
R E S E A R CH AR T I C L E

Using deep autoencoders to identify abnormal brain structural

patterns in neuropsychiatric disorders: A large-scale

multi-sample study

Walter H. L. Pinaya1,2,3 | Andrea Mechelli3 | João R. Sato1

1Center of Mathematics, Computing, and

Cognition, Universidade Federal do ABC, São

Bernardo do Campo, SP, Brazil

2Center for Engineering, Modeling and Applied

Social Sciences, Universidade Federal do ABC,

São Bernardo do Campo, SP, Brazil

3Department of Psychosis Studies, Institute of

Psychiatry, Psychology & Neuroscience, King's

College London, London, UK

Correspondence

Walter H. L. Pinaya, Center of Mathematics,

Computing, and Cognition. Universidade

Federal do ABC, Rua Arcturus, 03 - Jardim

Antares, São Bernardo do Campo - SP, CEP

09.606-070, Brazil.

Email: walhugolp@gmail.com

Funding information

Wellcome Trust, Grant/Award: 208519/Z/17/

Z; Fundação de Amparo à Pesquisa do Estado

de São Paulo, Grant/Award Number: 2013/

05168-7; Fundação de Amparo à Pesquisa do

Estado de São Paulo, Grant/Award Number:

2013/10498-6; Coordenação de

Aperfeiçoamento de Pessoal de Nível Superior

Abstract

Machine learning is becoming an increasingly popular approach for investigating spatially distrib-

uted and subtle neuroanatomical alterations in brain-based disorders. However, some machine

learning models have been criticized for requiring a large number of cases in each experimental

group, and for resembling a “black box” that provides little or no insight into the nature of the

data. In this article, we propose an alternative conceptual and practical approach for investigating

brain-based disorders which aim to overcome these limitations. We used an artificial neural net-

work known as “deep autoencoder” to create a normative model using structural magnetic reso-

nance imaging data from 1,113 healthy people. We then used this model to estimate total and

regional neuroanatomical deviation in individual patients with schizophrenia and autism spectrum

disorder using two independent data sets (n = 263). We report that the model was able to gener-

ate different values of total neuroanatomical deviation for each disease under investigation rela-

tive to their control group (p < .005). Furthermore, the model revealed distinct patterns of

neuroanatomical deviations for the two diseases, consistent with the existing neuroimaging litera-

ture. We conclude that the deep autoencoder provides a flexible and promising framework for

assessing total and regional neuroanatomical deviations in neuropsychiatric populations.
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1 | INTRODUCTION

Structural magnetic resonance imaging (sMRI) enables the in vivo

investigation of the morphological features of the human brain. There

is much hope that this tool will help elucidate the neuroanatomical

correlates of neuropsychiatric disease, leading to improved detection

and treatment (Abou-Saleh, 2006; Klöppel et al., 2012). However,

despite the very large number of scientific publications in this area

over the past two decades, the use of sMRI in real-world clinical

decision-making remains very limited. One of the reasons is that the

vast majority of existing studies have used traditional mass-univariate

analytical methods which are sensitive to gross and localized differ-

ences in the brain. These techniques are not optimal for detecting

neuroanatomical alterations in neuropsychiatric disorders which tend

to be subtle and spatially distributed (Durston, 2003; Ellison-Wright,

Glahn, Laird, Thelen, & Bullmore, 2008).

Machine learning—an area of artificial intelligence concerned with

the development of algorithms and techniques to learn to perform

tasks from examples—provides an alternative analytical approach for

estimating neuroanatomical alterations from neuroimaging data (Orrù,

Pettersson-Yeo, Marquand, Sartori, & Mechelli, 2012; Sabuncu,

Konukoglu, & Initiative, 2015; Vieira, Pinaya, & Mechelli, 2017). As an

inherently multivariate approach, machine learning is sensitive to dis-

tributed and subtle differences between experimental groups. How-

ever, to develop a machine learning system capable of performing

categorization tasks with high reliability, the model must be able to
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perform accurate mapping of the input data to the desired output in

most of the possible space of new samples. Due to the high dimen-

sionality of the data, this usually demands a large number of cases in

each experimental group (Nieuwenhuis et al., 2012; Whelan & Gara-

van, 2014). In practice, this can be challenging, for example when

comparing specific clinical sub-groups who are difficult to recruit in

large numbers (e.g., patients with schizophrenia who did and did not

respond to a specific treatment). Besides this limitation, some machine

learning algorithms (e.g., deep neural networks) have been criticized

for resembling a “black box” due to the difficulty of interpreting their

inner workings. For example, even when an algorithm allows detection

of patients and controls with high levels of accuracy, it can be difficult

to establish which specific features of the data informed the categori-

zation decision. Therefore, even in the presence of a successful algo-

rithm, we may gain little or no mechanistic understanding of the

disease under investigation. This limits the translational applicability

of the findings, since the development of new treatments is normally

informed by the underlying mechanisms.

In this article, we adopt an alternative conceptual and practical

approach for investigating neuropsychiatric disorders which try to

overcome the above limitations. Instead of developing a system for

classifying individuals into different groups (e.g., psychiatric patients

and healthy subjects), we use neuroimaging data from disease-free

individuals to define the normal range of neuroanatomical variability

in the absence of illness. Patients with patterns of brain anatomy

which fall outside this normal range would then be identified as out-

liers (Marquand, Rezek, Buitelaar, & Beckmann, 2016; Mourão-

Miranda et al., 2011; Sato, Rondina, & Mourão-Miranda, 2012). A fur-

ther advantage of this approach, which is often referred to as “anom-

aly detection”, is that it allows the identification of the pathological

patterns which underlie the disease under investigation.

