
Hindawi Publishing Corporation
Advances in Operations Research
Volume 2011, Article ID 259439, 18 pages
doi:10.1155/2011/259439

Research Article

Using DEA Factor Efficiency Scores to Eliminate
Subjectivity in Goal Programming

Herbert F. Lewis

Department of Technology and Society, College of Engineering and Applied Sciences,
Stony Brook University, Stony Brook, NY 11794-3760, USA

Correspondence should be addressed to Herbert F. Lewis, herbert.lewis@stonybrook.edu

Received 30 April 2011; Accepted 26 July 2011

Academic Editor: Carlos Romero

Copyright q 2011 Herbert F. Lewis. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

Many real-world problems require decision makers to consider multiple criteria when performing
an analysis. One popular method used to analyze multicriteria decision problems is goal
programming. When applying goal programming, it is often difficult if not impossible to
determine the target values and unit penalty weights with any level of confidence. Thus, in many
situations, managers and decision makers may be forced to specify these parameters subjectively.
In this paper, we present a model framework designed to eliminate the arbitrary assignment of
target values and unit penalty weights when applying goal programming to solve multicriteria
decision problems. In particular, when neither of these parameters is available, we show how to
integrate factor efficiency scores determined from data envelopment analysis into the model. We
discuss an application of the methodology to ambulatory surgery centers and demonstrate the
model framework via a product mix example.

1. Introduction

Many real-world problems require decision makers to consider multiple (often conflicting)
criteria when performing an analysis. For example,

(i) financial managers consider both return on investment and risk when building a
portfolio;

(ii) advertising executives balance budget and audience reached when developing an
advertising campaign;

(iii) retail managers are concerned with providing acceptable customer service while
ensuring that sales associates are not underutilized.
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One popular method used to analyze multicriteria decision problems is goal programming [1, 2].
When applying goal programming, the analyst must specify a target value for each criterion
(also referred to as a goal) and an associated unit penalty weight incurred when the target value
cannot be achieved. It is often difficult if not impossible to determine the target values [3–6]
and unit penalty weights [7–10] with any level of confidence. For instance, these issues arise
in group decisionmaking situations whenmembers of the groupmay disagree on the relative
importance of the criteria and the desired level of achievement for each of the goals. Thus, in
many situations, managers and decision makers may be forced to specify these parameters
subjectively.

Some work has been done to resolve these issues. Yu and Zeheny [11] and Steuer
[12, 13] propose performing a multiparametric sensitivity analysis to reduce the arbitrariness
in determining target values. A second approach involves setting infeasible high target
values [8] which can lead to a nondominated solution to the goal program. Yet another
approach to setting target values adapts the maximum likelihood criterion of Sengupta et
al. [14] and Werczberger [15]. A similar technique was proposed by Rakes and Franz [16].
Narasimhan [17] suggests using “fuzzy” goals to help resolve the problem of assigning
inappropriate target values. In addition, Dyer and Sarin [18] use multiattribute value
functions to differentiate between deterministic alternatives, thus avoiding the need to
specify target values. Kirkwood and Sarin [19] show how to rank multiattribute alternatives
when partial information about the attribute weights is known. Gass [10] presents a process
for determining unit penalty weights based on Saaty’s analytic hierarchy process [20]. Finally,
Butler et al. [21] provide a simulation-based method for performing sensitivity analysis on
the weights assigned to attributes in multicriteria decision models.

In this paper, we present a model framework designed to eliminate the arbitrary
assignment of target values and unit penalty weights when applying goal programming
to solve multicriteria decision problems. If the analyst can specify both target values and
unit penalty weights, we recommend the standard goal programming model. In the case
where the analyst cannot specify the target values but can determine unit penalty weights,
we present a model that minimizes the sum of the penalties incurred for all goals. When the
analyst cannot specify the unit penalty weights but can determine the target values, we use
a model that calculates the ratio of the achieved value to the target value for each goal and
maximizes the minimum of these ratios.

