
USING DEMPSTER-SHAFER’S BELIEF-FUNCTION THEORY
IN EXPERT SYSTEMS

by

Prakash P. Shenoy

School of Business, University of Kansas, Lawrence, KS 66045-7585, USA
          Tel: (785)-864-7551,  Fax: (785)-864-5328,  Email: pshenoy@ku.edu

ABSTRACT
The main objective of this paper is to describe how Dempster-Shafer’s (DS) theory of
belief functions fits in the framework of valuation-based systems (VBS). Since VBS serve
as a framework for managing uncertainty in expert systems, this facilitates the use of DS
belief-function theory in expert systems.
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1. INTRODUCTION
The main goal of this paper is to describe how Dempster-Shafer’s (DS) theory of belief function can be

used for managing uncertainty in expert systems. We describe how belief-function theory fits in the

framework of valuation-based systems (VBS). Since VBS serve as a framework for managing uncertainty

in expert systems, this facilitates the use of belief-function theory in expert systems.

The theory of belief functions was first described by Dempster (1967) and further developed by Shafer

(1976). In belief-function theory, the basic representational unit is called a basic probability assignment

(bpa) function. The two main operations for manipulating bpa functions are marginalization and

Dempster’s rule of combination.

The framework of VBS was first defined by Shenoy (1989) as a general language for incorporating

uncertainty in expert systems. It was further elaborated in (Shenoy, 1991c) to include axioms that permit

local computation in solving a VBS, and a fusion algorithm for solving a VBS using local computation.

VBS encode knowledge using functions called valuations. VBS include two operators called combination

and marginalization that operate on valuations. Combination corresponds to aggregation of knowledge.

Marginalization corresponds to coarsening of knowledge. The process of reasoning in VBS can be de-

scribed simply as finding the marginal of the joint valuation for each variable in the system. The joint val-

uation is the valuation obtained by combining all valuations. In systems with many variables, it is compu-

tationally intractable to explicitly compute the joint valuation. However, if combination and marginalization

satisfy certain axioms, it is possible to compute the marginals of the joint valuation without explicitly com-

puting the joint valuation.

Appeared in : Yager, R. R., M. Federizzi, and J. Kacprzyk, eds., Advances in the Dempster-Shafer
Theory of Evidence, 1994, pp. 395–414, John Wiley & Sons, New York, NY.
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The framework of VBS is general enough to represent many domains such as Bayesian probability

theory (Shenoy, 1991c), Spohn’s theory of epistemic beliefs (Spohn, 1988; Shenoy, 1991a), Zadeh’s

possibility theory (Zadeh, 1979; Shenoy, 1991d), discrete optimization (Shenoy 1991b), propositional

logic (Shenoy, 1990a,b), constraint satisfaction (Shenoy and Shafer, 1988), and Bayesian decision theory

(Shenoy, 1990c,d). Saffiotti and Umkehrer (1991) describe an efficient implementation of VBS called

Pulcinella.

The correspondence between belief-function theory and VBS is as follows. Dempster’s rule of

combination in belief-function theory corresponds to the combination operation in VBS. And the

marginalization operation in belief-function theory corresponds to the marginalization operation in VBS.

The framework of VBS was inspired by the axiomatic study of the computational theory in Bayesian

probability theory and belief-function theory (Shenoy and Shafer, 1990).

An outline of this paper is as follows. Section 2 describes the framework of VBS. Section 3 describes

the main features of belief-function theory in terms of the framework of VBS. Section 4 describes a small

example illustrating the use of belief-function theory for managing uncertainty in expert systems. Section 5

contains some concluding remarks. Finally, section 6 contains proofs of all results in the paper.

2. VALUATION-BASED SYSTEMS
In this section, we sketch the basic features of VBS. Also, we describe three axioms that permit the use of

local computation, and describe a fusion algorithm for solving a VBS using local computation.

2.1. The framework

This subsection describes the framework of valuation-based systems. In a VBS, we represent knowledge

by functions called valuations. We make inferences in a VBS using two operators called combination and

marginalization. We use these operators on valuations.

Variables and Configurations. We use the symbol WX for the set of possible values of a variable

X, and we call WX the frame for X. We assume that one and only one of the elements of WX is the true

value of X. We are concerned with a finite set X of variables, and we assume that all the variables in X

have finite frames.

Given a nonempty set s of variables, let Ws denote the Cartesian product of WX for X in s; Ws =

×{WX | X∈s}. We call Ws the frame for s. We call the elements of Ws configurations of s.

Valuations. Given a subset s of variables, there is a set Vs. We call the elements of Vs valuations for

s. Let V denote the set of all valuations, i.e., V = ∪{Vs | s⊆X}. If σ is a valuation for s, then we say s is

the domain of σ.

Valuations are primitives in our abstract framework and as such require no definition. But as we shall

see shortly, they are objects which can be combined and marginalized. Intuitively, a valuation for s

represents some knowledge about the variables in s.

Nonzero valuations. For each s⊆X, there is a subset Ps of Vs whose elements are called nonzero

valuations for s. Let P denote ∪{Ps | s⊆X}, the set of all nonzero valuations.
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Intuitively, a nonzero valuation represents knowledge that is internally consistent. The notion of

nonzero valuations is important as it enables us to constrain the definitions of combination and

marginalization to meaningful operators. An example of a nonzero valuation is a basic probability

assignment (bpa) function.