To implement this approach, we used the so-called autoencoder—

an artificial neural network which comprises of two components. The

first component, that is, the “encoder”, learns to codify the input data

in a latent code that is known as latent representation. As part of this

step, the data are being compressed resulting in a reduction of dimen-

sionality. The second component, that is, the “decoder”, learns to use

the latent representation to reconstruct the input data as close as pos-

sible to the original. Therefore, an autoencoder is an artificial neural

network designed to output a reconstruction of its input. Due to the

constrained size of the latent code, the autoencoder is forced to learn

about the underlying structure of the data to create a good recon-

struction. To achieve this, during training, the model tries to preserve

as much of the relevant information as possible, while intelligently dis-

carding redundancy parts. With the advance of deep learning (LeCun,

Bengio, & Hinton, 2015), it is possible to create and train deep auto-

encoders (i.e., autoencoders with several hidden layers between the

input and output layers) capable of learning increasingly complex

encoding-decoding functions. Here the appeal is that the model learns

efficient representations of the data such that the original input can

be reconstructed in full. In the recent literature, a number of studies

have applied deep autoencoders for data denoising (Feng, Zhang, &

Glass, 2014; Xie, Xu, & Chen, 2012). These applications estimated the

amount of noise by calculating the difference between the

reconstructed and inputted data, and then used this estimation to

remove the effects of noise from the data.

In this study, we used neuroimaging data from disease-free indi-

viduals to create a deep autoencoder for detecting and elucidating

neuroanatomical deviations in individual patients. First, we trained a

model with morphometric data from healthy controls from a large-

scale data set: the Human Connectome Project (HCP; Van Essen

et al., 2013). The resulting model learns to encode the healthy pat-

terns from the input data and then, from the encoded representation,

tries to reconstruct the input data as close as possible to the original.

After training this model, we used it to encode and reconstruct the

data from two public data sets with psychiatry patients. These data

sets composed of patients with schizophrenia (SCZ) and autism spec-

trum disorder (ASD); in addition, each data set included a healthy con-

trol (HC) group composing of disease-free individuals. The difference

between the original input data and the reconstructed output was

captured by a “deviation metric” which provided a measure of neuro-

anatomical alteration in a given individual. For each data set, we com-

pared the mean deviation metric of the patient and the respective

healthy control groups. Next, we compared the performance of the

normative model against a traditional classifier, using support vector

machines. Finally, we analyzed the regional distribution of the recon-

struction error and derived the most altered regions for each patient

group. We hypothesized that (a) the autoencoder would generate dif-

ferent deviation metrics in patients and controls, with higher mean

deviation metrics in the former relative to the latter, and that (b) the

autoencoder would reveal different patterns of neuroanatomical devi-

ations for SCZ and ASD, consistent with the existing neuroimaging lit-

erature on these disorders.

2 | METHODS

2.1 | Data description

The data used in this study were obtained from three public data sets:

Human Connectome Project (HCP) data set, Northwestern University

Schizophrenia Data and Software Tool (NUSDAST) data set, and

Autism Brain Imaging Data Exchange (ABIDE) data set. The NUSDAST

data set was obtained using the SchizoConnect (http://schizconnect.

org/), a virtual database for public schizophrenia neuroimaging data.

The ABIDE data set was acquired from the Neuroimaging Informatics

Tools and Resources Clearinghouse (NITRC) image repository (http://

www.nitrc.org/). Finally, the HCP data set was acquired from the data

management platform called ConnectomeDB (https://db.

humanconnectome.org). Detailed information about these data sets

and their acquisition parameters is presented in the Supporting

Information.

2.2 | Subjects

In this study, we used sMRI data from 1,113 healthy controls taken from

the “1200 Subjects Data Release (S1200 Release, March 2017)” which is

part of the HCP data set (see http://www.humanconnectome.org/

documentation/S1200/ for technical information). We also analyzed
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sMRI data from two further clinical data sets including the NUSDAST

data set, which composed of healthy controls and patients with SCZ, and

the ABIDE data set (http://fcon_1000.projects.nitrc.org/indi/abide/

abide_I.html), which composed of HC subjects and ASD patients bal-

anced for age and sex. From these two clinical data sets, we identified

and selected those subjects within the same age range of the HCP data

set (from 22 to 37 years old). This resulted in 40 healthy controls and

35 patients with SCZ from the NUSDAST data set and 105 healthy con-

trols and 83 subjects with ASD from the ABIDE data set, who were

included in the present investigation.

2.3 | MRI processing

We used the FreeSurfer data from the 1,113 healthy controls taken

from the HCP data set (Glasser et al., 2013). These data—including

cortical thickness and anatomical structural volume—have already

been extracted using the Freesurfer pipeline version 5.3.0 and made

available to the scientific community from the HCP. For the NUS-

DAST and ABIDE data sets, we used the same FreeSurfer pipeline

(version 5.3.0) to estimate the cortical thickness and anatomical struc-

tural volumes from the T1 weighted images. This estimation was per-

formed using the “recon-all” command (see Fischl, 2012, Fischl et al.,

2002 for more information). The cortical surface of each hemisphere

was then parcellated according to the Desikan–Killiany atlas (Desikan

et al., 2006) and the anatomical volumetric measures were obtained

via a whole brain segmentation procedure (Fischl et al., 2002). This

procedure allowed us to calculate the cortical thickness for each of

the 68 cortical subregions (34 per hemisphere) and the volume of

36 neuroanatomical structures; therefore, the total number of subre-

gions/structures being investigating was 104.

2.4 | Deep autoencoder training

We created a deep autoencoder that learns to encode and decode

brain data using the healthy subjects from the HCP data set (Figure 1).

