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Abstract  

Global biodiversity indices are used to measure environmental change and progress towards 

conservation goals, yet their fitness for purpose is poorly understood. Few indices have been 

evaluated comprehensively for their capacity to detect trends of interest, such as declines in 

threatened species or ecosystem function. Using a structured approach based on decision science, 

we evaluated nine indices commonly used to track biodiversity at global and/or regional scales 

against five criteria relating to objectives, design, behaviour, incorporation of uncertainty, and 

constraints (e.g. costs and data availability). We identified four key gaps in indices assessed: i) 

pathways to achieving goals (means objectives) are not always clear or relevant to outcomes 

decision makers wish to achieve (fundamental objectives); ii) index testing and understanding of 

expected behaviour is often lacking; iii) uncertainty is seldom acknowledged or accounted for; and 

iv) costs of implementation seldom considered. These gaps may render indices inadequate in certain 

decision-making contexts and are problematic for indices linked with biodiversity targets and 

sustainability goals. Ensuring index objectives are clear and their design is underpinned by a model 

of relevant processes are crucial in addressing the gaps identified by our assessment. Uptake and 

productive use of indices will be improved if index performance is rigorously tested, and 

assumptions and uncertainties are clearly communicated to end-users. This will increase the value of 
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indices in accurately tracking biodiversity change and supporting national and global policy 

decisions, such as the post-2020 global biodiversity framework of the Convention on Biological 

Diversity. 

Introduction  

Monitoring trends in biodiversity is critical to understanding human impacts on the environment. 

Biodiversity is a complex and multidimensional concept that is difficult to measure and monitor, 

particularly at large scales (Purvis & Hector 2000; Collen & Nicholson 2014). Various indices (see 

Table S1 for glossary) have been developed to measure and report on states and trends in 

biodiversity (Jones et al. 2011), assess progress towards conservation goals (e.g. Aichi Targets of the 

Strategic Plan for Biodiversity; United Nations Sustainable Development Goals/SDGS), and monitor 

impacts of biodiversity policies (Nicholson et al. 2012). How well these indices report on biodiversity, 

however, remains a fundamental question (Collen & Nicholson 2014) . 

Proposed criteria for designing and selecting indices typically include: a solid basis in ecological 

theory; representative of the elements it seeks to measure; simplifying and easily understood; 

responsive to change; and cost (Failing & Gregory 2003; Rice & Rochet 2005; van Strien et al. 2012). 

Criteria-based protocols have been used to evaluate conservation indices in local-scale decision-

making (e.g. Bal et al. 2018) and are utilised in marine systems where direct monitoring is difficult 

(e.g. Tam et al., 2017).  However reviews of global biodiversity indices focus on policy-relevance 

(Mcowen et al., 2016), desired characteristics (Jones et al. 2011), or utility in a specific application 

(Buckland et al. 2005; Tam et al. 2017).  

Testing index performance and behaviour has been a focal point within fisheries research (e.g. 

Fulton et al. 2005) but many influential biodiversity indices remain untested (Collen & Nicholson 

2014).  Lack of index evaluation based on important attributes such as definition and measurability 

of index objectives, purpose, and mathematical construction is a clear gap, and compromises reliable 
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understanding and interpretation of potentially useful indices. Inaccurate views of biodiversity and 

progress towards targets could result in inefficient or perverse conservation decisions (e.g. Hornborg 

et al., 2013). Recent calls for policy evaluation tools combining indices with predictive models to 

project biodiversity futures (Ferrier et al. 2016; Nicholson et al. 2019) cannot be properly addressed 

while indices remain untested.  

Decision science provides a rigorous basis for decision-making based on clearly articulated 

objectives, a suite of alternative options, quantitative or conceptual models that capture system 

dynamics, and defined constraints and uncertainties (Possingham et al. 2001). The approach 

underlies many quantitative and structured approaches within natural resource management (e.g. 

structured decision making, Gregory et al., 2012; management strategy evaluation, Punt et al. 2016), 

and provides a repeatable, transparent framework for navigating complex environmental problems. 

