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Primary visual cortex (V1) is the first stage of cortical

image processing, and major effort in systems

neuroscience is devoted to understanding how it

encodes information about visual stimuli. Within V1,

many neurons respond selectively to edges of a given

preferred orientation: These are known as either simple

or complex cells. Other neurons respond to localized

center–surround image features. Still others respond

selectively to certain image stimuli, but the specific

features that excite them are unknown. Moreover, even

for the simple and complex cells—the best-understood

V1 neurons—it is challenging to predict how they will

respond to natural image stimuli. Thus, there are

important gaps in our understanding of how V1 encodes

images. To fill this gap, we trained deep convolutional

neural networks to predict the firing rates of V1 neurons

in response to natural image stimuli, and we find that

the predicted firing rates are highly correlated (CCnorm¼
0.556 6 0.01) with the neurons’ actual firing rates over a

population of 355 neurons. This performance value is

quoted for all neurons, with no selection filter.

Performance is better for more active neurons: When

evaluated only on neurons with mean firing rates above

5 Hz, our predictors achieve correlations of CCnorm ¼
0.69 6 0.01 with the neurons’ true firing rates. We find

that the firing rates of both orientation-selective and

non-orientation-selective neurons can be predicted with

high accuracy. Additionally, we use a variety of models to

benchmark performance and find that our convolutional

neural-network model makes more accurate predictions.

Introduction

Our ability to see arises because of the activity
evoked in our brains as we view the world around us.
Ever since Hubel and Wiesel (1959) mapped the flow of
visual information from the retina to thalamus and
then cortex, understanding how these different regions
encode and process visual information has been a
major focus of visual systems neuroscience. In the first
cortical layer of visual processing—primary visual
cortex (V1)—Hubel and Wiesel identified neurons that
respond to oriented edges within image stimuli. These
are called simple or complex cells, depending on how
sensitive their responses are to shifts in the position of
the edge. The simple and complex cells are well studied
(Lehky, Sejnowski, & Desimone, 1992; David, Vinje, &
Gallant, 2004; Montijn, Meijer, Lansink, & Pennartz,
2016). However, many V1 neurons are neither simple
nor complex cells, and the classical models of simple
and complex cells often fail to predict how those
neurons will respond to naturalistic stimuli (Olshausen
& Field, 2005). Thus, much of how V1 encodes visual
information remains unknown. We use deep learning to
address this longstanding problem.

Recent advances in neural-recording technology and
machine learning have put solving the V1 neural code
within reach. Experimental technology for simulta-
neously recording from large populations of neurons—
such as multielectrode arrays—has opened the door to
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studying how the collective behavior of neurons
encodes sensory information. Moreover, methods of
machine learning inspired by the anatomy of the
mammalian visual system, known as convolutional
neural networks, have achieved impressive success in
increasingly difficult image-classification tasks (Kriz-
hevsky, Sutskever, & Hinton, 2012; LeCun, Bengio, &
Hinton, 2015). Recently, these artificial neural net-
works have been used to study the visual system
(Yamins & DiCarlo, 2016), setting the state of the art
for predicting stimulus-evoked neural activity in the
retina (McIntosh, Maheswaranathan, Nayebi, Ganguli,
& Baccus, 2016) and inferior temporal cortex (Yamins
et al., 2014). Despite these successes, we have not yet
achieved a full understanding of how V1 represents
natural images.

In this work, we present a convolutional neural
network that predicts V1 activity patterns evoked by
natural image stimuli. We use this network to predict
the activity of 355 individual neurons in macaque-
monkey V1, in which it represents the neural visual
code for many neurons regardless of cell type. On held-
out validation data, the network predicts firing rates
that are highly correlated (CCnorm ¼ 0:556 6 0:015)
with the neurons’ actual firing rates. This performance
value is quoted for all neurons, with no selection filter.
Performance is better for more active neurons: When
evaluated only on neurons with mean firing rates above
5 Hz, our predictors achieve correlations of CCnorm ¼
0:69 6 0:01 with the neurons’ true firing rates. Our
deep network is overall more accurate than a library of
other models used as a baseline for comparison.