This autoencoder had three hidden layers (h1, z, and h2). To improve

the generalization of the model and avoid overfitting, we applied an

L2 regularization (regularization parameter = 1 × 10−3) that penalized

high values in the network's weights and facilitated diffuse weight

vectors as solutions. To mitigate the network's internal covariate shift,

the h1, z, and h2 layers were formed using scaled exponential linear

units (SELUs; Klambauer, Unterthiner, Mayr, & Hochreiter, 2017). The

activation function of these units allows for faster and more robust

training, that is, less training epochs to reach convergence, and a

strong regularization scheme (Klambauer et al., 2017). We initialized

the SELU units using the appropriated initializer (Klambauer et al.,

2017). The output layer was formed by linear units initialized with

Glorot initialization, also known as Xavier initialization (Glorot & Ben-

gio, 2010), using weight parameters sampled from a uniform

distribution.

The deep autoencoder was trained using all subjects from the

HCP data set. In our model, we used a similar approach to a denoising

autoencoder (Vincent, Larochelle, Bengio, & Manzagol, 2008) to

improve the model robustness. This involved (a) partially corrupting

the brain data during training using an additive Gaussian noise

(mean = 0 and standard deviation [SD] = 0.1); (b) presenting this cor-

rupted data to the autoencoder, and (c) using a loss function to make

the model recover the original noise-free data. This loss function was

composed by the mean squared error between the reconstruction of

the corrupted input data and the desired output. This metric mainly

guided the optimizer (i.e., the neural network's trainer) to adjust the

autoencoder parameters during training. This approach enables the

model to learn to distill important features from the data while mini-

mizing the influence of noise (Vincent, Larochelle, Lajoie, Bengio, &

Manzagol, 2010).

The training process was performed with 2,000 training epochs,

that is, the autoencoder processed the whole data set 2,000 times. As

an optimizer, we used a gradient-based method with adaptative learn-

ing rates called Adam (Kingma & Ba, 2014). We specified the initial

learning rate of the optimizer as 0.05 with an exponential learning rate

decay over each epoch (reaching 0.0005 at the end of the training

epochs). Finally, the training was configured as mini-batch gradient

descent, using mini-batches with a size of 64 samples.

In our study, the model was trained by using a semi-supervised

approach. In contrast with the usual approach used in the classifica-

tion of neuroimaging data, in which the influence of potential con-

founding variables is removed from the data, we incorporated such

confounding variables in our model. This approach allowed our auto-

encoder to create reconstructions of each subject based on the avail-

able information. Similar to Cheung, Livezey, Bansal, and Olshausen

(2014), we added information about our samples (in our case, age and

sex values) in the structure of the model. Given a subject brain data x

and the corresponding age yage and sex ysex, we considered these vari-

ables to be elements of the high-level representation of the brain data

input. In particular, we incorporated supervised learning within the

model to enable learning of age and sex. Within this semi-supervised

framework, the remaining latent variable z must account for the

remaining variations of the input data.

The final loss function to train the deep autoencoder is defined as

the sum of four separate cost terms (Equation (1)).

Loss¼ x− x̂ð Þ2 +Crossentropy yage , ŷage
� �

+Crossentropy ysex, ŷsexð Þ+XCov

ð1Þ

The first term is the previously mentioned reconstruction cost for

an autoencoder measured by the mean squared error formula. The

FIGURE 1 The semi-supervised deep autoencoder structure. During

the training, the deep autoencoder learns to reconstruct the input

data and to predict the observed variables y, in this case, the subject's

age and sex
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second term is a supervised cost for the prediction of age. In this

study, we used a common cost function for deep neural networks—

the cross-entropy between the predictions and the true values. This

cost guides the training of the neural network to a solution where the

output ŷage (being part of ŷ in Figure 1) is as close as possible to the

true age yage. To implement this, we used a classification scheme

where each class corresponds to one of the possible ages (i.e., we had

16 classes, indicating ages from 22 to 37). The third term is a standard

supervised cost for prediction of sex computed in a similar way to

age. These supervised costs ensure that the encoder tries to learn the

features related to the confounding variables. Finally, the fourth term

XCov is the unsupervised cross-covariance cost which guides the

training to select solutions that disentangle the confounding variables

(i.e., age and sex) from the other latent features of the data.

The training data (HCP data set) was normalized; this involved

subtracting the mean from every input feature and then dividing the

resulting value by the SD of the feature (known as zero mean unit var-

iance normalization). This normalization was also applied to the test

set (i.e., NUSDAST and ABIDE data sets) using the same parameters,

mean and SD, from the training set to avoid biased results. We applied

these feature scaling to standardize the range value of data and to

adjust it to near to zero. This standardization improves the conver-

gence speed of the optimization algorithm during the training of the

model (LeCun, Bottou, Orr, & Müller, 2012). Furthermore, it allows

the combination of different metrics from the same input modality

(e.g., subcortical volume and cortical thickness from structural data),

as well as the comparison of deviation metrics derived from different

input modalities (e.g., structural vs. functional data). The age and sex

variables were transformed to a one-hot coding for the classification

scheme.

2.5 | Analysis of data sets with psychiatry patients

After training using the HCP data set, we defined the average squared

reconstruction error along all brain features as a metric of brain devia-

tion of each subject (Equation (2)).

Deviationmetric¼
1

Number of regions

X

Number of regions

i¼1

xi− x̂ið Þ2 ð2Þ

where xi is the original value of the brain region i, x̂i is the deep auto-

encoder reconstructed value of the brain region i, and number of

regions is the number of cortical subregions and neuroanatomical

structures used (i.e., number of regions = 104).

