura (2009) used a grammar-guided genetic programming algorithm to predict students’ 
success or failure. These predictions were used to provide alternative learning activities that would enhance the 
students’ chances of success.   
 
Using Learning Management Systems-generated student tracking data (Macfadyen & Dawson, 2010), we propose 
the development of a customizable dashboard-like reporting tool. This tool is intended to provide instructors with 
real-time data on both students’ engagement and the likelihood of their success. Unsurprisingly, their findings 
confirm that students’ contribution to the course discussion board is the strongest predictor of their success.   
 
In reviewing the literature, Romero, Espejo, Zafra, Romero, and Ventura (2010) identified several avenues for using 
classification in educational settings: discovering student groups with similar characteristics, identifying learners 
with low motivations, proposing remedial actions, and predicting and classifying students using intelligent tutoring 
systems.   
 
For their parts, Anand Kumar & Uma (2009) used the classification process to examine various attributes affecting 
student performance. Castellano and Martínez (2008) used collaborative filtering techniques to exploit students’ 
grades in order to generate group profiles which could facilitate academic orientation. Along the same lines, Vialardi 
et al. (2011) used data mining techniques which employed the students’ academic performance records to design a 
recommender system in support of the enrolment process. 
 
In sum, this quick overview of the literature suggests that using various data mining techniques to predict students’ 
performance as measured by final grades has been examined by several different studies of traditional learning 
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management systems. However, none of the studies has explored the dynamics of online interaction in a live video 
streaming environment.  
 
With these considerations in mind, we aim to apply both regression analysis and clustering analysis in order to 
explore students’ learning behaviours (students’ participation, login frequency, number of chat messages, and the 
type of questions submitted to instructor) along with their final grades. More specifically, we attempt to answer the 
following two questions:  
 What are the major themes emerging from LVS students’ online questions? 
 How do these emerging themes predict the students’ course grades? 
 

 
Figure 1. LVS interface 

 
Methodology 
 
Context of the study 
 
This study was conducted in a public research university in the mid-Atlantic region which serves 17,000 
undergraduate and 6,000 graduate students and offers more than 70 bachelor’s degree programs, 60 master’s degree 
programs, and 35 doctoral degree programs in a variety of fields. Located in a major maritime, military, and 
commerce hub, this institution offers strong emphases in science, engineering, and technology, especially in the 
maritime and aerospace sciences. The university is also known as a national leader in technology-mediated distance 
learning, having served students at over 50 sites in Virginia, Arizona, and Washington state for more than twenty-
five years. This extended distance learning capability provides the university with a variety of delivery mode options 
(i.e., ways in which a course can be delivered).  Courses can be offered simultaneously via three different delivery 
formats: face-to-face, via satellite broadcasting, and via live video-streaming. Using the live video-streaming (LVS) 
delivery mode, students participate in the class, in real time, via personal computer, over which they view a live feed 
of the class lecture and during which they can interact with their instructor by sending text messages through the 
LVS course interface. Using the same interface, LVS students are able to chat with their LVS classmates during 
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class. At the receiving end (i.e., in the physical classroom), questions submitted by LVS students are displayed 
instantaneously on a monitor next to the instructor.  
 
Instructors have the option to read/answer the messages, or to save, archive, and email them for later review. This 
tool is intended to enable instructors to seamlessly integrate LVS students into their classroom dynamic, without 
distraction and without overburdening instructors during their class time (Figure 1). 

 
Figure 2.  Interaction in VS courses 

 
Participants  
 
In total, 1,144 students completed 138 courses in a variety of subjects (e.g., accounting, computer engineering, 
information technology, human services, etc.) via the video streaming (VS) delivery mode during the Fall semester 
of 2009. All of the student-to-instructor questions, the two-way student-to-student chat messages, and the total login 
times were collected. Those VS students who never asked questions or chatted with their peers online were excluded 
from the actual analysis. The reasons why those students failed to get involved in the VS course discussion are 
suggested to be included in future investigation. One possible explanation is that some instructors never took the 
effort to invite their VS students to ask questions or to engage in online discussion. As a result of the pre-processing 
of the data, 298 students (those with complete information about their number of questions, number of chat 
messages, total login times, and final grade) were included in the data analysis. Due to factors such as privacy and 
university policy, the university’s registrar’s office could not provide us with the age or gender of these students, nor 
could we obtain the grading scales of each course. (The grading scale for each course at our university is determined 
by that course’s instructor.)  