Decision science has not yet been applied to global biodiversity indices, despite its relevance to 

complex, large-scale decisions that include diverse stakeholders, long time horizons, multiple species 

and ecosystems, and high uncertainty (Gregory et al. 2012). A decision-science based framework for 

selecting the most appropriate indices would provide a replicable and defensible process, clarify 

what is required of indices, highlight areas for improvement, and identify gaps in the current suite of 

indices. 

We developed criteria based in decision science and used them to assess global biodiversity indices 

and their capacity to inform policy and management decisions. While our criteria can be used for 

indices at any scale, we focussed on global/regional indices, including those used to track progress 

towards international targets such as the SDGs, the Aichi Targets, and the post-2020 global 

biodiversity framework. 
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Methods 

From 34 potential indices commonly used to report on biodiversity targets at national or global 

scales, across terrestrial, marine and freshwater realms (Table S2), we selected a representative 

sample of nine indices (Table 1, overview of construction Table S3): the Living Planet Index (LPI), Red 

List Index (RLI), Marine Trophic Index (MTI), Ocean Health Index (OHI), River Health Indices (RHI), 

Climate Impact Indicator (CII), Index of Biotic Integrity (IBI), Biodiversity Intactness Index (BII), and 

Forest Area as a Proportion of Total Land Area (FA).  

We then identified five criteria (Table 2; full descriptions and assessment guidelines in Table S4) 

adapted from decision science (e.g. Possingham et al. 2001; Gregory et al. 2013). Rationale for each 

is outlined below.  We used a modified Nominal Group technique, where ideas are initially 

generated and recorded individually, followed by group discussion and prioritization to consensus 

(Hugé & Mukherjee 2018), applied as follows: a minimum of three authors independently reviewed 

whether each indicator addressed, partially addressed, or did not address these criteria based on 

information in key reference literature (Tables S5.1-9);  reviewer judgments were iteratively refined 

and aggregated behaviourally through group discussion until consensus. See Supp. Info. for 

additional detail on indicator selection and assessment. 

CRITERIA 

1. Objectives 

Index objectives can be broken into:  (1) fundamental objectives that measure broad, multifaceted 

concepts like change in biodiversity; and (2) means objectives that specify attributes to be measured 

and metrics to measure them (Nardo et al. 2008). Objectives need to be explicit, well-justified, and 

aligned if indices are to be good proxies for attributes of interest and effective in conservation 

applications like measuring progress towards targets (Collen & Nicholson 2014; Mcowen et al. 2016).  
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2. Design 

Index design describes how underlying data are combined to create the index, translating the 

objectives into mathematics (Nicholson & Possingham 2006). A well-designed index should be 

underpinned by a conceptual or quantitative model of relevant processes clearly linking underlying 

data (aspect of biodiversity measured), the data aggregation method, and the objective (Possingham 

et al. 2001). The model should be supported by an understanding of ecological processes and 

mathematical theory (Rice & Rochet 2005), or it may be a poor proxy for the attribute of interest. 

The index (and model) should also be developed with and/or clearly communicated to end-users.  A 

complex, poorly communicated index will hamper uptake and meaningful application.  

3. Behaviour  

Indices should respond predictably to change in aspects of biodiversity they aim to measure. Failure 

to represent trends of interest may result from deficient design (i.e. insensitive, unresponsive, not 

specific to relevant pressures), poor data quality (e.g. taxonomic or spatial biases), or poor 

understanding of impacts of data bias and uncertainty (Nicholson et al. 2012).  

4. Uncertainty 

Understanding sources and impacts of uncertainty is fundamental to performance testing and 

interpretation. Measurement error, systematic error or bias, observed natural variation, and 

inherent randomness (Regan et al. 2002; Burgass et al. 2017) can result in variable, inaccurate or 

missing data. Model uncertainty and subjective decisions made during design (e.g. variable selection, 

weightings, methods for imputing missing data, (Regan et al. 2002; Burgass et al. 2017)) may also 

affect index behaviour. Explicitly acknowledging uncertainty in index values, both in terms of 

accuracy (how closely the index approximates the real-world attribute of interest) and precision 

(error around the estimate), allows its consideration during subsequent decision-making (e.g. Bal et 

al., 2018).  
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5. Feasibility & costs 

Index calculation needs to be feasible given available resources, thus consideration of costs and 

trade-offs in using different data is fundamental (Jones et al. 2011; Tittensor et al. 2014). Readily 

available data may be of limited relevance to system dynamics, ultimately providing a misleading 

measure of change (e.g. Branch et al. 2010). If these trade-offs are not considered, potentially useful 

indices may be disregarded in favour of others with limited ecological relevance (Burgass et al. 

