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Abstract

Background: Hyperkalemia is a critical condition, especially in intensive care units. So far, there have been no accurate and
noninvasive methods for recognizing hyperkalemia events on ambulatory electrocardiogram monitors.

Objective: This study aimed to improve the accuracy of hyperkalemia predictions from ambulatory electrocardiogram (ECG)
monitors using a personalized transfer learning method; this would be done by training a generic model and refining it with
personal data.

Methods: This retrospective cohort study used open source data from the Waveform Database Matched Subset of the Medical
Information Mart From Intensive Care III (MIMIC-III). We included patients with multiple serum potassium test results and
matched ECG data from the MIMIC-III database. A 1D convolutional neural network–based deep learning model was first
developed to predict hyperkalemia in a generic population. Once the model achieved a state-of-the-art performance, it was used
in an active transfer learning process to perform patient-adaptive heartbeat classification tasks.

Results: The results show that by acquiring data from each new patient, the personalized model can improve the accuracy of
hyperkalemia detection significantly, from an average of 0.604 (SD 0.211) to 0.980 (SD 0.078), when compared with the generic
model. Moreover, the area under the receiver operating characteristic curve level improved from 0.729 (SD 0.240) to 0.945 (SD
0.094).

Conclusions: By using the deep transfer learning method, we were able to build a clinical standard model for hyperkalemia
detection using ambulatory ECG monitors. These findings could potentially be extended to applications that continuously monitor
one’s ECGs for early alerts of hyperkalemia and help avoid unnecessary blood tests.

(J Med Internet Res 2022;24(12):e41163) doi: 10.2196/41163
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Introduction

Hyperkalemia is a metabolic condition that contributes to more
than 800,000 emergency department visits in the United States

annually [1]. It is associated with life-threatening ventricular
arrhythmias and sudden cardiac arrest, and it is especially
common among patients with chronic kidney disease due to

J Med Internet Res 2022 | vol. 24 | iss. 12 | e41163 | p. 1https://www.jmir.org/2022/12/e41163
(page number not for citation purposes)

Chiu et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

mailto:lin@cse.nsysu.edu.tw
http://dx.doi.org/10.2196/41163
http://www.w3.org/Style/XSL
http://www.renderx.com/


their impaired renal potassium homeostasis and long-term use
of renin-angiotensin-aldosterone system inhibitors [2,3].

Patients under critical care may receive regular blood tests for
electrolytes every few hours or days [4]. Many potential factors
can affect potassium levels in between monitoring periods, such
as diets, metabolic acidosis, and alterations in the
intracellular/extracellular potassium distribution. Therefore,
noninvasive monitoring techniques of potassium levels can help
fill the gap between blood tests for early detection of this
potentially deadly condition.

It is well known that a variety of changes on the
electrocardiogram (ECG) can be associated with hyperkalemia,
including but not limited to peaked T waves, shortened QT
interval, lengthening of PR interval, and QRS duration [5].
Accurate human interpretations of these ECG patterns requires
a steep learning curve, and the sensitivity of physician diagnoses
has been estimated to be as low as 34% to 43% [6], not to
mention the impossibility of self-detection of hyperkalemia
using only symptoms and signs. There have been several
successes in leveraging deep learning models to detect
electrolyte abnormalities on ECGs [7-10], and previous studies
have proven the feasibility of this approach for detecting subtle
signals from ECGs. However, low specificity and a high
false-positive rate could cause alert fatigue among physicians
and anxiety in patients.

A recent study exploring a personalized deep learning–based
system to detect hypoglycemia via ECG data has yielded
promising results [11]. The study collected dozens of personal
blood glucose and corresponding ECG data and adopted a
convolution neural network to develop a personalized deep
learning model to predict the hypoglycemia event. Since it is
nearly impossible to gather enough personal data in a real-world
setting, our study proposes a personalized transfer learning
method by first training a general model and then refining it
with personal data to improve the accuracy of hyperkalemia
predictions, diminish the intersubject heterogeneity, and advance
toward personalized medicines.

Methods

Ethics Approval
The data collection and study protocols were approved by the
Institutional Review Board of Chang Gung Medical Foundation
(202001217B0; date of approval July 21, 2020). The study was
conducted following the standards issued by the World Medical
Association’s Declaration of Helsinki. The data that support
the findings of this study are openly available in the Medical
Information Mart From Intensive Care III (MIMIC-III)
Waveform Database Matched Subset [12,13].