Methods

Experimental data

We used publicly available multielectrode recordings
from macaque V1 downloaded from the Collaborative
Research in Computational Neuroscience website
(http://crcns.org; Coen-Cagli, Kohn, & Schwartz,
2015). In these experiments, macaque monkeys were
anesthetized and then presented with a series of images
while the experimenters recorded the spiking activity of
a population of neurons in V1 (Figure 1A and 1B) with
a multielectrode array. Each image was presented for
100 ms, and there was a 200-ms blank screen shown
between images. These recordings were conducted in 10
experimental sessions with three different animals,
resulting in recordings from a total of 392 spike-sorted
neurons whose receptive fields were centered on the
stimulus. In the publicly available data, both well-
isolated single units and small multiunit clusters are
present. In our main analysis, we consider all of these
as neurons; we also separately performed an analysis in
which we attempted to distinguish between the single
neurons and the small multiunit clusters. That result is
included in the Discussion. A full description of the
data and experimental methods is given by Coen-Cagli
et al. (2015). Unlike those researchers, who used
selection criteria based on responses to visual stimuli
and reported results from a subset of 207 neurons, we
used no further selection criteria and used all 392 spike-
sorted and centered neurons.

Figure 1. Experimental data collection and processing. (A) Neural activity was recorded in monkeys’ V1 as they were shown a series of

images. (B) The image set contains 270 circularly cropped natural images. (C) The response of a single neuron over repeated

presentations of an image. Ticks indicate the neuron’s spiking; each row corresponds to a different image-presentation trial. During

the response window, the firing rate is computed and then averaged over trials to yield the average response An,i used in our analysis.

(D) The neuron responds to image stimuli with a latency of ;50 ms from the image onset at t¼ 0, as seen in the peristimulus time

histogram (firing rate plotted against time, averaged over all 270 images).
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We used 37 of these neurons from one experimental
session to determine how to construct our network (its
hyperparameters), and the remaining 355 neurons to
evaluate its performance. For each neuron n, we
calculated the mean firing rate An,i evoked by each
image i by averaging its firing rate across the 20
repeated presentations of that image. The firing rates
were calculated over a window from 50 to 100 ms after
the image was presented, to account for the signal-
propagation delay from retina to V1 (Figure 1D; V1
firing rates increase dramatically at ;50 ms after
stimulus onset). We separately analyzed firing rates
computed over a longer (100-ms) window, from 50 to
150 ms after stimulus onset; the results of that analysis
are presented in the Discussion section.

We analyzed the responses to 270 natural images
circularly cropped with a 18 aperture (Figure 1B). All
392 neurons are centered such that the 18 image aperture
fully contains every neuron’s receptive field. The full
data set contains responses to natural and artificial
stimuli, both full-size and cropped. We used only natural
images because we are interested in the real-world
behavior of the visual system, and we used only the
cropped images because they have the same visual field
as the grating stimuli that we used to characterize the
neurons as either orientation selective or not.

Deep neural-network model

To construct our predictive network, we used a
convolutional neural network (CNN) whose input is an
image and whose output is the predicted firing rates of
every neuron in a given experimental session. Prior to
training the neural network, we down-sampled the
images using a nonoverlapping 23 2 window and
cropped them to a size of 333 33 pixels. As shown in
Figure 2, the network consists of a series of linear–
nonlinear layers. The first layer(s) performs local
feature extraction on the image by sweeping banks of
convolutional filters over the image and then applying a
maximum pooling operation. These local features are
then globally combined at the all-to-all layer(s) to

generate the predicted firing rate for every neuron in
that data session.1

The number of each type of layer (convolutional
with maximum pooling or all-to-all) and the details
about each layer (number of units, convolution stride,
etc.) were optimized to maximize the accuracy of the
neural-activity predictions on the 37 neurons recorded
in the second experimental session. We did this using a
combination of manual and automated searches, where
the results of our manual search informed the range of
the hyperparameter space for an automated random
search (Bergstra & Bengio, 2012). A subset of the
results from the manual search is shown in Figure 3A
and 3B. In Figure 3A, the number of convolutional
layers, the kernel size of the convolutions, the pooling
stride, and the loss function are adjusted. During
training, units are randomly silenced (dropped out),
which is a commonly used method for preventing
overfitting in neural networks (Srivastava, Hinton,
Krizhevsky, Sutskever, & Salakhutdinov, 2014). In
Figure 3B, we take the best-performing networks with
one, two, and three convolutional layers and adjust the
dropout keep rate. Using the best-performing set of
parameters, we defined our best CNN, denoted CNN2
because it is a two-convolutional-layer network. We
trained and evaluated CNN2 using the data from the
remaining nine experimental sessions.