Finally, when neither target values nor unit penalty weights are available, we present

a two-step process that integrates factor efficiency scores [22] or factor inverse efficiency scores

determined from data envelopment analysis (DEA) [23] into the model. A factor efficiency

(inverse efficiency) score specifies the percentage to which a particular input (output) in

the DEA may be decreased (increased) in order to make the decision-making unit (DMU)

under consideration efficient. First, we solve a DEA model in which the DMUs represent
the decision variables in the goal program. The inputs to each DMU are the “resources”
required to yield one unit of the related decision variable, and the outputs are the unit
contributions to each of the goals. Next, we solve a model that incorporates the factor
efficiency scores obtained from the DEA into the goal program. In particular, we use
the factor efficiency scores directly as coefficients of the decision variables in a set of
constraints designed to produce solutions that treat the goals in a “balanced” manner. To
our knowledge, this two-step process is new and is the major contribution of this paper.
The motivation for developing the methodology is to guide an ambulatory surgery center
in identifying its optimal procedure mix [24]. We discuss this application in detail in a later
section.



Advances in Operations Research 3

Links between multicriteria decision making and data envelopment analysis are
present in the literature. Athanassopoulos [25] develops an interface between goal
programming and DEA in multilevel planning. This method is used in the allocation of
central grants to local authorities in Greece. Stewart [26] compares the concepts of efficiency
in DEA with Pareto optimality in multiple criteria decision making. Athanassopoulos and
Podinovski [27] use DEA-like models to evaluate dominance and potential optimality of
decision alternatives in multiple criteria decision analysis with imprecise information. Sarrico
et al. [28] use DEA as a performance measurement tool (within a decision support system
context) for university selection in the U.K. Arakawa et al. [29] combine DEA and genetic
algorithms in multiobjective optimization. Joro et al. [30] show that the DEA formulation is
structurally similar to themultiple objective linear programmingmodel. Post and Spronk [31]
combine DEA and interactive multiple goal programming into a procedure for performance
benchmarking. Takeda and Satoh [32] use DEA to “rank” alternatives in discrete multicriteria
decision problems.

In the next section, we present the model framework. Next, we discuss the ambulatory
surgery center application. Then, we demonstrate the model framework via a simple product
mix example. Finally, we present our results and conclusions. We also include an appendix
describing the breadth of problems to which the model framework may be applied.

2. The Model Framework

In this section, we present several mathematical programming models that reflect the
availability of subjective values such as target values and unit penalty weights. Table 1
presents a framework for determining the appropriate model.

2.1. Model 1: Known Target Values and Known Unit Penalty Weights

When it is possible for the decision maker to specify target values and unit penalty weights
for the goals, we can apply a standard goal programming model. The model is as follows.

Model 1:

min
m
∑

i=1

(

α+
i d

+
i + α−

i d
−

i

)

subject to

SYSTEM CONSTRAINTS and VARIABLE ASSUMPTIONS

n
∑

j=1

βijxj − d+
i + d−

i = χi; i = 1, . . . , m,

d+
i , d

−

i ≥ 0; i = 1, . . . , m,

(2.1)

where xj (j = 1, . . . , n) are the decision variables, d+
i (i = 1, . . . , m) and d−

i (i = 1, . . . , m)

are the deviation variables for the goals, α+
i (i = 1, . . . , m) and α−

i (i = 1, . . . , m) are the unit
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Table 1: Model framework.

Do unit penalty weights exist?
Do target values exist?

Yes No

Yes Model 1 Model 2

No Model 3 Model 4

penalty weights associated with the deviation variables, βij (i = 1, . . . , m; j = 1, . . . , n) are
the unit contributions of the decision variables to the goals, and χi (i = 1, . . . , m) are the
target values for the goals. The system constraints are the typical “resource” constraints found
commonly in mathematical programming problems, and the variable assumptions specify
the type of variable (integer or continuous) and whether the variable is nonnegative. We note
that this model assumes that all goals are at the same priority level. If this is not the case,
the summation in the objective function will be split among the various priority levels. In
addition, we note that we may have α+

i = 0 or α−

i = 0 for some i since unit penalty weights
may not be applicable to deviations both above and below the target value.

2.2. Model 2: Unknown Target Values but Known Unit Penalty Weights

When unit penalties are known but it is difficult or impossible for the decision maker to
specify target values, we can solve the following formulation that minimizes the sum of the
penalties incurred for all goals.

Model 2:

min
m
∑

i=1

αi

n
∑

j=1

βijxj

subject to

SYSTEM CONSTRAINTS and VARIABLE ASSUMPTIONS

(2.2)

where αi (i = 1, . . . , m) are the unit penalty weights associated with the goals. In certain
situations, αi (i = 1, . . . , m) are unit rewards rather than unit penalties. In such cases, the
objective function becomes max

∑m
i=1 αi

∑n
j=1 βijxj . If there are both unit rewards and unit

penalties, we can maximize the total sum of the rewards minus the total sum of the penalties.