Data Set Collection
This study used data from the Waveform Database Matched
Subset. The data set contains 22,317 waveform records and
22,247 numeric records for 10,282 distinct intensive care unit
(ICU) patients who were admitted to critical care units of
medical centers in the United States between 2001 and 2012.
These recordings typically include digitized signals, such as
ECG, arterial blood pressure, and respiration; additionally, they

include periodic measurements such as heart rate, oxygen
saturation, and blood pressure. The data set’s ECG signals were
usually of leads I, II, or V. This subset represents records for
which the patients have been identified and whose corresponding
clinical records are available in its matched clinical database.

Patient Population
All patients with a plasma potassium level during admission,
from the MIMIC-III data set, were included. However, patients
without lead II ECG signals at the time of the potassium level
test and patients with atrial fibrillation, pacing rhythm, or other
medical conditions for which a complete heartbeat cycle could
not be distinctly identified in the ECG were excluded.

This study aimed to distinguish hyperkalemia from a normal
level based on ECG features. Patients with at least 8 records of
hyperkalemia and normokalemia each were adopted for
personalized transfer learning. The others were selected for
generic model training.

Data Preprocessing
ECG excerpts from 10 minutes before the time of serum
potassium tests were annotated as corresponding to
hyperkalemia or normokalemia according to the test results.
Hyperkalemia was defined as serum potassium concentration
values above 5.5 mEq/L and normokalemia as serum
concentration between 3.5 mEq/L and 5 mEq/L. We excluded
serum potassium levels between 5 and 5.5 mEq/L to ensure that
no consecutive heartbeats would be considered as both hyper
and normal, therefore reducing overfitting of the model.

After collection, ECG excerpts were filtered using finite impulse
response techniques and underwent manual inspection to exclude
those containing too much ECG signal noise. This process helps
to reduce overfitting of the model and deviating to noisy data.

After retrieving the corresponding ECG signals, each ECG
record was segmented into heartbeats of 120 samplings based
on the fiducial point, which was the R peak. Each heartbeat
segment contained 40 samples preceding the R peak and 80
samples after, in which the R peak was the 41st sample.

Generic Model Training
The goal was to train a generic model using a large set of
heartbeats and to leverage a transfer learning algorithm that
could refine the generalized model into a subject-specific model.
The purpose of training the deep learning model during this
step was to obtain a pretrained weight for transfer learning, as
it helps the model to learn the shape of the ECG features for
hyperkalemia.

All the data were randomly split into a training set, validation
set, and test data set in a 6:2:2 ratio. This study used the ResNet
architecture as the baseline architecture [14]. ResNet stands for
residual network; it is an innovative neural network first
introduced in 2015 that won the top position at the ImageNet
classification competition, with an error of only 3.57%. The
ResNet structure is widely used in ECG classification tasks
since the residual block component allows the model to add
more layers that help to detect the complex pattern of ECG
morphology. In 2019, a study demonstrated a cardiologist-level
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arrhythmia detection task in ambulatory ECGs using a 1D
ResNet model [15]. Since ECG data in the MIMIC-III database
is 1D, we substituted the 2D convolution layers with 1D for
detailed feature extraction. Besides that, we did not change the
size of the convolutional block, stride, and number of filters.
After training, model weights for the best performance in the
validation set were saved as pretrained for personal transfer
learning.

Personalized Transfer Learning
Transfer learning applies knowledge obtained by solving one
problem to a related problem. The general procedure for transfer
learning is to pretrain a deep learning model with a large data
set (eg, generic population for hyperkalemia), then refine it
using a much smaller target data set (eg, personal data for
hyperkalemia).

In personalized training steps, we adopted the same architecture
of the 1D ResNet model in the general population for allowing
the weight to be preserved [16]. Before refining it with personal
data, we replaced its classification layer with a fully connected
layer, the weights of which were randomly initialized. We froze
the pretrained weights in the first few blocks of the convolution
layers and trained the last few blocks of layers for 5 epochs
using personal ECG data.

For each patient in the personalized group, 25% of potassium
records and their corresponding ECG data were preserved as
the test data set. During the training process, ECG data
representing one record each of hyperkalemia and normokalemia
were used as inputs. The training process continued for five
rounds at most, depending on the total number of potassium
records for each patient. The model performance after each
training process was assessed to measure the performance
changes. The deep learning models were trained with the
TensorFlow application programming interface on the Google
Colab platform.