For each experimental session, we trained our
network using a cross-validation procedure where we
randomly subdivided the given data set into a training
subset (80% of the images and corresponding V1
activity patterns) and an evaluation subset (20% of the
images). We then trained all layers of our network
using the TensorFlow Python package with the
gradient-descent optimizer. Based on the results of our
hyperparameter search, which showed that this loss
function outperforms the alternative log-likelihood
one, we attributed a loss

Ln ¼

P

i ðyn;i � An;iÞ
2

variðAn;iÞ
ð1Þ

to each neuron (indexed by n), where i is the image
index, An,i the measured response, and y the network’s

Figure 2. The optimized architecture of the deep convolutional-neural-network model. The network’s inputs are the pixel values of an

image, and each output unit gives the predicted firing rate of a single neuron in monkey V1.
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predicted response. The neurons’ losses are summed,
yielding the total loss used by the optimizer. To ensure
that the performance generalizes, the training data were
subdivided into data used by the optimizer to train the
weights (66% of the images) and another small subset
(14% of the images) to stop the training when accuracy
stops improving (early stopping).

To quantify the performance of the predictor, we
compared the network’s predicted firing rates to the
neurons’ measured firing rates using a held-out
evaluation set. This set was used neither to determine
the hyperparameters nor to train the weights in our
neural network. We calculated the Pearson correlation
coefficient CCCNN2

abs between the predicted and measured
firing rates for each neuron. Following the convention
of Schoppe, Harper, Willmore, King, and Schnupp
(2016), we scaled the Pearson correlation coefficient by
its theoretical maximum value given neural variability
to yield the normalized Pearson correlation coefficient

CCCNN2
norm ¼

CCCNN2
abs

CCmax

ð2Þ

that we use to quantify our results. Thus in principle, a
perfect model can achieve CCnorm ¼ 1.

To compute CCmax, we followed a bootstrapping
procedure (in contrast to Schoppe et al., 2016) where
we generated fake data by drawing random numbers
from Gaussian distributions with the same statistics as
the measured neural data. For each neuron and image,
we averaged over 20 of these values to obtain a
simulated prediction. We then computed the correla-
tion between these simulated predictions and the
neurons’ actual mean firing rates to find the maximum
correlation CCmax possible given the variability in
stimulus-evoked neural firing rates. While we ac-
knowledge that neural firing rates are not Gaussian
distributed, the CCmax estimate, being a second-order
statistic of the neural firing rates (and their estimates
via the predictor networks), is sensitive only to the first-
and second-order statistics of the neural data. A
Gaussian distribution captures these first- and second-
order statistics while making as few assumptions as
possible about the higher order statistics in the data
(i.e., it is a second-order maximum entropymodel). As a
result, our use of Gaussian distributions does not affect
the reliability of our estimates of CCmax: Using more
complex, harder-to-estimate probability distributions
would yield the same result. For this reason, we are
confident that our bootstrapping procedure, while

Figure 3. The hyperparameter optimization of the deep convolutional-neural-network model. (A) Adjusting the number of

convolutional layers, loss function, convolutional kernel size (size of filters), and maxpool strides (scale of down-sampling) for just

Layer 1 and both Layers 2 and 3. Each point is computed from the average Pearson correlation coefficient between the model’s

predictions and measured firing rates on one of the 10 experimental sessions with the standard error computed from five distinct

partitions of training and evaluation data. (B) Adjusting the dropout keep rate for the best-performing networks with one, two, and

three convolutional layers.
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slightly different from that of Schoppe et al., is
comparable to their method.

Comparison with other models

We compared the results obtained from CNN2 to
those of a variety of other models. In implementing
our comparisons we used identical cross-validation
protocols to determine the training and evaluation
data that were used to train CNN2. When the models
contained hyperparameters (including regularization
parameters), these parameters were optimized on data
from the same experimental session used to optimize
the hyperparameters of CNN2. We also evaluated all
models in the same way, using the normalized Pearson
correlation between predicted and actual neural firing
rates.