2017).  

Results 

We provide all results in Fig. 1, detailed assessments in Tables S5.1-9. 

1. Objectives 

While all reviewed indices had well-defined fundamental objectives (e.g. OHI: to “…understand, 

track and communicate ecosystem status and design strategic actions to improve overall ocean 

health…”), two failed to translate these into clear means objectives (e.g. OHI’s relatively opaque 

means objective is “…an index comprising ten diverse public goals for a healthy coupled human–

ocean system”, Halpern et al. 2012). All means objectives relied on specific assumptions about key 

processes (Tables S5.1-9), but these were not consistently made explicit: four indices (MTI, OHI, RH 

and FA) had means objectives only partially justified and relevant to the fundamental objective.  

 

2.  Design 

Six indices (LPI, RLI, RH, CII, IBI, BII) link the index to the objective via a model (including model 

understanding of processes), e.g. the RLI is underpinned by a model of population viability informing  

IUCN Red List of Threatened Species risk category thresholds (Mace et al. 2008). Data aggregation 
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methods were clear for eight indices, but four did not clearly justify the link between the means 

objective and the actual metric used.  

Only four indices provided clear justification for the weighting applied (MTI, RHI, CII, FA). Methods 

varied from equal weighting (e.g. IBI), to expert opinion or species biomass contribution (MTI) and 

threat categories (RLI). The OHI weights components equally for neutrality of importance, but this in 

itself is not a neutral decision. The RLI weights by species threat categories or relative risk of 

extinction (Butchart et al. 2004). Similarly the CII is weighted towards species expected to be more 

affected by climate change (Stephens et al. 2016). The LPI has recently adopted a method for 

weighting by diversity to deal with taxonomic and regional bias in data (McRae et al. 2017).  

Although all indices had commensurate units, underlying data for many are disparate. In particular, 

composite indices (which combine indices with no common unit, Burgass et al. 2017) scale sub-

indices before combining them, but sub-indices may be derived from measures with 

incommensurate units (e.g. OHI, see Table S5.4).  

3. Performance testing 

All indices reviewed had undergone some degree of testing, and three (LPI, RLI and MTI) have 

undergone considerable independent testing. However, most have not been subjected to explicit 

and systematic performance testing (Tables S5; Nicholson et al., 2017).  

The LPI has been analysed theoretically (e.g. mathematical properties Buckland et al. 2005; van 

Strien et al. 2012; McCarthy et al. 2014; Santini et al. 2017), and using existing time series and 

models (e.g. Buckland et al. 2005; Lamb et al. 2009; Nicholson et al. 2012). The RLI has been 

explicitly tested using a number of approaches including simulation models (Costelloe et al. 2016; 

Visconti et al. 2016), however its behaviour (i.e. responsiveness, sensitivity and impact of data 

quality) has not been thoroughly examined (Tittensor et al. 2014). The MTI has been tested using 
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multiple data sources, and predictive models and results support its use only in defined contexts 

(Table S5.3) (Branch et al. 2010b; Hornborg et al. 2013).  

4. Uncertainty 

Only four indices directly addressed methods for quantifying uncertainty (LPI, RLI, BII, CII); methods 

were completely lacking in another three (MTI, IBI, FA). No indicator addressed uncertainty 

comprehensively and reporting was generally related to output metric precision. Methods include 

bootstrapping, for example in the RLI and LPI to evaluate effects of removing individual populations 

and to provide confidence intervals for data deficient taxa (e.g. Saha et al. 2018).  

Various approaches account for missing values and data bias. For example, weighting by taxonomic 

group and region addresses bias in the LPI (McRae et al. 2017), and the OHI incorporates measures 

of uncertainty based on error associated with missing data and interpolation (Frazier et al. 2016). 

