
Using deep learning to model the hierarchical structure and 
function of a cell

Jianzhu Ma1,†, Michael Ku Yu1,2,†, Samson Fong1,3,†, Keiichiro Ono1, Eric Sage1, Barry 
Demchak1, Roded Sharan4, and Trey Ideker1,2,3,*

1Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA

2Program in Bioinformatics, University of California San Diego, La Jolla CA 92093, USA

3Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA

4Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel

Abstract

Although artificial neural networks simulate a variety of human functions, their internal structures 
are hard to interpret. In the life sciences, extensive knowledge of cell biology provides an 
opportunity to design visible neural networks (VNNs) which couple the model’s inner workings to 
those of real systems. Here we develop DCell, a VNN embedded in the hierarchical structure of 
2526 subsystems comprising a eukaryotic cell (http://d-cell.ucsd.edu/). Trained on several million 
genotypes, DCell simulates cellular growth nearly as accurately as laboratory observations. During 
simulation, genotypes induce patterns of subsystem activities, enabling in-silico investigations of 
the molecular mechanisms underlying genotype-phenotype associations. These mechanisms can 
be validated and many are unexpected; some are governed by Boolean logic. Cumulatively, 80% 
of the importance for growth prediction is captured by 484 subsystems (21%), reflecting the 
emergence of a complex phenotype. DCell provides a foundation for decoding the genetics of 
disease, drug resistance, and synthetic life.

Introduction

Deep learning has revolutionized the field of artificial intelligence by enabling machines to 
perform human activities like seeing, listening and speaking1–6. Such systems are 
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constructed from many-layered, ‘deep’, artificial neural networks (ANNs), inspired by actual 
neural networks in the brain and how they process patterns. The function of the ANN is 
created during a training phase, in which the model learns to capture as accurately as 
possible the correct answer, or output, that should be returned for each example input 
pattern. In this way, machine vision learns to recognize objects like dogs, people, and faces, 
and machine players learn to distinguish good from bad moves in games like chess and Go7.

In modern ANN architectures, the connections between neurons as well as their strengths 
are subject to extensive mathematical optimization, leading to densely entangled network 
structures that are neither tied to an actual physical system nor based on human reasoning. 
Consequently, it is typically difficult to grasp how any particular set of neurons relates to 
system function. For instance, AlphaGo beats top human players7, but examination of its 
underlying network yields little insight into the rules behind its moves or how these are 
encoded by neurons. These are so-called ‘black boxes’8, in which the input/output function 
accurately models an actual system but the internal structure does not (Fig. 1a). Such 
models, while undoubtedly useful, are insufficient in cases where simulation is needed not 
only of system function but also of system structure. In particular, many applications in 
biology and medicine seek to model both functional outcome and the mechanisms leading to 
that outcome so that these can be understood and manipulated through drugs, genes or 
environment.

Here we report DCell, an interpretable or ‘visible’ neural network (VNN) simulating a basic 
eukaryotic cell. The structure of this model is formulated from extensive prior knowledge of 
the cell’s hierarchy of subsystems documented for the budding yeast Saccharomyces 
cerevisiae, drawn from either of two sources: the Gene Ontology (GO), a literature-curated 
reference database from which we extracted 2526 intracellular components, processes, and 
functions9; or CliXO, an alternative ontology of similar size inferred from large-scale 
molecular datasets rather than literature curation10,11. While CliXO and GO overlap in 37% 
of subsystems, some in CliXO are apparent in large-scale datasets but not yet characterized 
in literature, whereas some in GO are documented in the literature but difficult to identify in 
big data. Subsystems in these ontologies are interrelated through hierarchical parent-child 
relationships of membership or containment. Such hierarchies form a natural bridge from 
variations in genotype, at the scale of nucleotides and genes, to variations in phenotype, at 
the scale of cells and organisms12,13.