2.3. Model 3: Known Target Values but Unknown Unit Penalty Weights

When target values are known but it is difficult or impossible for the decisionmaker to specify
unit penalty weights, we can solve the following formulation that calculates the ratio of the
achieved value to the target value for each goal and maximizes the minimum of these ratios
for goals with lower targets or equivalently minimizes the maximum of these ratios for goals
with upper targets.
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Model 3:

maxy or min z

subject to

SYSTEM CONSTRAINTS and VARIABLE ASSUMPTIONS

y ≤
1

χi

n
∑

j=1

βijxj ≤ z; i = 1, . . . , m,

yz = 1,

y, z ≥ 0,

(2.3)

where y is a variable representing the smallest ratio of the achieved level of each goal to its
lower target and z is a variable representing the largest ratio of the achieved level of each goal
to its upper target. Not all goals will have both lower and upper targets. If the target value
for goal i is a lower bound include y ≤ (1/χi)

∑n
j=1 βijxj and if it is an upper bound include

(1/χi)
∑n

j=1 βijxj ≤ z. We note that this model is nonlinear. When all target values are lower
bounds, we can remove z from the formulation, making it linear. Similarly, when all target
values are upper bounds, we can remove y from the formulation, making it linear.

2.4. Model 4: Unknown Target Values and Unknown Unit Penalty Weights

When it is difficult or impossible for the decision maker to specify target values and unit
penalty weights, we can incorporate factor efficiency scores determined by solving a DEA
model into the goal programming model.

Step 1 (The DEA Model). Decision makers seek solutions that satisfy their goals. In order to
achieve the desired levels of these goals, it is often important to allocate limited resources
efficiently. This is the fundamental idea behind incorporating DEA factor efficiency scores
into goal programming models. A few examples follow.

(i) In a product mix decision, products that require relatively low amounts of raw
materials and labor but generate relatively high revenues and relatively low
amounts of toxic waste are “efficient.”

(ii) In a media selection decision, media that have relatively low advertising cost yet
reach relatively large audiences in each of several desired demographic groups are
“efficient.”

The following two models represent an input-oriented and an output-oriented DEA model
for DMU k, respectively.
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Input-Oriented DEA Model:

min ek

subject to

n
∑

j=1

uhjλj ≤ ekuhk; h = 1, . . . , l,

n
∑

j=1

vijλj ≥ vik; i = 1, . . . , m,

λj ≥ 0; j = 1, . . . , n,

ek ≥ 0.

(2.4)

Output-Oriented DEA Model:

max θk

subject to

n
∑

j=1

uhjλj ≤ uhk; h = 1, . . . , l,

n
∑

j=1

vijλj ≥ θkvik; i = 1, . . . , m,

λj ≥ 0; j = 1, . . . , n,

θk ≥ 0,

(2.5)

where λj (j = 1, . . . , n) is the weight placed on DMU j by DMU k, ek (k = 1, . . . , n) is the
efficiency of DMU k, θk (k = 1, . . . , n) is the inverse efficiency of DMU k, uhj (h = 1, . . . , l; j =
1, . . . , n) is the level of input h consumed by DMU j, and vij (i = 1, . . . , m; j = 1, . . . , n) is the
level of output i produced by DMU j.

Each DMU in the DEA model represents a decision variable in the goal program. The
inputs to each DMU are the “resources” required to yield one unit of the related decision
variable, and the outputs are the unit contributions to each of the goals. Thus, in the DEA
models presented above, uhj (h = 1, . . . , l; j = 1, . . . , n) is the level of “resource” h required
to yield one unit of decision variable j and vij = βij (i = 1, . . . , m; j = 1, . . . , n) is the unit
contribution of decision variable j, to goal i. The uhj parameters appear as coefficients in the
system constraints of the goal programming model.

In the product mix decision, the inputs to the DEA model are the raw material and
labor requirements of the product and the outputs are the associated revenue and toxic waste
generated. Similarly, in the media selection decision, the input to the DEA model is the unit
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advertising cost of the medium and the outputs are the associated audiences reached in each
demographic group.

Step 2 (The Multicriteria Model). We incorporate the factor efficiency scores obtained from
the DEA into the goal programming model. In particular, the factor efficiency scores appear
as coefficients of the decision variables in a set of constraints designed to produce solutions
that treat the goals in a “balanced” manner as follows.