 
Table 1.  Distribution of students by college  

Colleges Percentages 
Art and Letters 114 students (38.5%) 
Education 79 students (26.5%) 
Engineering 75 students (25%) 
Science 23 students (7.7%) 
Undecided 7 students (2.3%) 

 
Table 2. Distribution of students by academic level  

Student academic level Percentage 
Undergraduate Students 138 students (46%) 
Graduate Students 160 students (54%) 

 
The questions and chat messages posted by those 298 students, along with their course ID, Student ID, the date, and 
a time stamp were saved in the database. 
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Clustering analysis: Identification of emerging themes 
 
Our analytical approach included three phases: pre-processing, in which raw data is transformed into a usable format, 
mainly by cleaning, assigning attributes, and integrating data; mining the data by applying various mining strategies 
and tools such as classification, clustering, and visualization; and post-processing, which allows for interpretation 
and use of the gained knowledge in rethinking processes or in making decisions (Garcia et al., 2011). 
 
All of the questions posted by the students were recorded in the Microsoft SQL server Database. To prepare the data 
processing for clustering analysis, we wrote a program using the PHP programming language to aggregate questions 
from the same students within the same course in order to form a case which included the sequence of questions 
posted by the students.  
 
Subsequently, we used NVivo 9 software to apply an automatic coding technique to each of the student question 
cases. Nvivo is a leading qualitative analysis tool on the market and has been used and tested by many researchers 
for content analysis (Zha, Kelly, Park & Fitzgerald, 2006). Automated coding one of NVivo 9’s features; it allows 
for automatic coding of a text document by text strings. After nodes were generated from each student question case, 
a clustering analysis was conducted in order to classify these nodes into different clusters with NVivo 9. According 
to Nvivo, nodes are containers for specific themes, people, places, organizations, or other areas of interest.  
 
Researchers can organize nodes into hierarchies – moving from more general topics (the parent node) to more 
specific topics (child nodes) – in order to support their particular research needs. Clustering analysis is a well-studied 
technique in data mining (Lin, et al., 2009) that uses an exploratory technique to visualize patterns by grouping 
sources which share similar words or attribute values, or which are coded similarly. From a data mining perspective, 
clustering is the unsupervised discovery of a hidden data concept. This approach is used in those situations in which 
a training set of pre-classified records is unavailable. In other words, this technique has the advantage of uncovering 
unanticipated trends, correlations, or patterns; no assumptions are made about the structure of the data (Chen & Liu, 
2004) 
 
The purpose of clustering analysis in this study is to classify students based on the student-shared characteristics in 
their questions. The cluster analysis tool in the NVivo 9 software confers upon researchers a different perspective on 
the unstructured textual data. Using the calculated similarity in each word that appears in the text of the nodes, 
NVivo 9 groups the nodes into a number of clusters. In our study, a statistical method named the Pearson correlation 
coefficient (-1 = least similar, 1 = most similar) was used as the similarity metric for the clustering analysis. The 
Pearson correlation coefficient is the preferred similarity metric used with Nvivo. More information about the 
clustering analysis of Nvivo can be found in Nvivo’s online documentation website, 
http://www.qsrinternational.com/support.aspx. 
 
To gain further insight from the textual questions or chat messages, we also applied the SPSS Clementine tool, which 
allowed us to analyse the unstructured textual data. The SPSS Clementine tool provides linguistic methods 
(extracting, grouping, indexing, etc.) for researchers to use in order to explore and extract key concepts from the text. 
As the result of the text mining, key concepts in our study were extracted and identified for analysis. 
 
 
Measurement of final grade 
 
The students’ final grades, submitted to the University Registrar by each course instructor, were supplied to us by the 
University Registrar. In the actual data analysis, the final grades were categorized into three groups: A- to A, B- to 
B+, and Others. 
 