We organized our models for comparison in two
broad groups: models that are fully data driven, where
all the model parameters were learned from our
neural-activity data sets, and models where only a
linear regression is performed on neural-activity data
sets using regularization by the least absolute shrink-
age and selection operator (LASSO). The models
using LASSO regression, denoted ‘‘trained with
regression,’’ often use external information about
visual processing. The fully data-driven models are
denoted ‘‘trained in TensorFlow.’’ Our pixel model
could fit into either category, but is grouped with the
LASSO models. The LASSO comparison models are
pixels, SAILnet, Berkeley Wavelet Transform, and
five VGG-16-based models. The fully data-driven
comparison models are linear–nonlinear (LN), LN-
LN, and a one- and a three-convolutional-layer
network.

Pixels

First we constructed a linear model by performing a
weighted sum over all pixel values of an image stimulus
with a bias to yield a predicted neural activity for each
neuron. That is, we formed a prediction

y
pixels
n;i ¼ bn þ

X

j

Wn;jxj;i ð3Þ

for the activity An,i of neuron n, where xj,i is the jth
pixel value in image i and the constants Wn,j and bn are
determined from linear regression using LASSO
regularization, a type of L1 (sparse) regularized linear
regression. The LASSO regularization parameter was
optimized on data from the same experimental session
used to optimize the hyperparameters of CNN2. Then,
leaving this term fixed, we evaluated the model using

cross-validation on data from the other nine experi-
mental sessions.

SAILnet

Next we constructed a SAILnet implementation of a
sparse-coding model. In the SAILnet model the images
are first whitened, using the whitening filter defined by
Olshausen and Field (1996). The whitened images are
then passed into a sparse-coding model, which outputs
the activations of 1,089 different image features; the
number of features is chosen to match the number of
pixels. The image features, and the activations, are
optimized so as to maximize the fidelity of image
encoding while minimizing the number of active
features. As an alternative to the SparseNet imple-
mentation (Olshausen & Field, 1996), we used the
SAILnet model (Zylberberg, Murphy, & DeWeese,
2011).2

After training SAILnet on whitened natural-image
patches, we froze the weights and passed in whitened
versions of the images shown to the monkeys, to obtain
the activations zj,i of each feature (indexed by j) for
each image (indexed by i). We then constructed a linear
predictor of the neuron firing rate, from the activations
of the sparse-coding features, with prediction

ySAILnetn;i ¼ bn þ
X

j

Wn;jzj;i: ð4Þ

Similar to the pixels model, we optimized the biases and
weights of this predictor using linear regression with
LASSO regularization.

Berkeley Wavelet Transform

We constructed a Gabor model called the Berkeley
Wavelet Transform (BWT) model. To construct the
BWT model, we trimmed the outer edges of the small
images by cropping the images down to 2433 243
pixels, removing part of the gray background (the BWT
requires square images with edge sizes of a power of 3).
We then passed each image through the BWT using
code shared by the authors (Willmore, Prenger, Wu, &
Gallant, 2008). We did this for all of the small images
and then selected those wavelets whose outputs had
nonzero variance over the set of images (there are
16,478 of those, out of the total of 59,049 wavelets); the
ones with zero variance occurred because they look at
the gray parts of the images (see Figure 1B). We used
the coefficients of these 16,478 wavelets to predict the
neurons’ mean firing rates, using LASSO regression
with an identical protocol to that of the SAILnet
model. The regression was on the weights W and biases
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b according to Equation 4, where the variables zi,j are
BWT wavelet activations.

VGG

To add a comparison to the work (Cadena et al.,
2017), we constructed five models from a deep CNN
called VGG-16 that has been pretrained on an image-
classification task (Simonyan & Zisserman, 2014). We
constructed these models out of the activations of VGG
at five different depths along the deep network in
response to our image set. To do this, we trimmed the
outer edges of the small images and cropped down to
2243 224 pixels, then copied the grayscale images into
each of the R, G, and B channels to match the 2243
2243 3 input size of VGG. (This duplicates the fact
that the monkey has the three input channels but saw
grayscale images.) We then passed these images
through the (already trained) VGG-16 model and
extracted the activations from each layer. Of the layers,
we focused on convolutional blocks 2 and 3 because the
LASSO fitting is much slower on such large inputs
(e.g., .590,000 units in convolutional 3 block 2), and
Cadena et al. (2017) show that these blocks provide the
best predictions of V1 firing rates. For each layer’s
activations, we selected those units whose activations
had nonzero variance over the set of images; the ones
with zero variance occurred because they look at the
gray parts of the images. We used the activations of
these units to predict the neurons’ mean firing rates,
using L1-regularized (sparse) LASSO regression. The
regression is on the weights W and biases b according
to Equation 4, where the variables zi,j are VGG
activations within the given layer. The five VGG layers
we considered are Conv2,1, Conv2,2, Conv3,1,
Conv3,2, and Conv3,3 (where Conva,b denotes con-
volutional layer b within block a).