Then, we used the model to measure the quantity of deviation of

the brain data from the NUSDAST and ABIDE data sets based on

what was learned from the HCP sample. Since the deviation metric

(based on mean squared error) did not follow a normal distribution

and presented a number of outliers, we used a nonparametric test,

known as two-tailed Mann–Whitney U test, to verify whether the

medians of deviation metric are significantly different between

healthy controls and patients for each clinical group. To avoid the

effects of different sites, scanners, and populations, we restricted sta-

tistical comparisons to patient and control groups from the same

data set.

2.6 | Comparison with traditional machine learning

classification

Normative methods differ from traditional machine learning classi-

fication in several aspects. For example, the data used to train the

model are different. In normative models, subjects' categories are

not necessary (unsupervised learning), while in traditional classifica-

tion, it is necessary to specify the classes of each participant (super-

vised learning). Another difference is what the model learns during

training. In traditional classification, the model learns about the

values of the features that best discriminate the categories. On the

other hand, normative approaches learn the values of features that

are considered a typical observation. Even with these distinct char-

acteristics, the normative approach can be adapted to perform clas-

sification once assuming patients as outliers (Mourão-Miranda

et al., 2011). Once we set a limit value in the normative deviation

metric, we can categorize subjects in HC and patient groups, and,

finally, use performance metrics, like accuracy, to compare

methods.

In our study, to compare the performance of our normative

model against a traditional classification approach, we performed a

machine learning analysis of both clinical data sets using Support

Vector Machines (SVM; Cortes & Vapnik, 1995). First, we used the

data from the ABIDE and NUSDAST data sets as input to the SVM

model with the features normalized using the mean and SD from

the Human Connectome Project. The rationale for using these nor-

malized features was to ensure the consistency of the input data

between the autoencoder and the traditional classification model.

Also, we used a bootstrap resampling method to estimate the per-

formance of the classifier and quantify its uncertainty using confi-

dence intervals (CI) (DiCiccio & Efron, 1996; Jain, Duin, & Mao,

2000). This involved (a) determining the size of the training set as

70% of the total number of subjects in the data set (resulting in

53 training samples in NUSDAST and 132 training samples in

ABIDE); (b) randomly sampling (with replacement) the subjects to

create a bootstrap training set; and (c) using all subjects not

included in the training set to create a test set.

Having defined the training and test sets, we trained a linear SVM

classifier to discriminate between the HC and patient categories. The

first step of the training was to define the soft margin

(C) hyperparameter, which controls the trade-off between having zero

training errors and allowing misclassifications. In our study, we chose

the value of C by performing a grid search using a cross-validation

scheme based on the training set. In brief, using stratified 10-fold

cross-validation, we divided the training set into 10 parts with the

same proportion of HC subjects and patients. We then used nine parts

to compose a new training set, and the remaining part was used as

the validation set. With these sets defined, we chose one C value

from the search space, which was defined as {2−15, 2−13, 2−11, 2−13,

…, 211, 213, 215} consistent with previous studies (Hsu, Chang, & Lin,

2003). Next, we trained the model on the new training set and com-

puted its balanced accuracy using the validation set. This process was

performed 10 times using the same C value across all possible differ-

ent choices of validation set. Then, we performed this process again

with all other possible C values. In the end, we selected the C value
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that had the higher cross-validated mean balanced accuracy. With this

C value, we trained a linear SVM model again using the whole training

data set and, finally, we computed the probabilities of each subject in

the test set to belong to the patient group. This approach, including

the use of stratified 10-fold cross-validation to minimize bias, is con-

sistent with recommended practice (Salvador et al., 2017). The imple-

mentation of the SVM classifiers was performed in Python (version

3.6) using the Scikit-learn library (version 0.19.2; Pedregosa &

Varoquaux, 2011).

In the final step, the probabilities of each subject in the test set to

belong to the patient group were used to estimate the performance of

the classifier. In the present study, we used the area under the

receiver operating characteristic curve (AUC-ROC) as a performance

metric for the comparison with the normative approach. With the

AUC-ROC, it is possible to estimate how well the classifier performs

without having to explicitly define a threshold value for deciding

whether a subject should be classified as HC subject or patient. After

obtaining the AUC-ROC, we repeated the whole process but this time

with a new bootstrap training set and test set. This process was

repeated 1,000 times to create a distribution of the performance of

the classifier. From this distribution, we reported the median perfor-

mance of the SVM and its CI.

Similar to the classifier evaluation, we computed the AUC-ROC

and its CI for the normative method. In this case, we created boot-

strap training sets from the HCP data set, sampling (with replacement)

1,113 subjects to train the normative model. After training, we nor-

malized the clinical data sets using the mean and the SD from the orig-

inal HCP data set (to ensure consistency between autoencoder and

the traditional classification). Then, we calculated the deviation metric

of all subjects, using these deviation metrics and the actual label of

the subjects, we computed the AUC-ROC. This process was repeated

1,000 times to create a distribution of the performance of the norma-

tive approach. From this distribution, we reported the median perfor-

mance and its CI.

2.7 | Patterns of neuroanatomical deviations

We investigated the reconstruction error of each brain region in

the two clinical samples (SCZ and ASD) using the deep autoenco-

der. We compared the values of the reconstruction error in patients

against HC subjects using the Mann–Whitney U test to check for

statistically significant regional deviations. A Bonferroni correction

for multiple comparisons would have been inappropriate because

statistical inferences in homotopic or adjacent regions were most

likely to be correlated rather than independent. In the absence of

any established procedure, we controlled for false positive rates by

using a conservative statistical threshold of p < .01 which yield an

expected false positive rate of 1%. Finally, we calculated Cliff's

delta (Cliff, 1993) absolute value to measure the magnitude of neu-

roanatomical deviations. Here Cliff's delta value measures how

often the deviation metric values in one distribution (i.e., patient

group) are larger than the values in a second distribution (i.e., HC

group).