The function of DCell is learned during a training phase, in which perturbations to genes 
propagate through the hierarchy to impact parent subsystems that contain them, giving rise 
to functional changes in protein complexes, biological processes, organelles and, ultimately, 
a predicted response at the level of cell growth phenotype (Fig. 1b). Previously, we saw that 
hierarchical groups of genes in an ontology could be used to formulate input features for 
such phenotypic predictions12,13. However, these features were provided to standard black-
box machine learning models which could not be interpreted biologically. Here, we use the 
biological hierarchy to directly embed the structure of a deep neural network, enabling 
transparent biological interpretation.
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Results

DCell Design

In DCell, the functional state of each subsystem is represented by a bank of neurons (Fig. 
1c). Connectivity of these neurons is set to mirror the biological hierarchy, so that they take 
input only from neurons of child subsystems and send output only to neurons of parent 
(super)systems, with weights determined during training. The use of multiple neurons 
(ranging from 20 to 1,075 per system, Online Methods) acknowledges that cellular 
components can be multifunctional, with distinct states adopting a range of values along 
multiple dimensions14. The input layer of the hierarchy comprises the genes, while the 
output layer, or root, is a single neuron representing cell phenotype. By this design, the VNN 
embedded in GO includes 43,721 neurons while the corresponding model for CliXO 
includes 22,167 neurons. The depth of both networks is 12 layers, on par with deep neural 
networks in other fields7.

Training and Performance in Genotype-Phenotype Translation

Given this architecture, we taught DCell to predict phenotypes related to cellular fitness, a 
model genotype-to-phenotype translation task (Online Methods). Extensive training was 
made possible by a compendium of yeast growth phenotypes measured for single and double 
gene deletion genotypes, comprising several million genotype-phenotype training 
examples15,16. Two related phenotypes were considered: (i) Capacity for growth measured 
by colony size relative to wild-type cells; (ii) For double gene deletions, genetic interaction 
score measured as the difference in colony size from that expected from the corresponding 
single gene deletions. Predicting genetic interaction represents a harder task than predicting 
absolute growth, as it requires learning of non-linear effects beyond superposition of 
elemental genotypes. Based on the training examples, the weights of input connections to 
each neuron were optimized by stochastic gradient descent computed by backpropagation. 
For execution and inspection of this DCell model, we created an interactive website at 
http://d-cell.ucsd.edu/ (Fig. 1d).

We found that DCell was able to make accurate phenotypic predictions for both growth (Fig. 
2a) and genetic interaction (Fig. 2b). It outperformed previous predictors, including those 
based on metabolic models17 and protein-protein interaction networks18,19, as well as a 
hierarchical method not related to deep learning (Fig. 2c, Supplementary Fig. 1)13. We also 
compared performance to black-box ANNs of several types. First, we constructed ANNs 
with matching structure to DCell but permuting the assignment of genes to subsystems. 
Predictive performance decreased substantially (Fig. 2c) and was restored only after 
increasing the number of neurons by an order of magnitude (Fig. 2d). Thus, the biological 
hierarchy provides significant information not found in randomized versions. Second, we 
constructed a fully connected ANN with the same number of layers and neurons as DCell 
but unlimited connectivity between adjacent layers. Despite these extra parameters, 
performance of this fully connected model was not significantly better (Fig. 2c).
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From Prediction to Mechanistic Interpretation

Unlike standard ANNs, DCell’s simulations were tied to an extensive hierarchy of internal 
biological subsystems with states that could be queried. This ‘visible’ aspect raised the 
possibility that DCell could be used for in-silico studies of biological mechanism, of which 
we focused on four major types:

1. Explaining a genotype-phenotype association

2. Prioritizing all important mechanisms in determination of phenotype overall

3. Characterization of the genetic logic implemented by a process

4. Discovery of new biological processes and states

Explaining a Genotype-Phenotype Association

A fundamental goal of genetics is to explain the molecular mechanisms linking changes in 
genotype to changes in phenotype. To generate such explanations automatically, we used 
DCell to simulate the impact of a genotypic change, relative to wild type, on the states of all 
cellular subsystems in the model. Subsystems with significant changes were proposed as 
candidate explanations in translation of genotype to phenotype, whereas those without state 
changes – typically the vast majority – were excluded from consideration. For example, to 
explain the severe growth defect caused by pmt1Δire1Δ, disrupting the genes PMT1 and 
IRE1, we simulated this genotype with DCell and examined the 243 subsystems 
incorporating PMT1 or IRE1 at any level of the GO hierarchy (ancestors of one or both 
genes). These subsystems encompassed functions of PMT1 or IRE1 in the endoplasmic 
reticulum unfolded protein response (ER-UPR)20,21, cell wall organization and 
integrity22,23, and many other processes (Fig. 3a). Examining the simulated states of these 
candidate subsystems (values of their neurons), we found that ER-UPR output was 
substantially reduced compared to wild type, whereas cell wall organization and other 
subsystems were relatively unaffected (Fig. 3a).