LN

We constructed an LN model by applying a
nonlinearity to a linear model to yield a prediction for
each neuron. According to the LN model we formed a
prediction

yLNn;i ¼ rðbn þ
X

j

Wn;jxj;iÞ ð5Þ

for the activity of neuron n, where r(x) is a nonlinear
function. A parametric rectified linear was chosen as
the nonlinearity because it outperformed a parameter-
ized sigmoid. The parameters of the model were trained
in TensorFlow using the same learning process as for
the convolutional models, with early stopping as the
primary form of regularization.

LN-LN

We constructed an LN-LN model by cascading two
LN models. Thus,

yLN-LNn;i ¼ r bð2Þn þ
X

k

W
ð2Þ
n;kr b

ð1Þ
k þ

X

j

W
ð1Þ
k;j xj;i

 ! !

ð6Þ

forms the LN-LN model, where r(�) is the rectified
linear function, and the superscripts ‘ on Wð‘Þ and bð‘Þ

denote the layer. This model was trained in Tensor-
Flow using the same learning process as the convolu-
tional models, with early stopping as the primary form
of regularization. Its hyperparameters, such as the
number of hidden elements, were optimized on the
same experimental session as CNN2. Our LN-LN
model is a nonconvolutional LN-LN. There are more
complex versions that use convolutions and pooling at
the input stage; those are more similar to our CNN1
(Vintch, Movshon, & Simoncelli, 2015).

CNN1 and CNN3

In order to show the importance of model depth or
lack thereof, we compared our chosen best model—the
two-convolutional-layer network (CNN2)—to a single-
convolutional-layer network (CNN1) and a three-
convolutional-layer network (CNN3). The hyperpara-
meters of CNN1 and CNN3 were optimized on data
from the same experimental session used to optimize
CNN2, and the models were regularized using a
combination of dropout and early stopping.

Characterizing the selectivity of cells

To show that our model describes the activity of a
broad class of cell types, we grouped the cells into
functional classes and looked at how well the firing
rates from each class could be predicted by our neural-
network model. We classified cells by their selectivity to
specific natural images, their selectivity to specific
orientations of grating stimuli, their average firing rate
over all images A, and their reliability CCmax.

The selectivity of each neuron to specific natural
images is quantified by

image selectivity index ¼ N�
ð
P

iAiÞ
2

P

i ðA
2
i Þ

 !

1

N� 1
;

ð7Þ

where Ai is the cell’s firing rate indexed i over the set of
N images (Zylberberg & DeWeese, 2013). This index
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has a value of 0 for neurons that fire equally to all
images and a value of 1 for cells that spike in response
to only one of the images.

The neuron’s orientation selectivity is measured by

circular variance ¼ 1�

P

h
Ahe

i2h
�

�

�

�

P

h
Ah

; ð8Þ

where Ah is the neuron’s firing rate in response to a
grating oriented at angle h. The circular variance is less
sensitive to noise than the more commonly used
orientation-selectivity index (Mazurek, Kager, & Van
Hooser, 2014). Following the results of Mazurek et al.
we used thresholds of circular variance , 0.6 to define
orientation-selective cells (the simple and complex cells
according to Hubel & Wiesel, 1959) and circular
variance . 0.75 non-orientation-selective cells. We
omitted all other cells from these two groupings.

Results

Using our optimal network, we predicted firing rates
that were highly correlated with the measured firing
rates for most neurons (Figure 4A) when evaluated on
held-out data. The correlation between the predicted

and actual neural firing rates is CC
CNN2

norm ¼ 0:556 6 0:015

(CC
CNN2

abs ¼ 0:493 6 0:014) averaged over all 355 neu-

rons in the evaluation set without using any selection
criteria (Figure 4B). To benchmark the accuracy of our
model, we compared it to a variety of other models
(Figure 4B). We found that CNN2 is, indeed, the best-
performing model. In comparison with fully data-driven
models (denoted ‘‘trained in TensorFlow’’), we found
that our two-convolutional-layer CNN2 is more accu-
rate than single- (CNN1) and triple-convolutional-layer

(CNN3) models, and far more accurate than shallower
models such as LN. Compared to pretrained models
where only LASSO regression was performed on the
neural-activation data, we found that our optimized
data-driven CNN outperforms models based on VGG,
the Berkeley Wavelet Transform, and the SAILnet
sparse-coding algorithm (see Methods for details).