Statistical Analysis
Continuous variables with normal distribution were presented
either as means (SDs) or medians (IQRs). Continuous variables
were analyzed using the Mann-Whitney U test, and the final
model was validated using a majority voting scheme that runs
through all the single heartbeats in a 10-minute ECG strip to
determine the prediction result. All performance predictions
were assessed using accuracy, area under the receiver operating
characteristic curve (AUC), sensitivity, and specificity. All
statistical analyses were performed on SPSS 26 for Mac (IBM
Corp).

Results

Characteristics of Data Sets
In this study, of the 41,291 patients in the MIMIC-III database,
5385 who fulfilled the criteria were included for analysis; 16
were chosen for personalized model development and validation
and 5369 for pretrained general model development. To avoid
deviation of general model prediction toward normokalemia,
balanced ECG samples of hyperkalemia and normokalemia
retrieved from 1439 patients were used. These included 1341
hyperkalemia records of 721 patients and 1325 normokalemia
records of 718 patients. The inclusion flowchart is shown in
Figure 1. Demographics and clinical characteristics of the two
development populations are shown in Table 1. For the personal
model development, patients’ median age was 50 (IQR 43-60)
years, and 13 (81%) of them were male. Concerning ethnic
groups, 7 (44%) patients and 3 (19%) patients were White and
African American, respectively. The mean serum potassium
levels of hyperkalemia and normokalemia were 6.3 (SD 0.64)
mEq/L and 4.3 (SD0.40) mEq/L and 6.2 (SD 0.70) mEq/L and
4.1 (SD 0.44) mEq/L in the general and personalized groups,
respectively.
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Figure 1. Patient inclusion flowchart. ECG: electrocardiogram; MIMIC-III: Medical Information Mart From Intensive Care III.

Table 1. Patient demographic in generic population and personal population.

Personal population (n=16)Generic population (n=1439)Variables

50 (43-60)64 (52-76)Age (years), median (IQR)

Gender, n (%)

13 (81.2)610 (59.6)Male

3 (18.8)413 (40.4)Female

Ethnicity, n (%)

7 (43.8)907 (63.0)White

3 (18.8)176 (12.2)African American

0 (0.0)71 (4.6)Hispanic

1 (6.2)45 (3.1)Asian

0 (0.0)6 (0.4)American Indian

1 (6.2)50 (3.5)Other

4 (25.0)184 (12.8)Unknown

Body index, median (IQR)

176.5 (169.2-186.8)170.0 (160.2-178.0)Height (cm)

89.2 (71.4-108.3)79.2 (66.9-94.6)Weight (kg)

Serum level (mEq/L), mean (SD)

4.1 (0.44)4.3 (0.40)Normokalemia

6.2 (0.70)6.3 (0.64)Hyperkalemia

Development of a Generic Model
The proposed transfer learning method is depicted in Figure 2.
For generic model development, in the training set, 152,322
and 172,388 normokalemic and hyperkalemic heartbeats,
respectively, were contributed by 881 patients. In the validation
set, 51,468 normokalemic and 53,488 hyperkalemic heartbeats

were segmented from 280 patients. In the test set, 52,134
normokalemic and 53,412 hyperkalemic heartbeats were present
in 278 patients.

This study adopted the ResNet-50 model for training the
classification task. ResNet-50 is a network that has 50 layers
in depth. Rather than its shallow version, ResNet-18 or
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ResNet-34, ResNet-50 combines the structure of residual and
bottleneck blocks in the convolutional layer to reduce computing
resources. Before each convolutional layer, we applied batch
normalization and a rectified linear activation, adopting the
original design of the preactivation block. The network was
trained with random initialization of the weights. We used the
Adam optimizer with the default parameters and a mini-batch

size of 1024. We initialized the learning rate to 5 × 10–5 and

reduced it by a factor of 2 when the developmentally set loss
stopped improving for 3 consecutive epochs. The model was
trained for 50 epochs using the training set. We saved the model
that achieved minimal loss in the validation set during training
as the generic, or the so-called pretrained, model. The final
pretrained model’s prediction accuracy was 0.724, 0.639, and
0.627 in the training, validation, and test sets, respectively.

Figure 2. Proposed transfer learning algorithm for recognizing hyperkalemia from ambulatory ECG monitoring. ECG: electrocardiogram; Grad Cam:
gradient-weighted class activation mapping; t-SNE: t-distributed stochastic neighbor embedding.