5. Feasibility and costs 

Only one index (RLI) comprehensively considered costs, but data collection was commonly 

considered across indices. In most cases, feasibility and costs were not explicitly considered during 

index development, though many took this into account indirectly by focusing on readily available 

data only, and/or have since been costed in other studies (e.g. RLI, Jones et al., 2011). Six indices 

assessed are calculated using relatively accessible time series data with good prospects of continued 

availability (LPI, RLI, MTI, OHI, CII, BII). The IBI has been calculated at regional scales but appears 

limited by data availability at the global scale, while the RHI has only been calculated once at global 

scale (Vörösmarty et al. 2010). The CII is based on continuously updated datasets, but is currently 

limited to the European and North America (Stephens et al. 2016). To our knowledge, there has 

been no explicit analysis of trade-offs between data shortfalls and cost-effectiveness of improving 

index performance (sensu Grantham et al. 2008).  
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Discussion 

The subset of biodiversity indices we examined using our structured evaluation criteria are high 

profile and applied across a range of realms. Despite continued use in local and global policy (e.g. the 

RLI is a suggested index for twelve of the 20 Aichi Targets and six of the 17 SDGs; 

www.bipindicators.net), most have limitations that could compromise their use in decision-making. 

In particular, we found many of these high-profile indices lacked explicit discussion of the relevance 

of means objectives, and performance testing. Reproducibility can be limited by unclear methods, 

and procedures for quantifying uncertainty were rarely explored or completely lacking. Discussion of 

impacts of systematic data biases remain largely theoretical or in the context of performance 

testing, and resulting uncertainty around index outputs is seldom made explicit. Although some 

indices are designed for use in data-poor environments, feasibility of data acquisition, maintenance, 

monitoring and index evaluation are often overlooked. 

Clear objectives are key to any formal decision analysis (Possingham et al. 2001) and ensure 

appropriate indicator application. A lack of a clearly stated, justified and relevant means objective 

obfuscates the index purpose, hampers design justification and performance testing, and could 

result in an ineffective monitoring strategy and decision-making (if poorly aligned with the 

fundamental objective). These issues can arise when indices are developed with limited scientific 

input (resulting in poorly justified design or weighting), proposed without input from 

stakeholders/end-users, or are retrospectively applied to targets they were not designed to address. 

To ensure objectives are relevant and aligned to end-user’s needs, targets and indices need to be 

designed/selected within a structured, participatory approach.  

Assumptions inherent in choosing a means objective should also be made clear. For example, the LPI 

is a valid proxy representing all of biodiversity only assuming vertebrates are good surrogates for all 

other species, which is not always the case (e.g. Collen et al. 2014). Given vertebrates tend to be 
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highly valued by scientists and the public (Saha et al. 2018) and data are readily available, an index of 

vertebrate population change remains important for tracking change in valued components of 

biodiversity, regardless of how well it represents all biodiversity. However, these assumptions and 

implicit set of values they represent must be acknowledged for end-users.  

Making assumptions clear is particularly challenging for complex composite indices (CIs): the 

diversity of sub-indices, their construction (also typically CIs), potential interactions between them 

(e.g. between extraction and biodiversity goals within the OHI), and weighting systems, can make CIs 

difficult to communicate and interpret.  The equal weighting used in the OHI, for example, is a 

feature of linear aggregation which allows for compensability between component indices, i.e. the 

potential for good and bad scores in sub-indices to cancel each other out without conveying that 

information into the end score (Burgass et al. 2017). Interactions between components are seldom 

described or considered in global biodiversity indices (e.g. LPI component species or OHI sub-

indices), yet combining elements without understanding interactions means important changes may 

be averaged out or over-emphasized because they are treated as fungible. Weightings in a CI, or an 

index that combines like variables such as the LPI and RLI must be well justified, transparent, and not 

arbitrary (Villasante et al. 2012). The existence of multiple scaling approaches in a single index (e.g. 

RLI & LPI), each having implications for interpretation, illustrates the unsystematic nature of 

weighting in global biodiversity indices to date.  Sensitivity of index performance to all weights, 

implicit or explicit, should be clear and influence of weighting choice transparent (Collen et al. 2008). 