Because simple and complex cells have been exten-
sively studied, we were motivated to compare the
predictability of simple and complex cells to the
predictability of the other neurons in the data set.
Grouping the cells into orientation-selective (simple-
and complexlike cells) and non-orientation-selective
cells (see Methods), we found that our network predicts
non-orientation-selective cell responses with CC

CNN2

norm ¼
0:50 6 0:02 and orientation-selective cell responses
with CC

CNN2

norm ¼ 0:55 6 0:04. Therefore, our model
predicts the firing rates of both cell types, performing
slightly better on the simple- and complexlike cells than
the non-orientation-selective cells.

Given that some neurons’ firing rates are well
predicted by the network (CNN2) while others are not,
we were motivated to ask what distinguishes predict-
able from unpredictable cells. Furthermore, we found
that the cells that are well predicted CNN2 are also well
predicted by CNN1 (Figure 5D) and CNN3 (Figure
5E), indicating these differences in predictability are set
by the cells themselves rather than the neural-network
architecture. To better understand what is driving these
differences among the cells, we characterized the cells
according to several metrics and then saw how these
metrics can explain the distribution of predictability
over the population of cells. We quantified the cells
according to their orientation selectivity (see Methods),
their image selectivity (see Methods), their average
firing rate over all images and trials �A, and their
reliability over repeat image presentations, as quanti-

Figure 4. The performance of the best convolutional network model, CNN2. (A) A histogram of the normalized Pearson correlation

coefficients between the network predictions and the actual firing rates CCCNN2norm of all 355 neurons. (B) The average performance of

the convolution-neural-network predictor (CNN2) compared to a variety of other models. The models are grouped as models that are

trained only with regularized linear regression by least absolute shrinkage and selection operator on the neural-activity data (pixels,

Berkeley Wavelet Transform [BWT], SAILnet, and our VGG models) and models where all the parameters are fully trained on the

neural activity using TensorFlow (linear–nonlinear [LN], LN-LN, CNN1, and CNN2). The five VGG models in green are denoted Conva,b

for convolutional layer b within block a.
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fied by the theoretical upper bound on predictability
CCmax. Comparing the predictability of each cell’s
firing rates with its respective image-selectivity index
(Figure 5A) and circular variance (Figure 5B), we
found that the predictability depends only weakly on
these characteristics. Thus, orientation selectivity and
image selectivity are only minor factors in determining
how well our model performs.

We found that a neuron’s activation, or mean firing
rate over all images �A (Figure 5C), and its limit neural
reliability CCmax (Figure 5F) are both strongly related
to the model’s performance. Cells with a low mean
firing rate �A, 5 Hz are less well described by our

model, with CC
CNN2

norm ¼ 0:29 6 0:03. Selecting only the

more active cells ( �A.5 Hz) yields improved predictabil-

ity, with CC
CNN2

norm ¼ 0:69 6 0:01, increased for neurons
with greater mean firing rates. Similarly, we found that
the model performs much better on reliable neurons
than on those with low neural reliability. As the limit
CCmax on predictably set by the neural reliability
decreases, the model performance decreases by far
more, meaning that overall the model does far worse at
predicting the activity of these neurons. Selecting only

the reliable neurons, CCmax . 0.80, yields improved

predictability, with CC
CNN2

norm ¼ 0:68 6 0:01. Thus, we

found that our model describes particularly well the
neural encoding of both the cells that are more active
( �A . 5Hz) and the neurons that are more reliable
(CCmax . 0.80).

Discussion

We trained a deep convolutional neural network to
predict the firing rates of neurons in macaque V1 in
response to natural image stimuli. In contrast to
shallow models, such as linear–nonlinear models that
can only describe simple cells, we find that our
convolutional neural network can describe a broad
range of cells. Firing rates of both orientation-selective
and non-orientation-selective neurons can be predicted
with high accuracy. Our network describes the more
active and more reliable cells particularly well. Addi-
tionally, we find that the two-convolutional-layer
network outperforms a variety of other models.