Development of a Personalized Model
The complete list of patients included for personalized model
development is shown in Multimedia Appendix 1. Before
starting the personalized training process, the performance of
the pretrained model was assessed on each patient to obtain
baseline metrics. The same convolutional neural network (CNN)
architecture as ResNet-50 was used, the pretrained weight in
the first several layers were frozen, and the model was fine-tuned
in each training round. The improvement in predictions after
each training round for all personalized group patients are shown
in Multimedia Appendix 2.

On average, accuracy improved from 0.604 (SD 0.211) to 0.895
(SD 0.189; P<.001) after the first round of training (Figure 3)

and achieved a plateau at 0.942 (SD 0.104) after the second
round of training. In addition, the AUC level improved from
an average of 0.729 (SD 0.240) to 0.918 (SD 0.149) after the
first round of training and continued to increase after the second
round to 0.945 (SD 0.094), being maintained at that level
thereafter. After five rounds of training, the personalized model
was able to predict hyperkalemia with an average accuracy of
0.980 (SD 0.078). Moreover, the sensitivity and specificity of
model prediction improved after personalized transfer learning.
There was a significant increase in average sensitivity after the
second round of personalized transfer learning (0.674, SD 0.456
vs 0.953, SD 0.160; P=.03) and improvement in average
specificity after the first round of personalized transfer learning
(0.628, SD 0.417 vs 0.907, SD 0.321; P=.03; Multimedia
Appendix 2).
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Figure 3. Accuracy improvement on number of personalized training rounds.

Model Interpretation and Visualization
After refining the model for each candidate, we generated the
gradient-weighted class activation mapping (Grad Cam) for
obtaining visual explanations from the model [17]. We selected
one patient for demonstration (Figure 4). The blue and orange
lines represented the average plot of segmented heartbeats from
hyperkalemia and normokalemia in the test set of that patient,
respectively. Grad Cam uses the gradients of the final
convolutional layer to produce a coarse localization map,
highlighting important regions in the image for predicting the
concept. We overlapped the activation maps on the original
ECG reading to highlight the emphasized areas in the CNN. In
this patient, the region of interest was dispersed before transfer
learning and thereafter became more focused over the QRS
segment.

To further address the effect of personalized transfer learning
and to visualize the learned embeddings [18], we used the
t-distributed stochastic neighbor embedding (t-SNE) method
that extracted features from the last convolutional layer and
converted these high-dimension features to 2D features, which
we could analyze using the scatter plot.

This study presents a visualization of the same patient’s
heartbeats using a t-SNE scatter plot and Grad Cam (Figure 4).
In the figure, the light blue dot represents the hyperkalemia
ECG data and the red dot the normokalemia data. It can be
observed that the dots presenting each heartbeat corresponding
to the hyperkalemia and normokalemia were quite muddled at
the beginning and gradually organized into two clusters that
were easier to separate by a straight line in a 2D space after
personalized transfer learning. The t-SNE plots imply that after
transfer learning, it is easier to distinguish the two classes clearly
through the CNN model.
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Figure 4. Visualization of model prediction before and after personalized transfer learning. Grad Cam: gradient-weighted class activation mapping;
t-SNE: t-distributed stochastic neighbor embedding.

Discussion

Principal Findings
Our study showed the feasibility of detecting hyperkalemia by
using transfer learning on personalized single-lead ECG
readings. In previous research, one of the biggest challenges of
deep learning for ECG classification was the scalability of a
single model in different populations. The reasons for this
generalization problem included individually varying ECG
signal properties that depended on various factors such as
weight, height, age, and physical conditions [19], not to mention
data collected from different institutions and by other
technicians. Therefore, expecting a generalized framework to
be functional for the general population can be problematic
[20]. The novelty of this study is that it considers the same
classification task in the generic and personal predictions as
different domains, which is a novel area in dyskalemia
prediction using ECGs. Since other medical conditions may
affect patients’ ECG, the ECG signal of hyperkalemia is not
specific. Patients’ different medical diseases contribute to how
their ECGs manifest. Due to large interpersonal variation, we
believe that one generic model cannot cover a variety of illnesses
that affect ECG signals. By using personalized transfer learning,
we can load personal information into the model and make it
better fit the personal ECG change.

In our study, when comparing the results with our pretrained
model, transfer learning on personalized data showed a
considerable increase in accuracy and AUC, and significantly

boosted both sensitivity (mean 0.674, SD 0.456 vs mean 0.953,
SD 0.160; P=.03) and specificity (mean 0.628, SD 0.417 vs
mean 0.907, SD 0.321; P=.03), which demonstrated a good
precision by ambulatory ECG monitors.