Model 4:

maxw

subject to

SYSTEM CONSTRAINTS and VARIABLE ASSUMPTIONS

n
∑

j=1

eijxj ≥ w; i = 1, . . . , m,

w ≥ 0,

(2.6)

where w is a variable representing the smallest total factor efficiency achieved over all the
goals, and eij is the factor efficiency for goal i at DMU j. If we use factor inverse efficiency
scores instead of factor efficiency scores, the objective function becomes minw, and the
constraint becomes

∑n
j=1 θijxj ≤ w; i = 1, . . . , m, where w represents the largest total factor

inverse efficiency achieved over all the goals and θij is the factor inverse efficiency for goal i
at DMU j.

3. Application to Ambulatory Surgery Centers

In Lewis et al. [24], the authors state, “Ambulatory surgery centers (ASCs) provide a low-
cost alternative to traditional inpatient care. In addition, with health care reform imminent,
it is likely that many currently uninsured people will soon acquire health care coverage,
significantly increasing the demand for health services. ASCs are among the providers that
can expect to see a substantial amount of this new pent-up demand and, therefore, ASCs
are likely to continue their current growth into the foreseeable future. Those ASCs that plan
accordingly by optimizing procedure mix and volume will benefit most from the increased
demand.”

They apply the two-step process (Model 4) to guide an ASC in identifying its optimal
procedure mix. The criteria are to (1) maximize reimbursement while (2) minimizing the
total number of complications. The authors state, “We apply the two-step process, rather
than a standard goal programming model, since we believe it will be extremely difficult, if
not impossible, for ASC managers to specify the target values and unit penalty weights for
the criteria (reimbursement and the total number of complications).”

The first step applies DEA to calculate the efficiency of each procedure based on the
resources required to perform the procedure and the criteria upon which the procedure is
evaluated. Specifically, the resources (DMU inputs) are
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(i) the average minutes for the procedure,

(ii) the average nursing minutes for the procedure,

(iii) the average anesthesiologist minutes for the procedure,

(iv) the average technician minutes for the procedure, and

(v) the average value of supplies and materials (in dollars) used for the procedure.

The criteria (DMU outputs) are

(i) the average reimbursement received for the procedure and

(ii) the complication rate for the procedure.

The authors further state, “The key idea in the process is that the ASC will want
to perform a procedure more often if it has high factor efficiencies and less often if it has
low factor efficiencies. We embody this notion in the second step by incorporating the
output factor efficiencies into a bottleneck program that optimizes the mix of procedures
while satisfying the ASC’s resource and operational constraints.” Specifically, the operational
constraints ensure that

(i) resource capacities are not exceeded,

(ii) procedure demands are not exceeded,

(iii) the total number of procedures performed does not decrease,

(iv) the total reimbursement does not decrease, and

(v) the total number of complications does not increase.

Using the methodology, the authors develop a series of scenarios to facilitate what-
if analysis and demonstrate how the methodology can lead to higher reimbursement and
lower complications. In the conclusion, the authors state, “The model suggested in this paper
generates the most effective mixture of procedures taking into account current resources and
performance. The optimal procedure mix suggests a strategic direction for administrators
to evaluate and implement. Not having a strategic methodology leaves decision makers to
make critical changes based on prior experiences and retrospective data without the benefit
of a logical and systematic framework.”

4. Product Mix Example

In this section, we present our decision-making framework by applying all four models to
a simple product mix example. We stress that the following is strictly an example and that
the data are for demonstration purposes only. Consider a firm that produces eight different
products. Each product requires a certain amount of time on a cutting machine, a certain
amount of time on a finishing machine and a certain amount of labor to operate the machines.
For each product, the unit profit and the waste per unit produced by the cutting process are
known. This information is shown in Table 2 along with the total amount of time available
on each machine and the total labor available. The firm also limits the production of each
product to no more than 20 units.

Management has specified two criteria it wishes to consider when determining the
number of units of each product to produce. Both are at the same priority level. The first
criterion involves the total profit the firm will gain from production. The second involves the
total waste produced by the cutting process.
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Table 2: Data for the product mix example.

Product Cutting Finishing Labor Profit Waste

A 3 2 8 $9 2

B 4 1 9 $11 4

C 2 1 5 $2 6

D 5 2 12 $13 5

E 7 3 17 $16 7

F 6 3 15 $15 8

G 3 3 9 $7 4

H 5 2 12 $12 3

Total 300 200 750

4.1. Product Mix Model 1

For this model, we must specify a target value for each criterion and a unit penalty weight for
each criterion to be chargedwhen the target value is not achieved. As a base-case scenario, we
choose a target value for total profit of $1000, a target value for total waste from the cutting
process of 200 units, and a unit penalty weight for each criterion of 0.5. Thus, we solve the
following model.