These common issues are more easily addressed when index development is underpinned by clear 

model understanding of relevant processes and interactions, and which can guide design of 

appropriate testing protocols. 

Calls for explicit index testing (Mace et al. 2010; Nicholson et al. 2012; Collen & Nicholson 2014) 

remain largely unanswered; indeed, most indices we examined were not tested comprehensively 

(e.g. responsiveness tested but not data bias, or vice versa), and in some cases would be difficult to 



 

 

 
This article is protected by copyright. All rights reserved. 

12 

 

test given lack of clarity around objectives, methods and assumptions. Without understanding how 

changes in biodiversity and underlying data affect the index, index values and trends cannot be 

interpreted reliably. They may even be meaningless or misleading, for example, when sampling bias 

results in trends of the opposite direction to that of the true feature of interest (Branch et al. 2010a; 

Nicholson et al. 2012; Hornborg et al. 2013). Methods for performance testing do exist: comparing 

forecasts to observed/alternative data (e.g. sensitivity analyses for modelled data; impacts of bias 

and uncertainty in sources or data types e.g. Branch et al. 2010); simulation case studies (Buckland 

et al. 2005; Collen et al. 2009; Link et al. 2010; Santini et al. 2017); goodness-of-fit via correlation 

with other indices or variables (Nardo et al. 2008; Olsen et al. 2016). Ever-increasing computing 

power and data availability offer new avenues for implementing performance tests (e.g. 

www.GBIF.org; PREDICTS, Hudson et al., 2017). Difficulties in conceiving tests should be interpreted 

as a warning of potential problems in index construction, and often stem from an unmeasurable 

means objective.  

Uncertainty is a critical component of decision processes (Buckland et al. 2005, Buckland & Johnston 

2017; Gregory et al. 2019); yet few of the indices we reviewed considered potential sources of, or 

means of representing, uncertainty in either accuracy or precision. The indices that do evaluate or 

report on uncertainty show that it is feasible, e.g. confidence intervals for the LPI via bootstrapping, 

the RLI allows estimation of error bars, and the BII provides a method to calculate variance. Impacts 

of biased or missing data could be reduced by broadening databases to reduced taxonomic or 

geographic bias, methods such as the sampled Red List Index or the diversity-weighted LPI (McRae et 

al. 2017), or addressing data gaps using simulation approaches such as archetype models (e.g. 

Ferrier et al., 2016).  

Results emphasise the need for indices underpinned by models linking them to the processes they 

aim to convey, rather than simply aggregating elements of interest (Possingham et al. 2001). For 

example, population theory underpinning the LPI and RLI gives confidence that the indices relate to 
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species persistence and thus elements of biodiversity persistence. Indices lacking a clear model 

immediately limit interpretability and their capacity to be tested.  

We reviewed indices used at national, regional and global scales using decision science as a 

framework. The criteria and gaps identified are applicable to a wide range of indices, but also have 

potential applications in local-scale index selection (e.g. Bal et al. 2018), designing biodiversity 

observation systems (e.g. Essential Biodiversity Variables, Pereira et al. 2013), and the process of 

setting useful, meaningful targets. For example, there are no primary indices identified by the 

Biodiversity Index’s Partnership (BIP) for three Aichi Targets (2, 3, 15) (Mcowen et al. 2016), and our 

analyses suggest many existing BIP-listed indices may be inadequate: a systematic review using our 

criteria of all indices would be of value to ascertain whether targets are effectively represented. As 

the post 2020 Global Biodiversity Framework and associated targets are negotiated, close inspection 

of the limitations of the current index suite is extremely timely and important if meaningful future 

targets and indices are to be set and selected. 