To validate this simulated decrease, we examined a dataset measuring abundance of Green 
Fluorescent Protein (GFP) driven by a promoter responsive to Hac1, a key transcriptional 
activator of ER-UPR, over numerous pairwise gene disruptions24. Hac1 activity was 
significantly lowered in the pmt1Δire1Δ genotype compared to wild type, consistent with 
model simulations (Fig. 3b). Moreover, we found that the simulated state of ER-UPR was 
well correlated with experimental Hac1 activity, not only for this genotype but across all 
relevant gene disruptions in the dataset (Fig. 3b). To address the concern that Hac1 activity 
might associate non-specifically with state changes in many diverse subsystems, not just 
those related to ER, we examined its correlation with the simulated states of every 
subsystem in DCell. High correlation was observed only for ER-UPR and super-systems 
(Fig. 3c), demonstrating specific validation. In this way, DCell was used to test among 
competing mechanistic hypotheses for a genotype-phenotype relationship.

In explaining genotype-phenotype associations, a key requirement is that the state of a 
subsystem in silico approximate its true state in vivo. To further validate this capability, we 
examined the subsystem of DNA repair (Fig. 3d) which, like ER-UPR, had been 
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experimentally interrogated over many double gene deletions25. In particular, DNA repair 
status had been characterized by resistance to ultraviolet radiation (UV), a model DNA 
damaging agent26. Once again we saw good agreement between model and experiment: the 
simulated state of DNA repair significantly tracked experimental UV resistance across 
genotypes (Fig. 3e), in a manner highly specific to this subsystem (Fig. 3f).

Prioritizing all important systems in determination of phenotype overall

Beyond individual explanations, a critical question was whether a complex phenotype such 
as growth depends on equal contributions from many subsystems or is dominated by a few. 
To address this question, we reasoned that the overall importance of a subsystem can be 
computed quantitatively as the degree to which its state is more predictive of phenotype than 
the states of its children – a metric we called Relative Local Improvement in Predictive 
Power (RLIPP, Online Methods). We observed that RLIPP approximately followed a Pareto 
(power-law) distribution, in which a few subsystems are highly important for model 
predictions, with a long tail of weakly important systems (Fig. 4a). In particular, 80% of the 
cumulative importance was captured by 21% of subsystems (the Pareto 80/20 rule27), while 
>88% of subsystems retained some improvement in phenotypic prediction over their 
children (RLIPP > 0). The GO subsystem of greatest individual importance was ‘Negative 
regulation of cellular macromolecule biosynthesis’, which organizes cellular circuits that 
inhibit biosynthesis and, as evidenced by DCell simulations, can lead to strong increases in 
growth when disrupted. Other subsystems important for growth related to the proper 
function of organelles, biomolecular transport, stress response, protein modification, and 
assembly of complexes (Figs. 4b–j).

Characterization of the genetic logic implemented by a process

Another type of mechanistic interpretation relates to the mathematical functions by which 
the neurons representing each subsystem integrate information. We investigated whether 
these functions could be reduced to simple forms, such as Boolean logic gates, which are 
easily interpreted (Online Methods). This analysis found 1119 subsystems at least partly 
governed by Boolean logic (44% of GO, Supplementary Table 1). For instance, the state of 
Mitochondrial Respiratory Chain (Fig. 5a), while relatively high in wild-type cells, was 
driven low by disruptions in any of its several enzymatic complexes involved in electron 
transport, such as complexes III or IV (Fig. 5b). Thus Mitochondrial Respiratory Chain 
resembles a logical AND gate (Fig. 5c). We also observed many cases of OR, XOR, and (A 
not B), although the AND configuration arose most frequently. The remaining subsystems 
did not map clearly to Boolean functions, suggesting machinery that is more complex than 
an on/off switch.

Discovery of new biological processes and states

Finally, since DCell’s hierarchy could be structured from systematic datasets (CliXO) as an 
alternative to literature (GO), we investigated the extent to which model simulations with 
CliXO relied on entirely new cellular subsystems not previously appreciated in biology. In 
total we found 236 subsystems in the CliXO hierarchy that were previously undocumented 
in GO or elsewhere in literature and had high RLIPP importance scores for genotype-
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phenotype translation (Supplementary Table 2). One example was CliXO:10651, a 
previously undocumented process ranking among the top ten systems important for growth 
prediction. We found that CliXO had inferred this system based on the elevated density of 
protein-protein interactions observed among its 154 genes (Fig. 5d, 9-fold enrichment, 
p<10−200). These interactions interconnected two subsystems that were much better 
understood, relating to actin filaments and ion homeostasis (5-fold enrichment between 
subsystems, p=0.00029). The simulated state of CliXO:10651 was governed approximately 
by a Boolean AND of the states of its two subsystems, both being required to maintain wild-
type status. These findings were supported by previous reports that homeostasis of ions, 
such as iron, regulates the level of oxidative stress, which in turn disrupts actin cytoskeletal 
organization28,29.