Product Mix Model 1:

min 0.5d−

1 + 0.5d+
2

subject to

3A + 4B + 2C + 5D + 7E + 6F + 3G + 5H ≤ 300,

2A + 1B + 1C + 2D + 3E + 3F + 3G + 2H ≤ 200,

8A + 9B + 5C + 12D + 17E + 15F + 9G + 12H ≤ 750,

9A + 11B + 2C + 13D + 16E + 15F + 7G + 12H = 1000 + d+
1 − d−

1 ,

2A + 4B + 6C + 5D + 7E + 8F + 4G + 3H = 200 + d+
2 − d−

2 ,

0 ≤ A,B,C,D, E, F,G,H ≤ 20 and integer

d+
1 , d

−

1 , d
+
2 , d

−

2 ≥ 0,

(4.1)

where A, B, C, D, E, F, G, and H represent the quantity of each product produced.

4.2. Product Mix Model 2

For this model, we cannot specify target values but we can specify a unit penalty (reward)
weight for each criterion. From our base-case scenario, we select a unit reward of 0.5 for the
profit criterion and a unit penalty weight of 0.5 for the waste criterion. Thus, we solve the
following model.
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Product Mix Model 2:

max 0.5(9A + 11B + 2C + 13D + 16E + 15F + 7G + 12H)

− 0.5(2A + 4B + 6C + 5D + 7E + 8F + 4G + 3H)

subject to

3A + 4B + 2C + 5D + 7E + 6F + 3G + 5H ≤ 300,

2A + 1B + 1C + 2D + 3E + 3F + 3G + 2H ≤ 200,

8A + 9B + 5C + 12D + 17E + 15F + 9G + 12H ≤ 750,

0 ≤ A,B,C,D, E, F,G,H ≤ 20 and integer.

(4.2)

4.3. Product Mix Model 3

For this model, we are unable to specify unit penalty weights but we can specify a target
value for each criterion. From our base-case scenario, we choose a target value for total profit
of $1000 and a target value for total waste from the cutting process of 200 units. Thus, we
solve the following model.

Product Mix Model 3:

maxy

subject to

3A + 4B + 2C + 5D + 7E + 6F + 3G + 5H ≤ 300,

2A + 1B + 1C + 2D + 3E + 3F + 3G + 2H ≤ 200,

8A + 9B + 5C + 12D + 17E + 15F + 9G + 12H ≤ 750,

1

1000
[9A + 11B + 2C + 13D + 16E + 15F + 7G + 12H] ≥ y,

1

200
[2A + 4B + 6C + 5D + 7E + 8F + 4G + 3H] ≤ z,

yz = 1,

0 ≤ A,B,C,D, E, F,G,H ≤ 20 and integer

y, z ≥ 0.

(4.3)

4.4. Product Mix Model 4

When we cannot specify either target values or unit penalty weights, we first solve a DEA
model for each product using the products as the DMUs. As shown in Figure 1, the inputs



Advances in Operations Research 11

Waste

Profit

Labor

Finishing

Cutting

DMU

Figure 1: DEA model for the product mix example.

to a particular DMU are the unit cutting, unit finishing, and unit labor requirements, and
the outputs are the unit profit and unit waste produced. The DEA model for product A is as
follows.

DEA Model for Product A in the Product Mix Example:

min eA

subject to

3λA + 4λB + 2λC + 5λD + 7λE + 6λF + 3λG + 5λH ≤ 3,

2λA + 1λB + 1λC + 2λD + 3λE + 3λF + 3λG + 2λH ≤ 2,

8λA + 9λB + 5λC + 12λD + 17λE + 15λF + 9λG + 12λH ≤ 8,

9λA + 11λB + 2λC + 13λD + 16λE + 15λF + 7λG + 12λH ≥ 9θA,

2λA + 4λB + 6λC + 5λD + 7λE + 8λF + 4λG + 3λH ≤ 2eA,

θAeA = 1,

λA, λB, λC, λD, λE, λF , λG, λH ≥ 0,

θA, eA ≥ 0,

(4.4)

where eA and θA represent the efficiency and inverse efficiency scores for product
A, respectively, and λA, λB, λC, λD, λE, λF , λG, λH are weights placed on the DMUs
(products) by the DMU (product) under consideration. We note that larger values of the
output waste make the production process less efficient. We call such a quantity a reverse
output and incorporate it into our model using the methodology in Lewis and Sexton [33].
We note the nonlinear constraint, which is necessary to ensure that the inverse efficiency
score is indeed the multiplicative inverse of the efficiency score.