 
Quantitative data analysis: Predictive relationship between online question theme and final grade 
 
In the current study, all of the quantitative data analysis was implemented using SPSS 17.0. Furthermore, the alpha 
levels were set at the .05 level for all significance tests.  
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Due to the ordinal nature of the final grade, ordinal logistic regression analysis (Norusis, 2008; O’Connell, 2006) 
was implemented in order to examine the predictive relationship between the online question theme as the predictor 
and the final grade as the criterion variable. Specifically, a cumulative odds model was fitted to the data. The use of 
ordinal logistic regression, which was closely related to logistic regression, helped to avoid the statistical 
consequences that could occur from the violation of assumptions in linear regression, such as normality of errors and 
linearity in the parameters (King, 2008). The log transformation in logistic regression also ensured that the predicted 
probabilities for the event of interest would range from 0 to 1 without imposing the numerical constraint on the 
predicted log odds from the logistic equation (Cohen, Cohen, West, & Aiken, 2003). Given the ordinal nature of the 
final grade, ordinal logistic regression was used to take into account the information regarding the rank ordering of 
the outcomes (Hosmer & Lemeshow, 2000).      
 
The overall predictive utility of the ordinal logistic model with the online question theme as the predictor was 
assessed by testing the improvement of the model fit relative to the null model with no predictor, with the χ2 

likelihood ratio test of the differences in deviances (O’Connell, 2006). The individual parameter estimate (i.e., the 
location coefficient) for the predictor variable was tested with the Wald test (Norusis, 2008). In ordinal logistic 
regression, two cutoffs (A- and B-) were used sequentially to form the cumulative odds equal to or higher than those 
two cutoffs, respectively. As a result, the probabilities of falling into three possible categories of final grade (A- to A; 
B- to B+; and Others) could be derived. Two different pseudo R2 (Cox and Snell R2 and Nagelkerke R2) were also 
computed in order to quantify the overall model fit (O’Connell). The larger the pseudo R2, the better the model fit.  
 
The parallel lines assumption in ordinal logistic regression was checked with the χ2 likelihood ratio test (Norusis, 
2008) to see if the relationship between those two research variables remained the same across two cutoffs (A- and 
B-). 
 
 
Results 
 
Identification of online question themes 
 
In the current study, questions from each student during a semester were combined into one student entry so that 
students could be classified into different clusters based on the characteristics of their questions. The cluster analysis 
tool calculated each different word that appeared in the text of the entries by using the similarity metric. Then the 
entries were grouped into a number of clusters by NVivo 9, based on the calculated similarity index between each 
pair of entries. As a result, four major clusters of students were formed, based on the similarity of their questions. A 
multi-level, multiple cluster hierarchical structure was generated by clustering analysis (see Figure 3). These clusters 
were reviewed and interpreted collectively by two researchers and a graduate assistant. The two researchers had 
recently received specialized training about Nvivo 9 from the software producer. Differences in the review were 
compared, discussed, and resolved to reach an agreement. The coding results were further reviewed and discussed 
with an educational researcher to validate their accuracy.  
 

 
Figure 3. A cluster hierarchical structure 

 
After a close review of the student questions in each cluster, four major themes were found (see Table 3). 
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Table 3. Four major themes in students’ online questions 
Cluster N Theme Text Content 

1 90 Check-in Class check-in 
2 87 Deadline/Schedule Submission deadline, exam schedule, lab schedule 
3 70 Evaluation/Technical Exam format, grading, office hours, and technical problems 
4 51 Learning/Comprehension Questions regarding course materials and assignments 

 
 
Descriptive statistics of final grade 
 
The descriptive statistics of students’ final grades by their online questions are listed in Table 4. Overall, about half 
(144, 48.32%) of the participants obtained a grade of A- or higher. Among the 298 participants, 90 posted mainly 
check-in questions and 87 posted questions related to deadline and schedule. The number of participants who posted 
questions mostly related to learning and comprehension was the lowest, relative to the number of their counterparts 
posting questions on other themes. 

 
Table 4. Descriptive statistics of final grade by online question theme (N = 298) 

 Online question theme 
 1 2 3 4 Total 
Final Grade n % n % n % n % n % 
A- to A 43 47.78 36 41.38 32 45.71 33 64.71 144 48.32 
B- to B+ 28 31.11 29 33.33 23 32.86 15 29.41 95 31.88 
Others 19 21.11 22 25.29 15 21.43 3 5.88 59 19.80 
Total 90 100.00 87 100.00 70 100.00 51 100.00 298 100.00 
Note. Question theme 1: Check-in; Question theme 2: Deadline/Schedule; Question theme 3: Evaluation/Technical; 
Question theme 4: Learning/Comprehension. 
 