 

Multiple indices are needed to monitor biodiversity (Mace et al. 2018). Examining the availability 

and limits of currently available indices increases the likelihood that effective targets are set and 

gaps identified where new indices are required. To maximize utility and reproducibility, indices 

should be developed with clear objectives, a model-understanding of the relevant processes, and 

consideration of alternative actions, critical uncertainties and feasibility. Uncertainty measures and 

cost considerations allow for pragmatic decision-making that takes constraints and risks into 

account. Behaviour of new indices should be tested to understand suitability before they are 

adopted. Poorly constructed indices with vague intent may give false confidence in understanding, 

resulting in poor decisions and unintended outcomes for biodiversity. Our critical analysis is 

pertinent as use of indices become more prevalent in monitoring (e.g. Pereira et al. 2013), target 
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setting, and to project future scenarios and evaluate policies (Pereira et al. 2010; Tittensor et al. 

2014; Visconti et al. 2016). Importantly, it highlights common, key deficiencies in prominently used 

indices and provides recommendations for enhancing their contribution to understanding and 

tracking biodiversity post 2020.  
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Table 1: Fundamental objectives and key references of biodiversity indicators reviewed to determine 

suitability for decision-making, selected based on frequency of application and/ or selection for 

reportage on global biodiversity targets, and representation across realms.  

Indicator  Realm Fundamental Objective  Key 

Reference 

Living Planet Index 

(LPI)  

 

Terrestrial, marine, 

freshwater 

“…measure the changing state 
of the world’s biodiversity over 
time”.  

Collen et al. 

2009 

Red List Index (RLI) Terrestrial, marine, 

freshwater 

Measure trends in status of 

biodiversity.  

Butchart et 

al. 2004 

Marine Trophic 

Index (MTI)  

Marine Assess human/fisheries impact 

on marine ecosystems.  

Pauly & 

Watson 2005 

 

Ocean Health Index 

(OHI)  

 

Marine Measure the range of benefits 

that the oceans provide to 

people both now and in the 

future.  

Halpern et 

al. 2012 

River Health Indices Freshwater Diagnose threats to the world’s 
freshwater resources.  

Vörösmarty 

et al. 2010 

Climatic Impact 

Indicator (CII) 

Terrestrial Measure the impacts of climatic 

change on biodiversity 

Stephens et 

al. 2016 

Index of Biotic 

Integrity (IBI)  

Freshwater Measure the biotic integrity of a 

stream.  

Karr 1981 

Biodiversity 

Intactness Index (BII) 

Terrestrial Assess progress towards 

biodiversity loss targets simply 

and practically, by “synthesizing 

land use, ecosystem extent, 

species richness and population 

abundance data”.  

Scholes & 

Biggs 2005 

Forest Area As A 

Proportion Of Total 

Land Area (FA) 

Terrestrial Monitor forest management 

and use and identify 

unsustainable practices. 

FAO 2015 
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Table 2: Criteria against which indices were assessed and general guidelines for assessment; for 

sub-criteria and expanded assessment guidelines, see Table S4. 

 

Criterion Assessment guidelines  

1. Objectives a) Is the fundamental objective explicitly stated? 

b) Is the means objective explicitly stated? 

c) Is the means objective relevant? 

2. Design a) Is the index underpinned by an explicit and well-justified model (i.e. are 

causal relationships explicit)?  

b) Are the methods to calculate indices explicit and reproducible?    

c) Is there a clear link between the means objective and index? 

d) If scores, weightings or thresholds are involved, are these justified? 

e) Are the units of the indicator components commensurate? 

3. Behaviour a) Has index behaviour had been tested (quantitatively or qualitatively), 

and/or have potential tests had been considered? 

b) Have any identified shortcomings been addressed? 

4. Uncertainty a) Have sources and impacts of uncertainty been considered and 

presented? 

5. Feasibility  a) Has there been any estimation or consideration of costs? 

b) Has cost-efficiency been assessed among a set of candidate indicators? 

c) Time series availability? 
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Figure 1: Assessment of indices against criteria 1-5. The LPI (Living Planet Index), RLI (Red List Index), 

MTI (Marine Trophic Index), OHI (Ocean Health Index), RH (River Health), CII (Climatic Impact 

Indicator), IBI (Index of Biotic Integrity), BII (Biodiversity Intactness Index), FA (Forest Area as 

Proportion of Total Land Area) either addressed, partly addressed/unclear, or did not address 

criteria. See Tables S4 for expanded criteria and assessment guidelines, and S5.1-9 for detailed 

assessments. 
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