We present the results of the DEA in Table 3. We observe that products A, B, and H
are efficient, indicating that these products require relatively little input to produce relatively
high output.

Next, we use the factor efficiencies obtained from the DEA to build Model 4. In
particular, we use the factor efficiencies for each product as coefficients in the constraints
for the criteria. The model is as follows.
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Table 3: DEA results for the product mix example.

Product A B C D E F G H

A 1 0 0.4 0.6 0.881753 1.2 1 0

B 0 1 0.2 0.8 0.842337 0.6 0 0

C 0 0 0 0 0 0 0 0

D 0 0 0 0 0 0 0 0

E 0 0 0 0 0 0 0 0

F 0 0 0 0 0 0 0 0

G 0 0 0 0 0 0 0 0

H 0 0 0 0 0.197078 0 0 1

Efficiency 1 1 0.344828 0.915493 0.817727 0.862069 0.777778 1

Factor efficiency (Profit) 1 1 0.344828 0.915493 0.817727 0.862069 0.777778 1

Factor efficiency (Waste) 1 1 0.266667 0.88 0.817727 0.6 0.5 1

Product Mix Model 4:

maxw

subject to

3A + 4B + 2C + 5D + 7E + 6F + 3G + 5H ≤ 300,

2A + 1B + 1C + 2D + 3E + 3F + 3G + 2H ≤ 200,

8A + 9B + 5C + 12D + 17E + 15F + 9G + 12H ≤ 750,

1A + 1B + 0.34C + 0.92D + 0.82E + 0.86F + 0.78G + 1H ≥ w,

1A + 1B + 0.27C + 0.88D + 0.82E + 0.60F + 0.50G + 1H ≥ w,

0 ≤ A,B,C,D, E, F,G,H ≤ 20 and integer

w ≥ 0.

(4.5)

4.5. Product Mix Example Results

Table 4 shows the resources used, the levels of each product produced, the total profit
achieved, and total waste incurred when solving each model in our base-case scenario. In
all the models, products A, B, and H are produced to capacity or nearcapacity (in the case
of Model 3 and product H). These products use relatively low levels of input to produce
relatively high levels of output as indicated by the efficiency scores of 1 from the DEA. In
addition, all models produce some of product D, which also has a relatively high efficiency
score. All models produce 0 units of the more “inefficient” products C, E, F, and G. The
profits and total wastes from the cutting process for all models are similar, ranging between
$796 and $801, and between 240 and 250, respectively.

In Table 5, we present the results of the standard goal programming model when
varying the unit penalty weights from those in the base-case scenario. We generate ten new
scenarios by letting the unit penalty weight for each goal vary from 0 to 1 in increments of
0.1 so that the sum of the two unit penalty weights equals 1. The target values remain as in
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Table 4: Results of the base-case scenario of the product mix example.

Product Model 1 Model 2 Model 3 Model 4

A 20 20 20 20

B 20 20 20 20

C 0 0 0 0

D 12 12 17 12

E 0 0 0 0

F 0 0 0 0

G 0 0 0 0

H 20 20 15 20

Cutting 300 300 300 300

Finishing 124 124 124 124

Labor 724 724 724 724

Profit $796 $796 $801 $796

Waste 240 240 250 240

Table 5: Results of the standard goal programming model when varying the unit penalty weights in the
product mix example.

Product
Unit penalty weights for profit and waste

(0
,1
)

(0
.1
,0
.9
)

(0
.2
,0
.8
)

(0
.3
,0
.7
)

(0
.4
,0
.6
)

(0
.5
,0
.5
)

(0
.6
,0
.4
)

(0
.7
,0
.3
)

(0
.8
,0
.2
)

(0
.9
,0
.1
)

(1
,0
)