2.8 | Performance evaluation of different network

configurations

In this study, the number of neurons per layer was chosen using the

training/validation data from the HCP data set. This involved execut-

ing a 10-fold cross-validation process where the training set was

divided into two groups: training and validation set. Thus, we adopted

a grid search to select the optimal number of neurons (i.e., among

10, 25, 50, 75, and 100) in each hidden layer. We decided to use a

second hidden layer with fewer units than the first layer to constrain

the latent variables of the deep autoencoder. We defined the opti-

mum model structure as the one that presented the lowest average

reconstruction error at the validation folds during the cross-validation

process. After determining the optimum values, the deep autoencoder

was trained again with the best configuration and using both training

and validation set. Then, the deep autoencoder analysis was per-

formed on the others data sets (i.e., test sets).

2.9 | Experiments

We conducted the experiments in Python using the Tensorflow v.1.4

(Abadi et al., 2016) and Keras v.2.1 (https://keras.io/) libraries. We

used the same random seed in all our calculations to ensure the start-

ing weights and cross-validation fold division was equivalent in every

set of experiments.

3 | RESULTS

3.1 | Performance evaluation for different number

of neurons

We executed a cross-validation process on the HCP data to determine

the best number of neurons for the layers of our deep autoencoder.

We obtained the best performance from the structure with the

104à 100à 75à 100à 104 configurations (input dataà h1 layer

à z-layer à h2 layer à reconstruction) with mean reconstruction

error of 0.40 � 0.01 (the cross-validation performance of all struc-

tures is presented in the Supporting Information). This configuration

also presented an age prediction with a mean absolute error of

3.05 � 0.28 years and a sex prediction with a mean balanced accuracy

of 86.25% � 1.69%. Figure 2 depicts the average learning curve of

the best configuration and the evolution of the age and sex predic-

tions performance. The average learning curve of the validation and

training sets indicates that 2,000 training epochs and the actual con-

figuration of hyperparameters (including regularization coefficient)

appeared to be sufficient for model convergence without falling into

overfitting.

3.2 | Comparison of deviation metrics for patients

and healthy controls

In this analysis, we used the deep autoencoder structure with three

hidden layers and the 104–100–75–100–104 configurations. We per-

formed the training on the whole HCP data set. After 2,000 training

epochs, we obtained a mean reconstruction error of 0.32 on the
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training set, and we applied the trained model to the others data sets.

The deep autoencoder yielded a mean deviation metric of

0.97 � 0.23 for the HC group and 1.14 � 0.28 for the SCZ group

from the NUSDAST data set (Cliff's delta = 0.4142). The deep autoen-

coder was also applied to the ABIDE data set, obtaining a mean devia-

tion metric of 1.09 � 0.30 for the HC group and 1.27 � 0.40 for the

ASD group (Cliff's delta = 0.2764).

Figure 3 shows the boxplot indicating the median deviation met-

ric of each group; violin plots are also presented in the Supporting

Information. As expected, in the NUSDAST data set, the deviation

metric was significantly higher for the SCZ groups than the corre-

sponding HC groups with the Mann–Whitney U test presenting a sta-

tistically significant difference (p = .001). Likewise, the ASD group

presented a higher mean deviation metric than the corresponding HC

group with the Mann–Whitney U test presenting a statistically signifi-

cant difference (p < .001).

3.3 | Prediction of age and sex for patients and

healthy controls

In addition to the estimation of deviation metrics, the trained model

predicts the age and sex of each individual using a semi-supervised

framework (see “Deep autoencoder training” section for detail). For

the NUSDAST data set, the model predicted age with a mean abso-

lute error (MAE) of 3.40 years in the HC group and 3.57 years in

the SCZ group. For the same data set, the model also predicted sex

with accuracies of 75.00% in the HC group and 62.28% in the

patient group. For the ABIDE data set, the model predicted the age

with an MAE of 4.02 years in the HC group and 3.83 years in the

ASD group. Here the model also predicted sex with accuracies of

79.04% in the HC group and 78.31% in the patient group,

respectively.

3.4 | Comparison with traditional classifiers

In the NUSDAST data set, the linear SVM obtained a median

AUC-ROC = 0.637 (95% CI = [0.486, 0.766]), whereas using the

FIGURE 2 (a) The mean learning curve of the best structure (100–75–100) along the 10-fold cross-validation. (b) The mean absolute error curve

of age prediction of the best configuration along the 10-fold cross-validation. (c) The balanced accuracy curve of sex prediction of the best

configuration along the 10-fold cross-validation [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 Boxplot of the deviation metric (mean squared

reconstruction error) from the patients with schizophrenia group and

the healthy controls subjects (NUSDAST data set) and from patients

with autism spectrum disorder and the corresponding healthy control

group (ABIDE data set). ASD = autism spectrum disorder;

HC = healthy controls; SCZ = schizophrenia [Color figure can be

viewed at wileyonlinelibrary.com]
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deviation metric of the normative approach, we obtained an

AUC-ROC = 0.707 (95% CI = [0.662, 0.751]). In the ABIDE data set,

the SVM obtained a median AUC-ROC = 0.569 (95% CI = [0.462,

0.659]), while the normative approach resulted in an AUC-ROC =

0.639 (95% CI = [0.611, 0.666]). Based on these results, therefore,

the performance of our normative model appeared to be comparable

to that of traditional classifiers. Other metrics of performance of the

classifiers are presented in the Supporting Information.