As a second example we considered CliXO:10582, a novel subsystem of 71 genes (Fig. 6a). 
Although many of these genes had known roles in DNA repair, nothing like this grouping 
had been previously recognized. Examination of the hierarchical model structure revealed 
that CliXO:10582 interconnects components of three known DNA repair subsystems, 
postreplication repair, mismatch repair, and non-recombinational repair, based on a very 
high density of protein-protein interactions falling among these components (Fig. 6a). 
Revisiting the experimental data on resistance to UV-induced DNA damage25 (Figs. 3e,f), 
we saw that the simulated state of CliXO:10582 strongly correlated with experimental UV 
resistance across genotypes (Fig. 6b). This association was stronger than for any child and, 
in fact, for any other CliXO subsystem interrogated by the experimental data (Fig. 6c). 
Mathematically, the state of CliXO:10582 was not well-captured by Boolean logic but by a 
weighted linear summation of the states of the three child systems, with postreplication 
repair having the greatest single contribution (Fig. 6d). Thus, DCell had identified a novel 
organization of subcomponents which specifically coordinate the response to UV damage. 
For the eight genes in this system not previously known to function in DNA repair (green 
nodes, Fig. 6a), the evidence summarized by the model – that these gene products physically 
interact within a larger cluster of known DNA repair factors, and that they functionally 
manifest with the same UV sensitivity phenotype when disrupted – creates a compelling 
case for further studies.

Discussion

A direct route to interpretable neural networks is to encode not only function but form. Here, 
we have explored such visible learning in the context of cell biology, by incorporating an 
unprecedented collection of knowledge10,11,30 and data15,16,31 to simultaneously simulate 
cell hierarchical structure and function. DCell captured nearly all phenotypic variation in 
cellular growth, a classic complex phenotype, including much of the less-understood non-
additive portion due to genetic interactions (Figs. 2a–c). Armed with this explanatory power, 
the model simulated the intermediate functional states of thousands of cellular subsystems. 
Knowledge of these states enabled in-silico studies of molecular mechanism, including 
dissection of subsystems important to growth phenotype, identification of new subsystems, 
and reduction of subsystem functions, where possible, to Boolean logic (Figs. 3–5).
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Methodologically, our approach works towards a synthesis of statistical genetics and 
systems biology. State-of-the-art methods in statistical genetics32,33 are based on linear 
regression of phenotype against the independent effects of genetic polymorphisms, without 
modeling the underlying molecular mechanisms that give rise to nonlinearity and genetic 
interaction. Separately, studies in systems biology capture molecular mechanisms using 
mathematical models18,34,35, but such models typically do not have the breadth for large-
scale genetic dissection of phenotype. DCell bridges these two avenues: Its neural network 
encodes a complex nonlinear regression, an extension of statistical genetics, in which the 
additional complexity is enabled by a hierarchical mechanistic model, an extension of 
systems biology. In contrast to other mechanistic models that have attempted large-scale 
genotype-phenotype prediction13,36, the framework of hierarchical neural networks is very 
general and expressive, such that a large class of biological structures and functions can be 
represented. For example, our earlier approach13 used hierarchical knowledge of subsystems 
to create new features based on the number of gene disruptions in a subsystem, but these 
features were predetermined before modeling and thus nothing was learned about the real 
functions encoded by subsystems.

It is also instructive to view DCell in context of previous research in interpretable machine 
learning, in which the notion of interpretability has been defined in different ways37. One 
direction has been to perform a post-hoc examination of an ANN that has already been 
trained, by inspecting neurons and rationalizing their decisions. A model trained to identify 
images of dogs might, upon later inspection, be seen to have neurons capturing interpretable 
properties like “tail” or “furry”38–40. A limitation of post-hoc interpretation is that it is 
disconnected from training, leaving no guarantees as to what level of human understanding 
can be achieved41. Therefore, in attention-based neural networks42,43, a separate module 
preselects key “interpretable” features for input to a black-box model. For example, in a 
model predicting emotional attitude of a blog author (positive or negative, angry or calm), 
the key interpretable feature might come from a key phrase preselected from text (LOL, I’m 
so upset). While DCell has some similarity to these attention-based approaches, its deep 
hierarchical structure captures many different clusters of features at multiple scales, pushing 
interpretation from the model input to internal features representing biological subsystems.