A 20 20 20 20 20 20 20 20 20 20 20

B 0 20 20 20 20 20 20 20 20 20 20

C 20 0 0 0 0 0 0 0 0 0 0

D 0 4 4 12 12 12 12 20 20 20 20

E 0 0 0 0 0 0 0 0 0 0 0

F 0 0 0 0 0 0 0 0 0 10 10

G 0 0 0 0 0 0 0 0 0 0 0

H 0 20 20 20 20 20 20 12 12 0 0

Cutting 100 260 260 300 300 300 300 300 300 300 300

Finishing 60 108 108 124 124 124 124 124 124 130 130

Labor 260 628 628 724 724 724 724 724 724 730 730

Profit $220 $692 $692 $796 $796 $796 $796 $804 $804 $810 $810

Waste 160 200 200 240 240 240 240 256 256 300 300

the base-case scenario at $1000 for the profit and 200 units for the total waste from the cutting
process. It is clear that these solutions are dependent on the chosen unit penalty weights. In
particular, the profit ranges from $220 to $810, and the total waste from the cutting process
ranges from 160 to 300.

A similar situation occurs when we vary the target values. Table 6 presents the results
of the standard goal programming model when varying the target values from those in the
base-case scenario. We build eight new scenarios. First, we fix the total waste target value at
200 (as in the base-case) and build four scenarios having profit target values of $0, $250, $500,
and $750. Then, we fix the profit target value at $1000 (as in the base-case) and build four
scenarios having total waste target values of 225, 250, 275, and 300. We leave the unit penalty
weights at 0.5 for both goals as in the base-case scenario. It is clear that these solutions are
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Table 6: Results of the standard goal programming model when varying the target values in the product
mix example.

Product
Target values for profit and waste

($
0,
20
0)

($
25
0,
20
0)

($
50
0,
20
0)

($
75
0,
20
0)

($
10
00
,2
00
)

($
10
00
,2
25
)

($
10
00
,2
50
)

($
10
00
,2
75
)

($
10
00
,3
00
)

A 0 20 20 20 20 20 20 20 20

B 0 0 0 17 20 20 20 20 20

C 20 20 0 0 0 0 0 0 0

D 0 0 0 11 12 12 17 20 20

E 0 2 20 0 0 0 0 1 0

F 0 0 0 0 0 0 0 3 10

G 0 0 0 0 0 0 0 0 0

H 0 0 0 20 20 20 15 7 0

Cutting 40 114 200 283 300 300 300 300 300

Finishing 20 66 100 119 124 124 124 126 130

Labor 100 294 500 685 724 724 724 726 730

Profit $40 $252 $500 $750 $796 $796 $801 $805 $810

Waste 120 174 180 223 240 240 250 272 300

dependent on the chosen target values. In particular, the profit ranges from $40 to $810, and
the total waste from the cutting process ranges from 120 to 300.

5. Discussion and Conclusion

In this paper, we present a model framework designed to eliminate the arbitrary assignment
of target values and unit penalty weights when applying goal programming to solve
multicriteria decision problems. Although other authors have considered this issue, each has
either addressed the problem of subjective target values or subjective unit penalty weights,
but not both. Our model framework also applies to situations in which the decision maker
cannot specify target values or unit penalty weights. In addition, we show how to incorporate
DEA factor efficiency scores into the model when the decision maker cannot specify both.

The model framework is applicable to a wide variety of problems encountered in
marketing, finance, production management, logistics, and transportation management. We
discuss the motivation for developing the methodology, namely, to guide an ambulatory
surgery center in identifying its optimal procedure mix. To demonstrate the model
framework, we consider a simple product mix example. From this example, it is clear
that the selection of target values and unit penalty weights affects the solution to the goal
program. Thus, when the decision maker cannot specify these parameters with any degree of
certainty, arbitrarily making a selection can greatly influence the decision. However, using
the methodology presented in this paper eliminates the need to select these parameters
arbitrarily, and as shown, the solutions from applying Models 2, 3, and 4 to the product mix
example appear reasonable.
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Appendix

A. Breadth of Applications

The model framework can be applied to a wide range of problems. We describe
applications from marketing, finance, production management, logistics, and transportation.
The applications we present in this section are exemplary and by no means comprehensive.
For each application, we show how to build the DMU for the DEA model when applying
Model 4. There may be other inputs and outputs that should be included when building
the DMU depending on the specific problem. A limitation on the model framework is also
discussed and an application where this limitation arises is presented.

A.1. Media Selection Problems

Media selection decisions involve determining the number of advertisements to be placed in
each of several types of media (newspaper, television, radio, etc.) in order to reach desired
levels of audiences in several demographic groups. An advertising budget limits the number
of advertisements and thus the total audience that may be reached. When applying Model 4,
each DMU in the DEA model represents an advertising medium. The input to each DMU is
the unit advertising cost of the medium, and the outputs are the associated audiences reached
in each demographic group.