3.5 | Reconstruction error in individual regions

To derive the most altered regions for each patient group, we investi-

gated the reconstruction error of each brain region (violin plots and

the comparison between original vs. reconstructed values for each

brain region and data set are presented in the Supporting Informa-

tion). Using the Mann–Whitney U test, we verified which region had

different median values of reconstruction error between healthy sub-

jects and patients. We then measured Cliff's delta absolute value to

quantify the effect size of the pathological changes on the reconstruc-

tion error for each region. For each data set, the brain structures

showing a statistically significant difference are shown in Table 2. The

full list of regions with p values and effect sizes is presented in the

Supporting Information.

4 | DISCUSSION

In this study, we used a deep autoencoder to map brain data from

healthy subjects to a latent representation and then map this back to

reconstruct the brain data used as input. The resulting model was then

applied to two independent data sets, each including healthy subjects

as well as neuropsychiatric patients. In each data set, the model per-

formed better (i.e., it yielded a smaller reconstruction error corre-

sponding to a smaller deviation metric) when applied to brain data

from healthy controls than when applied to brain data from patients.

Consistent with our first hypothesis, therefore, the model was effec-

tive in generating different deviation metrics in healthy controls and

patients. Furthermore, we were able to evaluate the contribution of

each brain region to the overall reconstruction error of each subject.

This procedure revealed statistically significant alterations in several

regions that were previously reported in the neuropsychiatric neuro-

imaging literature. Consistent with our second hypothesis, the autoen-

coder revealed different patterns of neuroanatomical deviations for

SCZ and ASD when compared to healthy controls from the respective

data sets.

During the training phase, which used data corrupted by a Gauss-

ian noise, the deep autoencoder learned the most robust representa-

tions of healthy people in its multilevel representations (Vincent et al.,

2008). From the existing neuroimaging literature, we know that neu-

ropsychiatric populations show alterations in cortical thickness and

regional volume relative to healthy people (Ecker et al., 2013; Qiu

et al., 2011; Shepherd, Laurens, Matheson, Carr, & Green, 2012).

However, since individuals with neuropsychiatric disease were not

present in the training set, the deep autoencoder did not learn to map

these neuropathological alterations. As expected this resulted in a

larger difference between the reconstructed output and the original

input when the model was applied to patients relative to when it was

applied to healthy people. In other words, each patient group pre-

sented a higher mean reconstruction error, indicating higher levels of

neuroanatomical deviations, than the HC group from the same

data set.

In the present study, we also compared our normative approach

with traditional machine learning classification. This revealed that the

performance of the two approaches was comparable, with the norma-

tive median performance falling within the classifier's confidence

interval in both clinical data sets. However, even with similar perfor-

mances, both methods did not achieve high performance. Using the

bootstrap resampling method, our normative approach showed mod-

est AUC-ROC values between 0.611 and 0.751, while the values

shown by the classifier were not significantly different from the

TABLE 2 Regions that presented a statistically significant difference

in reconstruction error between groups for each data set (p ≤ .01,

Mann–Whitney U test)

NUSDAST Effect size ABIDE Effect size

Left ventral diencephalon 0.4171 Left choroid plexus 0.2496

Left lateral ventricle 0.4100 Right cuneus 0.2448

Right superior temporal 0.3871 Left putamen 0.2280

Right lateral ventricle 0.3285 Left cerebellum
cortex

0.2216

Left precentral 0.3185 – –

Abbreviations: ABIDE = Autism Brain Imaging Data Exchange; NUS-
DAST = Northwestern University schizophrenia data and software tool.

TABLE 1 Demographic information for the subjects from the Human Connectome Project, Northwestern University schizophrenia data and

software tool and Autism Brain Imaging Data Exchange data sets

HCP (n = 1,113)

NUSDAST

p

ABIDE

pHC (n = 40) SCZ (n = 35) HC (n = 105) ASD (n = 83)

Age, y .180 .607

Mean � SD 28.8 � 3.7 26.7 � 4.13 25.5 � 3.92 27.0 � 3.9 27.3 � 4.1

Range 22–37 22–37 22–36 22–37 22–36

Sex, n (%) .398 .922

Men 493 (44%) 25 (62%) 26 (74%) 92 (88%) 74 (89%)

Women 606 (56%) 15 (48%) 9 (26%) 13 (12%) 9 (11%)

We used Student's t test and the chi-square test to test for significant differences in age and sex between healthy controls and patients.

Abbreviations: ABIDE = Autism Brain Imaging Data Exchange; ASD = autism spectrum disorder; HC = healthy control; HCP = Human Connectome Pro-
ject data set; NUSDAST = Northwestern University schizophrenia data and software tool; SCZ = schizophrenia.
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random guessing. This pattern of results differs from previous

machine learning studies, which have typically reported higher classifi-

cation accuracies between HC subjects and patients with SCZ and

ASD (Kim, Calhoun, Shim, & Lee, 2016; Rozycki et al., 2017; Uddin

et al., 2011). However, we note that most of these previous studies

used different types of features, such as voxel-based values or

regional functional MRI activations. There were, however, a few stud-

ies that performed classification using regional volume and thickness.