In several case studies, involving genotypes impacting ER-UPR and DNA repair 
subsystems, the subsystem states learned by DCell could be directly confirmed by molecular 
measurements. Notably, no information about subsystem states was provided during model 
training. These states emerged from translating genotypes (model inputs) to growth 
phenotypes (model outputs) under the structural constraints of the subsystem hierarchy; 
together, the input/output data and hierarchical structure were sufficient to guide subsystem 
neurons to learn a biologically correct function. In future, one might directly supervise a 
VNN to learn potentially multiple subsystem states and/or complex phenotypes, in which 
case training data could be provided at any level: genotype, phenotype, or points in between.

In some applications of machine learning, predictive performance is all that matters. Indeed, 
in these cases it is often possible to build a large number of alternative models that, while 
different in structure, all make excellent near-optimal functional predictions. In biology, 
however, prediction is not enough. The key additional question is which of the many 
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excellent predictive models is the one actually used by the living system, as optimized not by 
computation but by evolution. DCell provides proof-of-concept of a system that, while 
optimizing functional prediction, respects biological structure. Such models are of 
immediate interest in genome-wide association studies of human disease44, in which 
different patient genotypes can influence disease outcomes by complex mechanisms hidden 
from black-box statistical approaches. Once trained on sufficient data, these models have 
application in personalized therapy by analyzing a patient’s genotype in combination with 
potential points of intervention targeted by drugs. We also see compelling uses in design of 
synthetic organisms, in which candidate genotypes can be efficiently evaluated in silico prior 
to validation in vivo. Finally, beyond the architecture of the cell, biological systems at other 
scales may benefit from this type of constrained learning, including modeling of neural 
connections in the brain.

Online Methods

Preparation of Ontologies

We guided the deep neural network structure using a biological ontology, consisting of terms 
representing cellular subsystems, child-parent relations representing containment of one 
term by another, and gene-to-term annotations. The first ontology considered was the Gene 
Ontology (GO), in which all three branches of GO (biological process, cellular component, 
and molecular function) were joined under a single root. We used the following criteria to 
filter (remove) terms from GO:

1. Terms with the evidence code “inferred by genetic interaction” (IGI), to avoid 
potential circularity in predicting genetic interactions in the genotype-phenotype 
samples.

2. Terms containing fewer than six yeast genes disrupted in the available genotypes 
(with “containment” defined as all genes annotated to that term or its 
descendants).

3. Terms that are redundant with respect to their children terms in the ontology.

When a term was removed, all children were connected directly to all parent terms to 
maintain the hierarchical structure. The remaining 2526 terms were used to define the 
hierarchy of DCell subsystems.

To complement the GO structure, we also constructed a data-driven gene ontology using the 
method of Clique Extracted Ontologies (CliXO) as previously described11. Briefly, data on 
gene pairs were sourced from YeastNet v331, which lists 68 experimental studies of 8 data 
types, excluding genetic interactions to avoid circularity similar to criterion 1 above. All 
features were integrated to create a single gene-gene similarity network following a 
previously described procedure11, in which each gene-gene pair is assigned a weighted 
similarity based on a combination of the YeastNet data. This network was subsequently 
analyzed with the CliXO algorithm, which identifies nested cliques as the threshold gene-
gene similarity becomes progressively less stringent. This process yields a hierarchy 
(directed acyclic graph) of parent-child relations among cliques at different similarity 
thresholds.
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DCell Architecture and Training Algorithm

DCell trains a deep neural network to predict phenotype from genotype, with architecture 
that exactly mirrors the hierarchical structure of an ontology of cellular subsystems. Each 
cellular subsystem is represented by a group of hidden variables (neurons) in the neural 
network, and each parent-child relation is represented by a set of edges that fully connect 
these groups of hidden variables. The depth of this architecture (12 layers) presents two 
challenges for training: 1) There is no guarantee that each subsystem will learn new patterns 
instead of copying those of its child subsystems; 2) Gradients tend to vanish lower in the 
hierarchy. To tackle these challenges, we borrow ideas from two previous systems, 
GoogLeNet45 and Deeply-Supervised Net46, which improve the transparency and 
discriminative power of hidden variables and reduce the effect of vanishing gradients.