Our results take a key step toward cracking the
neural code for how visual stimuli are translated into
neural activity in V1. This would be a major step
forward in sensory neuroscience, and would enable new
technologies that could restore sight to the blind. For
example, cameras could continuously feed images into

Figure 5. Characterizing the predictability of CNN2 (CCCNN2norm ) over the population of neurons; each data point corresponds to a single

neuron. (A) Scatterplot of how well the predictor can predict each neuron’s firing rate CCCNN2norm (vertical axis) against the neuron’s

image selectivity (horizontal axis). (B) Scatterplot against the neuron’s circular variance (horizontal axis). (C) Scatterplot against the

neuron’s average firing rate �A (horizontal axis). (D) Scatterplot against the predictability CCCNN1norm of CNN1 (horizontal axis). (E)

Scatterplot against the predictability CCCNN3norm of CNN3 (horizontal axis). (F) Scatterplot against the neural reliability CCmax (horizontal

axis).
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networks that would determine the precise V1 activity
patterns that correspond to those images: a camera-to-
brain translator. Brain-stimulation methods like opto-
genetics (Ozbay et al., 2015) could then be used to
generate those same activity patterns within the brain,
thereby restoring sight.

Model comparisons and depth

Comparing across all of our fully data-driven models
(Figure 4B, fully trained) of visual processing in V1, we
find that increasing the complexity or depth of the
models increases the ability of these models to replicate
the visual processes that take place in V1, up to a
convolutional neural network with two convolutional
layers. Increasing the depth saturates or modestly
decreases this CNN2 network’s performance. We also
find some difference between networks of comparable
depths. For instance, the CNN1 and LN-LN networks
are both the same depth, with two hidden layers.
However, CNN1 does far better at predicting the firing
rates in V1. The increased performance of CNN1 is
perhaps due to the constraints of the convolutional
filters. We want to emphasize that our LN-LN model
represents only a small subset of all the possible LN-
LN models, and our CNN1 model could be classified as
an LN-LN model. Overall, our results support the
hypothesis that a model architecture with two convo-
lutional layers and an all-to-all layer well represents the
visual processing that takes place in V1.

Comparisons to other work

Although it is difficult for a variety of reasons to
fairly compare the performances of published results,
we predict neural activity with performance that is
comparable to the state of the art. Over all neurons, the
correlation between our network predictions and the

actual neural firing rates is CC
CNN2

abs ¼ 0:493 6 0:014.

For comparison, Lau, Stanley, and Dan (2002)
achieved predictability of CCabs ¼ 0:45 for simple cells
and CCabs ¼ 0:31 for complex cells; Vintch et al. (2015)
achieved predictability of CCabs ¼ 0:55 for simple cells
and CCabs ¼ 0:42 for complex cells; and Prenger, Wu,
David, and Gallant (2004) achieved CCabs ¼ 0:24
averaged over all cells. Lehky et al. (1992) achieved
CCabs ¼ 0:78, and Willmore, Prenger, and Gallant
(2010) achieved a predictability (quantified as fraction
of variance explained) of 0.4. However, some contex-
tual factors confound direct comparison to these
results. Specifically, Lehky et al. selected neurons that
are easier to predict by specifically choosing neurons
that responded strongly to the presentation of bars of
light; Vintch et al. analyzed direction-selective neurons;

and Willmore et al. adjusted their image to match the
receptive field of each neuron they predicted. We, by
contrast, neither tailored our stimulation to our
neurons nor selected well-behaved neurons. By select-

ing on either reliability or activation, we could easily

achieve CC
CNN2

abs . 0:6.

Consistent with Cadena et al. (2017), we find that the
VGG layer most predictive of V1 neural firing rates is
Conv3,1. However, in contrast with Cadena et al., we
find that our data-driven CNN outperforms even this
best VGG layer. In this comparison, confounds include
having different images sets, using different methods
for optimizing hyperparameters of CNNs, and using
anesthetized monkeys rather than awake monkeys.

Identifying visual features that cause the
neurons to spike

In addition to making predictions of neural activity,
the CNN represents the underlying visual processing
that drives the population of neurons to spike. As an
example of how to use the model as a tool to investigate
the functions of individual neurons, we used Deep-
Dream-like techniques (Mahendran & Vedaldi, 2015)
to identify the visual features that cause each cell to
spike. We inverted our network by finding input images
that cause a given cell to spike at a prespecified level.
To do this, we first took the fully trained network and
set Gaussian-white-noise images as the input. We then
used back-propagation to modify the pixel values of the
input image to push the chosen neuron’s predicted
firing rate toward the prespecified level. Thus, we found
an input image that induced the prespecified response.