In Salvador et al. (2017), for example, the author’s classified

128 patients with SCZ and 127 HC subjects using a number of struc-

tural features, including cortical volume and thickness; similar to our

study, the use of SVM classifiers resulted in modest performance, with

accuracies around 60%. In Pinaya et al. (2016), using 143 patients with

SCZ and 83 HC subjects, the SVM classifier achieved a balanced accu-

racy of 68.1%. Using 22 children with ASD and 16 HC subjects, Jiao

et al. (2010) were able to achieve an AUC-ROC of 0.93, however, the

very low number of subjects may have inflated the estimate of perfor-

mance (Schnack & Kahn, 2016). In light of these previous studies,

therefore, we speculate that the use of regional features may explain

the low discriminant performance in our investigation. Due to the

dimensionality reduction that occurs during the preprocessing, a sig-

nificant amount of structural information about the subject's brain

may be lost. Such information could be useful for the discrimination

between the categories, as suggested by the results of previous stud-

ies that used different types of features. In the present study, we

chose regional features as input as their low dimensionality would

allow us to perform more tests with our limited computational

resources. Future studies could expand our investigations by evaluat-

ing how the normative approach behaves with different data modali-

ties, such as voxel-based values or regional functional activation.

Finally, is worth to mention that the performed comparison is not a

standard approach used in classifiers comparison. Due to the different

natures of both methods, it was not possible to test the models in the

same conditions (e.g., the same subjects in the training set).

By analyzing the brain data reconstructions, we were also able to

consider how much each region differed from its normative value for

each patient group. In contrast with from previous studies using nor-

mative approaches (Mourão-Miranda et al., 2011; Sato et al., 2012),

the deep autoencoder is capable of generating an individualized brain

map that indicates the contribution of each region to the deviation

metric of each subject. This information can provide insight into the

pathological mechanism which underlies an illness, although it does

not completely solve the issue of the interpretability of the model.

Below we discuss the main neuroanatomical findings for each diag-

nostic group in turn.

In patients with SCZ relative to healthy controls, the lateral ven-

tricles were among the regions with the highest difference in the devi-

ation metric (Cliff's delta: left = 0.410; right = 0.328). Increased lateral

ventricular size is one of the most consistently reported neuroanatom-

ical abnormalities in schizophrenia (Rimol et al., 2010; Shenton,

Dickey, Frumin, & McCarley, 2001; Shepherd et al., 2012). Interest-

ingly, the ventricles were not significantly different between groups in

the mass-univariate analysis using the original volumes (left: Mann–

Whitney U test; p = .349; Cliff's delta = 0.052; right: Mann–Whitney

U test; p = .365; Cliff's delta = 0.047). The apparent inconsistency can

be explained by the multivariate nature of our machine learning

model. While standard mass-univariate techniques consider each brain

structure as an independent unit, multivariate methods may be addi-

tionally based on inter-regional correlations. An individual region may

therefore display high discriminative power due to two possible rea-

sons: (a) a difference in volume/thickness between groups in that

region; (b) a difference in the correlation between that region and

other areas between groups. Thus, discriminative brain networks are

best interpreted as a spatially distributed pattern rather than as indi-

vidual regions.

Another region showing a statistically significant difference

between SCZ and healthy controls was the right superior temporal

cortex. This region is also a common finding in neuroimaging studies

of schizophrenia, which typically report volume reduction (Shepherd

et al., 2012). Alteration of the right superior temporal cortex has been

associated with severity of positive symptoms in schizophrenia

(Walton et al., 2017). Based on recent studies (Honea, Crow, Passing-

ham, & Mackay, 2005; Shepherd et al., 2012), this alteration usually

occurs in both hemispheres, however in the present investigation the

left superior temporal cortex did not express a statistical significant

group difference in deviation (Mann–Whitney U test; p = .118; Cliff's

delta = 0.160), and did not show a statistically significant effect in the

mass-univariate analysis (Mann–Whitney U test; p = .027; Cliff's

delta = 0.259).

Statistically significant differences in deviations between the SCZ

and HC groups were also found in the left precentral cortex. Previous

studies suggested that reductions in this regions are part of the neuro-

biological mechanisms underlying the onset of the illness (Rimol et al.,

2010; Shepherd et al., 2012; Zhou et al., 2005). Finally, the left ventral

diencephalon was the brain structure with the most different devia-

tion between HC and SCZ groups (Cliff's delta = 0.417). In contrast,

this structure was not among the significant structures detected in

our mass-univariate analysis (Mann–Whitney U test; p = .135; Cliff's

delta = 0.148). The ventral diencephalon in Freesurfer includes several

structures: hypothalamus with mammillary body, subthalamic, lateral

geniculate, medial geniculate and red nuclei, substantia nigra, and sur-

rounding white matter. Even though some of these regions have been

reported in studies of patients with schizophrenia (Klomp, Koolschijn,

Hulshoff Pol, Kahn, & Van Haren, 2012), they are not a common find-

ing in meta-analyses and reviews.

There were a few regions that were found to be significantly differ-

ent in the mass-univariate analysis but not with respect to the deviation

metric; these included, among others, the third ventricle (Mann–Whitney

U test in deviation metric analysis; p = .033; Cliff's delta = 0.247) and the

left insular cortex (Mann–Whitney U test in deviation metric analysis;

p = .076; Cliff's delta = 0.192). These regions have often been reported

in meta-analyses and systematic reviews of the neural basis of the disor-

der (Shepherd et al., 2012).

With respect to patients with ASD relative to healthy controls, the

choroid plexus, cuneus, putamen, and cerebellum cortex were found to

have significantly different deviations between groups. Differences on

the right occipital lobe (specifically the right cuneus), the left putamen,

and the cerebellum cortex are also consistent with previous studies

(Cauda et al., 2011; Nickl-Jockschat et al., 2012; Stanfield et al., 2008).