We denote our input training dataset as D = {(X1,y1),(X2,y2),…,(XN,yN)}, where N is the 
number of samples. For each sample i, Xi ∈ RM denotes the genotype, represented as a 
binary vector of states on M genes (1 = disrupted; 0 = wild type), and yi ∈ R denotes the 
observed phenotype, which can be either relative growth rate or genetic interaction value. 

The multi-dimensional state of each subsystem t, denoted by the output vector O
i
(t), is 

defined by a nonlinear function of the states of all of its child subsystems and annotated 

genes, concatenated in the input vector I
i
(t):

Oi
(t) = BatchNorm (Tanh (Linear (Ii

(t)))) (1)

Linear (I
i
(t)) is a linear transformation of I

i
(t) defined as W(t)

I
i
(t) + b

(t). Let L
O
(t) denote the length 

of O
i
(t), representing the number of values in the state of t and determined by:

LO
(t) = max(20, ⌈0.3 ∗ number o f genes contained by t⌉) (2)

Intuitively, larger subsystems have larger state vectors to capture potentially more complex 

biological responses. Similarly, let L
I
(t) denote the length of I

i
(t). In Eqn. (1), W(t) is a weight 

matrix with dimensions L
O
(t) × L

I
(t) and b(t) is a column vector with size L

O
(t). W(t) and b(t) 

provide the parameters to be learned for subsystem t. Tanh is the nonlinear transforming 
hyperbolic tangent function. BatchNorm47 is a normalizing function that reduces the impact 
of internal covariate shift caused by different scales of weights in W(t). Batch normalization 
can be viewed as a type of regularization of model weights and reduces the need for the 
traditional dropout step in deep learning. We perform the training process by minimizing the 
objective function:

1

N
∑i = 1

N (Loss(Linear(Oi
(r)), yi) + α ∑t ≠ rLoss(Linear(Oi

(t)), yi)) + λ‖W‖2 (3)
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Here, Loss is the squared error loss function, and r is the root of the hierarchy. Note that we 

compare yi with not only the root’s output, O
i
(r), but also the outputs of all other subsystems, 

O
i
(t). Linear in (3) denotes linear functions transforming multi-dimensional vector O

i
(t) into a 

scalar. In this way, every subsystem is optimized to serve its parents as features and to 
predict the phenotype itself, as used previously by GoogLeNet45; the parameter α (=0.3) 
balances these two contributions. λ is a l2 norm regularization factor determined by four-
fold cross validation. To train the DCell model, we initialize all weights uniformly at random 
between −0.001 and 0.001. We optimize the objective function using ADAM48, a popular 
stochastic gradient descent algorithm, with mini-batch size of 15,000. Gradients with respect 
to model parameters are computed by standard back-propagation49. Note that while other 
hyperparameters might influence the overall predictive performance, they are unrelated to 
our focus on biological interpretation as long as the same settings are applied to both DCell 
and the black-box models we use as controls (Fig. 2d). We implemented DCell using the 
Torch7 library (https://github.com/torch/torch7) on Tesla K20 GPUs.

Training Genotype-Phenotype Data

Several forms of the model were employed in this study, trained on either Costanzo et al. 
2010 (~3 million training examples)16 or a more recently published update in 2016 (~8 
million training examples)15. The first model was used for all results and figures in the main 
text to enable comparisons against previous approaches to predict genetic interactions. The 
latter model with updated data is provided at d-cell.ucsd.edu.

Alternative Genotype-Phenotype Translation Methods

We compared DCell to three state-of-the-art non-hierarchical approaches for predicting 
genetic interactions: flux balance analysis (FBA)35, multi-network multi-classifier 
(MNMC)19, and guilt-by-association (GBA)18. FBA uses a model of metabolism to assess 
the impact on cell growth of gene deletions in metabolic pathways. MNMC is an ensemble 
supervised learning system that uses many different datasets as features to predict genetic 
interactions. GBA predicts the genetic interaction score of pairwise gene deletions based on 
the phenotypes of their network neighbors. We also compared against our previous 
prediction method (Ontotype)13 which applies prior knowledge from a hierarchy like GO or 
CliXO but does not use deep learning nor simulate the internal states of subsystems. 
Ontotype counts the number of genes knocked in every GO term and uses these counts as 
features in a random forest regression.