We applied this procedure to several different
neurons that are well described by the model, and at
several different target firing rates (Figure 6). Cells A
(CCCNN2

abs ¼ 0:88) and B (CCCNN2
abs ¼ 0:89) appear to

function like previously characterized cells. Cell A
responds to a center–surround image feature, and cell
B’s receptive field is a Gabor wavelet. In contrast, cells
C (CCCNN2

abs ¼ 0:91) and D (CCCNN2
abs ¼ 0:90) appear to

respond to more abstract image features that are not
well represented by simple localized image masks. For
comparison, we plot the receptive fields according to
the LN model (Figure 6, left).

By inverting our network, we showed that we can use
it as a tool to investigate neurons’ response properties
that cannot be found with shallower models. Going
forward, this method shows potential for characterizing
the response properties of more cells in V1 and
precisely defining functional cell types that have been
previously overlooked. Looking beyond V1, these
methods could be applied to understanding higher level
cortical processing, such as visual encoding in V2. By

Journal of Vision (2019) 19(4):29, 1–12 Kindel, Christensen, & Zylberberg 9

Downloaded from jov.arvojournals.org on 08/21/2022



finding the features that elicit a response in V2 neurons,
this tool could help fill the visual-encoding knowledge
gap (Ziemba, Freeman, Movshon, & Simoncelli, 2016)
that exists between the abstract encoding of inferior
temporal cortex and V4 and the low-level encoding of
the retina and V1.

Window length for firing-rate estimate and
most well-isolated neurons

In our main analysis, we focused on predicting the
initial neural response to exclude influence of top-down
feedback from higher cortical areas. That is, we focused
on the timescale when biological neural processing is
most analogous to the feed-forward architecture of the
artificial neural networks in our study. Because we
considered only the initial response of the neurons to
the stimulus, we were motivated to ask how well our
network architecture can predict the neurons’ firing
rates, estimated by counting spikes over the full 100-ms
window in the data of Coen-Cagli et al. (2015).
Repeating our analysis with 100-ms windowed data, we

found that our predictions have correlation CC
CNN2

norm ¼

0:506 6 0:006 to the measured firing rate over all
neurons. This is slightly worse than our main analysis,
where we used a 50-ms window. This result is not

surprising, because we optimized the hyperparameters

of our model using a 50-ms window.

Because the data set we use groups both well-isolated

neurons and small multiunit clusters, we were motivated

to see how our best CNN2 model performs at predicting

firing rates of each of these unit types. Following Coen-

Cagli et al. (2015), we identified the most well-isolated

neurons by choosing only those whose signal-to-noise

ratio in the spike sorting is greater than 2.75, and the

remaining neurons (spike-sorting signal-to-noise ratio ,

2.75) are an indistinguishable mixture of small multiunit

clusters and single neurons. We found that the most

well-isolated neurons have a predictor performance of

CC
CNN2

norm ¼ 0:414 6 0:016, whereas the mixture of clus-

ters and single neurons has CC
CNN2

norm ¼ 0:635 6 0:012.

We were initially surprised by this finding, as we

expected the well-isolated single units to be the most

predictable. However, the multiunit clusters, being

aggregates of several neurons, have higher average firing

rates: 12.6 6 0.6 spikes/s on average (M 6 SEM),

compared with 8.4 6 0.8 spikes/s for the well-isolated

single units (estimated during the 50-ms spike-counting

window). Recall that neurons with higher firing rates

were generally more predictable (Figure 5C). We thus

attribute the higher predictability of the multiunit

clusters to their higher mean firing rates.

Figure 6. Using the network model to reveal the visual features that drive individual neurons. (Left) Receptive-field filters from the LN

model for four neurons. (Right) For each neuron, we synthesized images that drove the predicted firing rates to the specified target

values using the convolutional-neural-network model. These target firing rates were chosen to be different percentiles of the neuron’s

firing-rate distribution. Cells A and B appear to respond to localized image features, whereas cells C and D respond to more abstract

image features.
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Footnotes

1 Our model is publicly available at https://github.
com/jzlab/v1_predictor.

2 In our experience, SAILnet is much faster to train
than SparseNet. We used the publicly available
SAILnet code out of the box (http://www.jzlab.org/
sailcodes.html), without changing any parameter values
except image size.
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