Previous studies applying deep learning to ECG classification
focused on arrhythmia detection [21-23]. One of the reasons
may be the availability of benchmark data sets that have reliable
annotations that are mostly limited to arrhythmia, such as atrial
fibrillation. Within the deep learning arrhythmia detection
domain, transfer learning had been extensively explored to
enhance the performance of CNNs; in a study, Weimann and
Conrad [24] showed that transfer learning effectively reduces
the number of annotations required to achieve the same
performance as CNNs that are not pretrained. However, apart
from arrhythmias, many other metabolic conditions such as
hyperkalemia, hypokalemia, and hypomagnesemia can also be
manifested in ECG readings [25]; hence, successes in arrhythmia
detection should be expandable for detection of metabolic
diseases through ECGs. In 2019, a study by Galloway et al [10]
used 2 to 4 leads of the 12 leads of an ECG to develop a deep
learning model to predict hyperkalemia and demonstrated a
sensitivity of 88.9%-91.3% and a specificity of 54.7%-63.2%.
The study proved that screening for hyperkalemia in patients
with chronic kidney disease was feasible. A recent study using
all 12 leads from complete ECGs to predict both hyperkalemia
and hypokalemia showed better results with a balanced accuracy
of around 79.9%-82.8% [26]. Nevertheless, a higher standard
of prediction performance may be desired to aid in clinical
practice.
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Personalized medicine, mostly discussed in genomic research,
refers to the application of specific patient information to make
a more informed choice regarding their optimal therapeutic
treatments or precise diagnoses, rather than relying on
population-based trends [27]. Recent studies have shown that
a personalized medicine approach could benefit disease
diagnosis with ECGs. A 2018 study proved that by acquiring
about 5% of personal ECG data from each new patient, the
personalized deep learning model was able to substantially
improve the precision of disease detection in contrast with the
generic model [28]. Another study using a personalized deep
learning system to detect hypoglycemic events from ECG
rhythms found that the model overcame the limitations of
intersubject variability in conventional systems [11]. The
concept of adopting a personalized approach on ECG
interpretation could improve specificity, which could prevent
alert fatigue and overinterventions in a real-world setting. Our
study demonstrated that transfer learning through a personalized
approach required fewer ECG data queries and could bring
about substantial improvements on sensitivity and specificity,
which are useful in minimizing false alerts.

To enhance the interpretability of our model, we applied the
Grad Cam method that allows one to easily scrutinize the areas
the model is relying on (Figure 4). Between our generalized
model and personalized model trained from transfer learning,
the former focuses more on broad characteristics such as the P,
QRS, and T segments that were considered as a well-defined
series of changes by previous literature [29]; the latter focused
more on a few localized areas that we believe are related to
interpersonal differences. In each patient in the personalized
group, the highlighted area of the ECG section from the Grad
Cam visualization was different from the others. This explains
how the personalized model performed better than the generic
model and the interpersonal variation of ECGs occurred
according to the level of hyperkalemia.

We used the t-SNE method for visualizing our learned
embeddings in a lower dimension. This particular approach
finds a joint probability distribution in a low dimension that
closely represents the data points in the original high dimension
by using gradient descent [18]. From our t-SNE results regarding
the last convolution layer of the deep learning model, the
personalized model showed two discrete groups compared to a
more heterogeneous appearance in the generalized model (Figure
4). This shows that learned embedding can better separate the
heartbeats according to potassium levels.

The study results demonstrate the potential of leveraging transfer
learning on a personalized data set with fewer data while
producing comparable results. Even in an individual participant,
by using only four sets of data, the AUC increased significantly
and many even plateaued. However, our study did have
limitations that warrant future investigations and validations.
First, since its database came from ICU records, only 16 patients
who had multiple potassium drawings and corresponding ECG
readings were included. However, in reality, it is difficult for a
single patient to undergo so many blood tests, the results of
each having its own corresponding ECG data. Second, by
extending the framework to be multimodal, including other
physiological signals such as blood pressure, age, gender,
underlying disease, and weight, we could further enhance our
model’s performance, and this should, therefore, be the future
research goal.

Conclusion
Using personalized transfer learning on single-lead ECG
readings is sufficient to yield high AUC and accurate results
for hyperkalemia detection. The visualization of the model
interpretation demonstrated the interpersonal differences on
ECG change according to hyperkalemia. This finding could
potentially be extended to applications that continuously monitor
one’s ECGs, thus serving as a surveillance system for patients
at high risk of hyperkalemia and avoiding unnecessary blood
tests.
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