Relative Local Improvement in Predictive Power (RLIPP)

The RLIPP score was used to quantify and compare the importance of DCell’s internal 
subsystems in prediction of phenotype. To calculate the RLIPP score of a subsystem, we 
compared two different linear models for phenotypic prediction. In the first model, the 
subsystem’s neurons were used as features in a l2-norm penalized linear regression 
(Supplementary Fig. 3a). In the second model, the neurons of the subsystem’s children were 
used as the features instead. Each model was trained separately, with the optimal hyper-
parameter associated with the l2-norm penalty determined in five-fold cross validation. The 
performance of each of these two models was calculated as the Spearman correlation 
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between the predicted and measured phenotype, here taken as genetic interaction scores 
(Supplementary Fig. 3b,c). The RLIPP score was defined as the performance of the parent 
model relative to that of the children (Supplementary Fig. 3d). A positive RLIPP score 
indicates that the state of the parent subsystem is more predictive of phenotype than the 
states of its children. This situation can occur when the parent learns complex (nonlinear) 
patterns from the children, as opposed to merely copying or adding their values. The 
intuition behind the RLIPP score is similar to a related ‘linear probe’ technique developed in 
a previous study to characterize the utility of each layer of a deep neural network50.

Identification of subsystems that mimic Boolean logic gates

As one means to interpret the mechanisms by which DCell translates genotype to phenotype, 
we evaluated each subsystem for the extent to which it approximates Boolean logic. In 
particular, we considered all trios of subsystems, each consisting of a parent subsystem and 
two of its children, and tested whether their binary states (S,C1,C2) were well-approximated 
by non-trivial Boolean logic (Supplementary Table 1). For each genotype, the binary state of 
each child subsystem was defined as either ‘Wild Type’ (True) or ‘Disrupted’ (False), by 
comparing PC1 to the wild-type state. The binary state of each parent subsystem was 
defined as either ‘≤Wild Type’ (True) or ‘>Wild Type’ (False), by comparing PC1 to the 
wild-type state. For each combinatorial state (C1,C2) of two child subsystems, the parent 
state S implied by DCell was determined based on the majority parent states of genotypes 
annotated to (C1,C2). For instance, suppose that for all the genotypes that induce (C1=True, 
C2=False) in the two children, DCell transforms 80% to parent state S=True and 20% to 
state S=False. We conclude the underlying logic for the parent subsystem to translate the 
signal from children subsystems is (True, False)→True. By checking the parent states for all 
four possible (C1,C2) combinations, we can decide whether this trio of subsystems exhibits 
Boolean logic (Supplementary Table 1). A trio belongs to none of the logic functions if 
>50% of all the genotypes or <4 genotypes are annotated to any (C1,C2) combinatorial state, 
or none of the annotated genotypes yield significant genetic interactions (|ε|<=0.08). For 
those subsystems exhibiting Boolean logic, we excluded ‘trivial’ functions in which the 
parent is always True, always False, or follows one of the children without dependence on 
the other.

DCell server construction

The DCell server (http://d-cell.ucsd.edu/) comprises several interconnected components 
working in unison to collect user input, run simulations, and transcode results to the web 
interface. On the backend, the DCell neural network model runs on the Torch library on a 
dedicated multi-GPU machine. On the front end, the web interface is built on cytoscape.js51 

and an in-house D352 graph visualizer to display a subgraph of the hierarchy, and React53 

for agile DOM (Document Object Model) editing54. To respond to user input, including 
searching and viewing details of model subsystems, a low-latency proxy service translates 
between plain text fetched from the front end and binary data used by the backend. An 
Elasticsearch cluster55 caches and indexes data for fast lookup and predictions. All web 
services run on a Kubernetes-based cloud infrastructure (http://kubernetes.io/) that auto-
scales to heavy workloads. The result of these efforts is to allow easy visualization and 
interactivity of the model.
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Life Sciences Reporting Summary

Further information on experimental design is available in the Life Sciences Reporting 

Summary.