These regions were not significant in the mass-univariate analysis,
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however, their reconstruction values were affected by the multivariate

nature of the model. Studies have indicated that visual perception in

ASD patients differs from that of healthy controls and that this can be

explained in terms of neuroanatomical differences in occipital areas

(Nickl-Jockschat et al., 2012). In addition alterations of the basal ganglia

have been found to correlate with impaired motor performance or repet-

itive and stereotyped behavior in ASD patients (Nickl-Jockschat et al.,

2012). Surprisingly, the left choroid plexus was the structure with the

highest different deviation between groups; however, this structure was

not significantly different between groups in the univariate analysis.

Once again, this inconsistency could be explained by the fact that multi-

variate methods can detect significant effects due to two possible rea-

sons: (a) a difference in volume/thickness between groups in that region;

(b) a difference in the correlation between that region and other areas

between groups.

Taken collectively, these findings suggest that our approach was

sensitive to the underlying neuropathological features of the two dis-

eases under investigation. It should be noted, however, that the SD of

the estimated deviation metrics tended to be high, suggesting high

individual variability within each group. This observation may restrict

the possible use of this metric to discriminate patients with a neuro-

psychiatric disease from healthy people at the individual level. This

aspect of our findings could be explained by the clinical heterogeneity

of our neuropsychiatric samples which is likely to be associated with

neuroanatomical heterogeneity. Such clinical and neuroanatomical

heterogeneity represents a challenge not only for the approach pre-

sented in the present manuscript but also for the field of machine

learning applied to neuroimaging as a whole (Klöppel et al., 2012).

Finally, we compared each clinical group against their HC group with-

out modeling differences in acquisition protocols and populations; this

means that our results do not allow a direct comparison between the

two clinical groups under investigation. However, this was not the

purpose of the present study, which aimed at creating a deep autoen-

coder that could be used to compare patients and healthy controls.

The use of a deep neural network framework enabled us to use

flexible configurations and model the age and sex variables in a com-

prehensive and straightforward way. However, we note that this is

not a standard approach for the neuroimaging research which tends

to adopt strategies for dealing with potential confounding variables

such as age and sex. The first strategy involves balancing the groups

to be compared with respect to potential confounding variables,

whereas the second strategy involves “regressing out” the variability

in the data is associated with these variables to minimize their poten-

tial influence (Falahati et al., 2016; Linn, Gaonkar, Doshi, Davatzikos, &

Shinohara, 2016). Further analysis is needed to investigate the use of

semi-supervised training to deal with potential confounding influ-

ences. In this study, we made sure that each comparison was carried

out between groups balanced for age and sex (refer to Table 1 for

detail) to minimize the impact of this issue.

Although the deep autoencoder was successful in identifying dif-

ferent neuropathological patterns for SCZ and ASD, it should not be

assumed that our model is capable of detecting all abnormalities in all

brain-based disorders. For example, a neuroanatomical reduction

might be a marker of neuropathology in patients with a specific dis-

ease, while also being present in some disease-free individuals as a

result of normal neuroanatomical heterogeneity; such reduction

would be difficult to detect using our outlier detection model. Another

limitation of our investigation is that subtle differences in head motion

may have influenced the estimation of the deviation metrics. In neuro-

imaging, patients may present higher head motion than healthy con-

trols during scanning (Van Dijk, Sabuncu, & Buckner, 2012; Reuter

et al., 2015; Savalia et al., 2017); this may interact with the segmenta-

tion of the images increasing the risk of artifactual positive or negative

findings (see Mechelli, Price, Friston, & Ashburner [2005] for review).

In our investigation, therefore, differences in head motion undetect-

able by visual inspection might be responsible for the higher SD of the

deviation metric in patients relative to healthy controls. On the other

hand, it is also possible that this difference in SD reflected a higher

degree of neuroanatomical variation in patients relative to controls,

consistent with the heterogeneous clinical presentation of the two

diseases under investigation.

Another possible source of artifacts in our investigation relates to

the preprocessing of the images. Usually, automatic preprocessing

systems can provide spurious results (e.g., bad gray and white matter

segmentation). This problem is even more frequent in samples with

significant ventricular enlargement (Bhalla & Mahmood, 2015; McCar-

thy et al., 2015), such as SCZ. However, further actions to try to mini-

mize this effect could also introduce subjective bias from the quality

evaluator. In our investigation, we therefore chose to not correct pre-

processing step by visual assessment to guarantee a fully automatized

and reproducible approach. Finally, due to the nonlinear nature of the

model, our method does not allow one to establish the direction of

the alterations (i.e., increase vs. decrease in volume/thickness) when

comparing two groups that were not included in the training process.

This means that, in our study, we were unable the direction of the

alterations in patients with SCZ and ASD since none of the data used

for testing were used for training the autoencoder. One could infer

the direction of the deviation by comparing a sample from the test

sets (NUSDAST and ABIDE) against the training set (HCP). This how-

ever would introduce possible confounds related to effects of differ-

ent sites, scanners, and populations. To avoid such confounds, we

decided to sacrifice the ability to specify the direction of the alter-

ations and compare groups that were part of the same data set.

5 | CONCLUSIONS

In conclusion, the use of a deep autoencoder enabled us to detect dif-

ferent patterns of neuroanatomical alteration between neuropsychiat-

ric patients and healthy controls on the basis of their reconstruction

error. The model was also able to detect distinct patterns of neuroan-

atomical deviations in SCZ and ASD, indicating consistent perfor-

mance across different psychiatric disorders. These results suggest

that the deep autoencoder can be used to measure the overall devia-

tion metric of an individual and elucidate which regions are the most

different compared to healthy group (i.e., a normative range). The

deep autoencoder provides a flexible and promising framework which

could be applied to different neuroimaging modalities (e.g., functional

MRI) and different types of preprocessing (e.g., voxel-based mor-

phometry) in future studies.
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