 
Predictive relationship between online question theme and final grade  
 
In the ordinal logistic regression model (see Table 5), the results of the chi-square likelihood ratio test supported a 
nonzero predictive relationship between the online question theme and the final grade, χ2 (3, N = 298) = 10.017, p < 
.05. Furthermore, the results did not indicate the violation of the parallel lines assumption, χ2 (3, N = 298) = 2.051, p 
> .05. Therefore, the predictive relationship between the online question theme and the final grade remained constant 
across two cutoffs of final grade (Norusis, 2008). The Cox and Snell R2 and the Nagelkerke R2 were .033 and .038 
respectively, and indicated a modest predictive relationship. Overall, the online question theme would prove to be a 
useful predictor for the final grade. 
 
The logistic regression coefficients (i.e., the location coefficients) for question themes 1, 2, and 3 were all positive 
and were statistically significant at the .05 level. Due to the way in which the ordinal logistic regression model was 
set up in SPSS (Norusis, 2008), the above statistically nonzero, positive regression coefficients suggested that the 
odds of getting a higher final grade, relative to all lower final grades at various cutoff values, were higher for the 
participants whose questions concerned learning/comprehension (Theme 4)  in comparison with participants with the 
other three question themes (i.e., 1: Check-in; 2: Deadline/Schedule; 3: Evaluation/Technical). Specifically, for 
participants with the question theme of Learning/Comprehension, the odds of obtaining a grade equal to or higher 
than those two cutoffs (A- and B-), relative to all other lower grades, were 2.214 times higher than for the students 
whose questions had the theme of check-in, 3.020 times higher than those whose questions had the theme of 
deadline/schedule, and 2.361 times higher than the students whose questions had the theme of evaluation/technical. 
While using Question Theme 1, or Question Theme 2, or Question Theme 3 as the reference category respectively, 
no differences in the odds of obtaining better grades were found among the three theme groups. 
 
The computed predicted probabilities of obtaining a final grade of A- to A+, B- to B+, and Others, respectively, for 
participants in those four question theme groups (1: Check-in; 2: Deadline/Schedule; 3: Evaluation/Technical; 4: 
Learning/Comprehension), were 47.07%, 32.89%, 20.04% in the Theme 1 group, 40.75%, 34.77%, 24.48% in the 
Theme 2 group, 45.48%, 33.43%, 21.09% in the Theme 3 group, and 66.31%, 23.51%, 10.17% in the Theme 4 
group. 
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Table 5. Ordinal logistic model with online question theme as the predictor for final grade (N =298) 

Parameter Estimate Wald 

Location   
 Question Theme 1 .795* 5.078 
 Question Theme 2 1.052* 8.834 
 Question Theme 3 .859* 5.452 
Threshold   
 Grade = A- to A .677* 5.394 
 Grade = B- to B+ 2.178* 47.867 

Overall model evaluation                2 df Cox and Snell R2 Nagelkerke R2 

Likelihood ratio test 10.017* 3   
Goodness-of-fit index   0.33 .38 
Note. Question Theme 1: Check-in; Question Theme 2: Deadline/Schedule; Question Theme 3: 
Evaluation/Technical; Question Theme 4: Learning/Comprehension as the reference category. 
*p < .05. 
 
Two cutoffs were set for the ordinal criterion variable, final grade, to examine how the increase in the faculty 
engagement score was related to the change in the odds, and in turn, to the probability of obtaining a higher final 
grade (O’Connell, 2006). The odds of obtaining a higher final grade at two cutoffs were the ratios of the probabilities 
of: A to all lower grades, and A through B- to all lower grades. The faculty engagement scores as the sample mean 
(i.e., 20.697 in raw score) and the one standard deviation (i.e., 5.560 in raw score) above the sample mean were 
examined to demonstrate the way in which the probability of obtaining a higher course final grade changed with the 
increase in faculty engagement (Norusis, 2008). Given an increase of one standard deviation in the faculty 
engagement score from the sample mean (i.e., from 20.697 to 26.257), the predicted probability of obtaining a final 
grade of A increased from 46.71% to 59.78% at the first cut-off. At the second cut-off, the predicted probability of 
obtaining a final grade of B- or higher increased from 78.79% to 86.30%. 
 