A.2. Marketing Research Problems

In marketing research decisions, the analyst must first specify the demographic groups
to survey and the types of surveys (phone, on-line, etc.) to conduct. Then, the analyst
must determine the number of individuals to survey using each survey type from each
demographic group. The unit cost of conducting a survey and the accuracy of the survey
results are dependent on the survey type and the demographic group involved. When
applying Model 4, each DMU in the DEA model represents a combination of a survey type
and a demographic group. The input to each DMU is represented by a scalar of unit value,
and the outputs are the associated unit cost and accuracy of the survey.

A.3. Portfolio Selection Problems

Portfolio selection decisions involve selecting which investment opportunities to invest in
and determining how much to invest in each opportunity selected. Typically, investors
consider both return and risk when making their decisions. When applying Model 4, each
DMU in the DEAmodel represents an investment opportunity. The input to each DMU is the
cost of the investment and the outputs are the associated return and risk.

A.4. Product Mix Problems

Product mix decisions involve determining the amount of each product a firm should
produce. The products typically compete for the same limited resources. Objectives involve
achieving desired levels of total profit and limiting total waste produced. When applying
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Model 4, each DMU in the DEA model represents a product. The inputs to each DMU are
the raw material and labor requirements of each product, and the outputs are the associated
profit and waste produced.

A.5. Make-or-Buy Problems

In make-or-buy decisions, a firm must decide the amount of a given product to produce
in-house and the amount to purchase from a contractor. Such problems arise when the
firm has limited production capacity available. The firm considers the costs associated with
manufacturing and purchasing a product and the reliability of products produced in-house
and by the contractor. When applying Model 4, each DMU in the DEA model represents
whether a product is made by the firm or purchased from the contractor. The input to each
DMU is represented by a scalar of unit value, and the outputs are the unit costs associated
with the manufacture or purchase of the product and the reliability of in-house or contractor
production.

A.6. Location Planning Problems

Location planning decisions involve determining where to locate one or more facilities. A
particular facility may be evaluated on operating cost related to the location and distance to
suppliers and customers. When applying Model 4, each DMU in the DEA model represents
a potential facility location. The input to each DMU is represented by a scalar of unit value,
and the outputs are the associated operating costs at the location and the distance to suppliers
and customers.

A.7. Knapsack Problems

In knapsack problems, we are given a knapsack of known size and a set of items. Each item
has a specific size and is evaluated across several criteria. We seek to select a subset of the
items that fit in the knapsack and that together achieve desired levels of the various criteria.
When applying Model 4, each DMU in the DEA model represents an item. The input to each
DMU is the size of the item, and the outputs are the contributions of the item to the criteria.

A.8. Assignment Problems

In assignment problems, a set of agents must be assigned in a one-to-one fashion to a set of
tasks. Each assignment of an agent to a task is evaluated according to the time it will take the
agent to complete the task and the profit gained when the agent completes the task. We seek
a pairing of agents to tasks that achieves desired levels of time and profit. When applying
Model 4, each DMU in the DEA model represents the pairing of an agent to a task. The input
to each DMU is represented by a scalar of unit value, and the outputs are the associated time
and profit.
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A.9. Transportation Problems

In transportation problems, units of a product must be shipped from the plants where they
are produced to customers where they are sold. Each plant has a production capacity, and
each customer has a demand. Each unit shipped from a specific plant to a specific customer
incurs a shipping cost. In addition, the time it takes to ship from a plant to a customer may
be important especially if the products are perishable. We seek a shipment plan specifying
the number of units of the product to ship from each plant to each customer that considers
both total shipment cost and average shipment time. When applying Model 4, each DMU in
the DEA model represents the shipment from a plant to a customer. The input to each DMU
is represented by a scalar of unit value, and the outputs are the associated unit shipping cost
and transportation time.

A.10. A Limitation on the Model Framework

We have assumed that the decision variables represent “complete” entities that are directly
related to the criteria. Examples are the individual media, investment opportunities, and
products in the applications just presented. How do we build the DMU for the DEA model
in Model 4 when this is not the case? For example, in the traveling salesman problem, the
decision variables typically represent edges that make up the tour. If the specified criteria are
measured relative to the tour produced (such as its total length or the number of vehicles it
requires), we are unable to construct an appropriate DMU. We leave this as an area for future
research.
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