Availability

Server, software implementation and the dataset used in this work are available at http://d-
cell.ucsd.edu/

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Modeling system structure and function with visible learning

a, A conventional neural network translates input to output as a black box without 
knowledge of system structure. b, In a visible neural network, input/output translation is 
based on prior structural knowledge. In DCell, gene disruption genotypes (top) are translated 
to cell growth predictions (bottom) through a hierarchy of cell subsystems (middle). c, A 
neural network is embedded in the prior structure using multiple neurons per subsystem. d, 
Screen capture of DCell online service, microtubule subsystems.
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Figure 2. Prediction of cell viability and genetic interaction phenotypes

a, Measured versus predicted cell viability relative to wild type (WT = 1) on the Costanzo et 
al.16 dataset. b, Measured versus predicted genetic interaction scores for each double gene 
disruption genotype; genetic interactions between the disrupted genes can be positive 
(epistasis), zero (non-interaction), or negative (synthetic sickness or lethality). c, Model 
performance expressed as the correlation between measured and predicted genetic 
interaction scores. Performance of DCell (first bar, blue) is compared to previous methods 
for predicting genetic interactions (second four bars, shades of green): FBA, Flux Balance 
Analysis17; GBA, Guilt By Association18; MNMC, Multi-Network Multi-Classifier19; 
Ontotype13. Performance is also shown for matched black-box structures in which gene-to-
subsystem mappings are randomly permuted (orange bar, average of 10 randomizations) or 
for fully-connected neural networks with the same number of layers as DCell (final bar, 
yellow). Correlations were calculated across gene pairs that meet an interaction significance 
criterion of p<0.05. d, Predictive performance versus number of neurons per subsystem. 
Performance measure and two structural hierarchies as in (c).

Ma et al. Page 16

Nat Methods. Author manuscript; available in PMC 2018 September 05.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 3. Interpretation of genotype-phenotype associations

a, Hierarchy of candidate subsystems that can explain the association of the pmt1Δire1Δ 
genotype with a negative genetic interaction phenotype (synthetic lethality). Subsystem 
states are represented by their neuron values, reduced to the first two principal components 
(PCs) which captured >75% of the total variance. The color of the node for each subsystem 
shows its PC2 expressed as a z-score with zero mean and unit standard deviation. By 
construction, the wild-type genotype produces z-score = 0 for all subsystems (Online 

Methods). b, Correspondence between Hac1 GFP activity and the functional states of ER-
UPR (blue) or its parent subsystem, Response to ER stress (red). Points represent genotypes, 
with pmt1Δire1Δ genotype indicated. Subsystem state is the z-score of PC2 as in (a). c, 
Distribution of correlations between Hac1 GFP activity and the states of every other 
subsystem containing at least 10 genotypes with measured GFP activity. d, DNA repair is a 
highly altered subsystem that explains the slow growth phenotype of rev7Δrad57Δ. e, 
Experimental resistance to UV damage plotted against the simulated state of DNA repair in 
DCell, separated into two classes: above or below wild-type value. Significance measured by 
Mann–Whitney U test. f, Distribution of the associations between UV damage resistance and 
the states of other subsystems containing at least 10 genotypes with measured UV 
resistance. Panels (a–c) use genetic interaction prediction as the phenotypic readout; (d–f) 
use growth. All panels implement GO as the structural model.
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Figure 4. Top subsystem states for translation of genotype to growth

a, Ranking of all cellular subsystems in GO (x-axis) by their importance in determining 
genetic interactions (RLIPP score, y-axis). Inset: ten highest-scoring subsystems. Positive 
RLIPP corresponds to increases in predictive power relative to children; negative RLIPP 
corresponds to decreases in power. b–j, Two-dimensional state maps of informative 
subsystems (PC2 versus PC1). Supplementary Fig. 2 provides equivalent information for the 
CliXO hierarchy.
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Figure 5. Analysis of subsystem functional logic

a, Causal hierarchy of important subsystems involving changes to Mitochondrial Respiratory 
Chain (MRC), displayed as in Fig. 3a. b, 2D state map of MRC plotted as in Fig. 3b. 
Genotypes disrupting MRC complex III only, MRC complex IV only, or both complexes are 
demarcated by colors. c, Truth table relating the state of MRC to the states of its children. 
The logic resembles an AND gate, pictured. d, Newly identified system (CliXO:10651) 
encoding a logical AND integrating the states of two well-characterized children. Names of 
children are cross-annotated from the corresponding enriched GO terms: Actin filament-
based process, GO:0030029; Monovalent inorganic ion homeostasis, GO:0030004.
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Figure 6. Analysis of a new DNA repair subsystem

a, Hierarchical organization of DNA repair including subsystems newly identified by CliXO. 
b, Experimental resistance to UV damage plotted against the state of CliXO:10582, 
separated into two classes: above or below wild-type value. Significance measured by 
Mann–Whitney U test. c, Distribution of associations between UV resistance and the states 
of all CliXO subsystems with at least 10 genotypes with measured UV resistance. d, 
Approximate mathematical function implemented by CliXO:10582 neurons.
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