Moreover, with the faculty engagement score as the sample mean (i.e., 20.697 in raw score), the predicted 
probabilities of obtaining one of those three categories of course final grade (A, A- to B-, or Other) were 46.71%, 
32.08%, and 21.21% respectively. While the raw faculty engagement score increased by one standard deviation to 
26.257, the predicted probabilities of obtaining one of those final grades became 59.78%, 26.52%, and 13.70% 
respectively. Therefore, the increase in the faculty engagement score was accompanied by the increased probability 
of obtaining a better course final grade.  
 
 
Discussion 
 
A student’s final grade depends on many factors, including the student’s motivation, learning style, and previous 
background, the instructor’s teaching and grading scales, the exam’s and assignment’s difficulty levels, etc. A 
holistic view of student demographic and institutional variables, as opposed to the single variable, must be examined 
in determining the overall online learning experience (Herbert, 2008).  
 
In this study, our data shows that online VS student participation cannot be safely used to predict final grades. 
Perhaps the uniqueness of our VS interface (text-based chat in a live-video-streaming environment) explains our 
findings. Otherwise, previous studies including Macfadyen and Dawson’s study (2010) found that students’ 
participation and contribution to discussion boards in traditional learning management systems remain some of the 
strongest predictors of students’ success.  
 
However, our analysis found that there is a correlation between questions posed to instructors and chat messages 
posted among students. Those who chat often also interact more often with their instructor.  
 
We also analysed the chat messages (student-to-student communications) using the SPSS Clementine text mining 
tool. We noticed two outstanding concepts in the students’ chat messages (among themselves) and their frequency: 
they discussed technical problems (videos, sound, etc.) at 5% and test/exam issues at 2%. However, they addressed 
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the same concepts in their messages to the instructor with this frequency: technical problems at 2% and test/exam 
issues at 2%. Thus, it seems that students are more likely to discuss technology problems with their peers and try to 
help each other than to discuss those issues with their instructors.  
  
The messages also revealed interaction patterns including topics related to project and assignment collaboration, 
discussion of grades, socialization, and greetings. In addition, the data reveals that students with a higher number of 
logins asked more questions and exchanged more chat messages with their classmates. In contrast, students with 
fewer logins rarely participated in the class; in fact, some of them rarely even logged into the system.  
 
 
Conclusions and future research 
 
This study was conducted in order to exploit the untapped data generated by LVS students. Our results revealed 
several student learning behaviours, ranging from active participation and interaction with the instructor to a lack of 
participation or even of attendance. Overall, our findings corroborate those of a previous study (Abdous & He, 2011). 
In spite of the limitations related to self-selection bias and to the use of final grades as a measurement of student 
learning outcomes (Abdous & Yen, 2010), we believe that we can provide some ways in which the learning 
experiences of LVS students can be improved and made more successful, based on our years of experience of 
working with faculty who teach VS courses. To this end, the following recommendations are made:  
 Ensure faculty readiness and training prior to teaching LVS courses.  
 Develop facilitation techniques to assist faculty in integrating LVS students into the dynamics of the classroom. 
 Implement a tracking system for LVS students’ attendance. 
 Encourage active participation and interaction during LVS sessions.  
 Provide students with tips on effective participation and interaction during LVS sessions (writing messages, 

timing of questions, etc.) 
 
As we make these recommendations, we reiterate that educational data-mining is clearly providing powerful 
analytical tools capable of converting untapped LMS and EPR data into critical decision-making information which 
has the capability of enhancing students’ learning experiences (Garcia et al., 2011). While adding to the body of 
literature, our hybrid approach provides a solid framework that can be used to exploit educational data to rethink and 
improve the learning experiences of students using some of the various new delivery modes that are currently 
reshaping higher education. Further understanding of students’ engagement and the dynamics of their interaction in 
and with these new delivery modes will contribute to the promulgation of an effective and engaging learning 
experience for all.  
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