Combination. We assume there is a mapping ⊗:V×V → V, called combination, such that

(i) if ρ and σ are valuations for r and s, respectively, then ρ⊗σ is a valuation for r∪s;

(ii) if either ρ or σ is not a nonzero valuation, then ρ⊗σ is not a nonzero valuation; and

(iii) if ρ and σ are both nonzero valuations, then ρ⊗σ may or may not be a nonzero

valuation.

We call ρ⊗σ the combination of ρ and σ.

Intuitively, combination corresponds to aggregation of knowledge. If ρ and σ are valuations for r and

s representing independent knowledge about variables in r and s, respectively, then ρ⊗σ represents the

aggregated knowledge about variables in r∪s. (The definition of independence is given in (Shenoy,

1991e).) For bpa functions, combination is Dempster’s rule of combination (described in section 3).

Marginalization. We assume that for each s⊆X, and for each X∈s, there is a mapping

↓(s−{X}): Vs → Vs–{X}, called marginalization to s–{X} such that

(i) If σ is a valuation for s, then σ↓(s–{X}) is a valuation for s–{X}; and

(ii) σ↓(s–{X}) is a nonzero valuation if and only if σ is a nonzero valuation.

We call σ↓(s–{X}) the marginal of σ for s–{X}.

Intuitively, marginalization corresponds to coarsening of knowledge. If σ is a valuation for s

representing some knowledge about variables in s, and X∈s, then σ↓(s–{X}) represents the knowledge

about variables in s–{X} implied by σ if we disregard variable X. In the case of bpa functions,

marginalization is addition.

In summary, a valuation-based system consists of a 3-tuple {{σ1, ..., σm}, ⊗, ↓} where {σ1, ...,

σm} is a collection of valuations, ⊗ is the combination operator, and ↓ is the marginalization operator.

Valuation Networks. A graphical depiction of a valuation-based system is called a valuation

network. In a valuation network, variables are represented by circular nodes, and valuations are

represented by diamond-shaped nodes. Also, each valuation node is connected by an undirected edge to

each variable node in its domain. Figure 1 shows a valuation network for a VBS that consists of valuations

σ1 for {W}, σ2 for {W, X}, σ3 for {X, Y}, and σ4 for {Y, Z}.
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Making Inference in VBS. In a VBS, the combination of all valuations is called the joint

valuation. Given a VBS, we make inferences by computing the marginal of the joint valuation for each

variable in the system.

If there are n variables in the system, and each variable has two configurations in its frame, then there

are 2n configurations of all variables. Hence, it is not computationally feasible to compute the joint

valuation when there are a large number of variables. In section 2.3, we describe an algorithm for

computing marginals of the joint valuation without explicitly computing the joint valuation, i.e., using only

local computation. So that this algorithm gives us the correct answers, we require combination and

marginalization to satisfy three axioms. The axioms and the algorithm are described in the next two

subsections, respectively.

2.2. Axioms

In this section, we state three simple axioms that enable local computation of marginals of the joint valua-

tion. These axioms were first formulated by Shenoy and Shafer (1990). The axioms are stated slightly dif-

ferently here.

Axiom A1 (Commutativity and associativity of combination): Suppose ρ, σ, and τ are

valuations for r, s, and t, respectively. Then

ρ⊗σ = σ⊗ρ, and ρ⊗(σ⊗τ) = (ρ⊗σ)⊗τ.

Axiom A2 (Order of deletion does not matter): Suppose σ is a valuation for s, and

suppose X1, X2 ∈ s. Then

(σ↓(s–{X1}))↓(s–{X1,X2}) = (σ↓(s–{X2}))↓(s–{X1,X2}).

Axiom A3 (Distributivity of marginalization over combination): Suppose ρ and σ are

valuations for r and s, respectively. Suppose X∉r, and suppose X∈s. Then

(ρ⊗σ)↓((r∪s)–{X}) = ρ⊗(σ↓(s−{X})).

One implication of Axiom A1 is that when we have multiple combinations of valuations, we can write

it without using parenthesis. For example, (...((σ1⊗σ2)⊗σ3)⊗...⊗σm) can be written simply as

Figure 1. A valuation network for a VBS consisting of valuations σ1 for

{W}, σ2 for {W, X}, σ3 for {X, Y}, and σ4 for {Y, Z}.

W X Y Z

σ1 σ2 σ3 σ4
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⊗{σi | i = 1, ..., m} or as σ1⊗...⊗σm, i.e., we need not indicate the order in which the combinations are

carried out.

If we regard marginalization as a coarsening of a valuation by deleting variables, then axiom A2 says

that the order in which the variables are deleted does not matter. One implication of this axiom is that

(σ↓(s−{X1}))↓(s–{X1,X2}) can be written simply as σ↓(s–{X1,X2}), i.e., we need not indicate the order in

which the variables are deleted.

Axiom A3 is the crucial axiom that makes local computation possible. Axiom A3 states that the

computation of (ρ⊗σ)↓((r∪s)–{X}) can be accomplished without having to compute ρ⊗σ. The combination

operation in ρ⊗σ is on the frame for r∪s whereas the combination operation in ρ⊗(σ↓(s–{X})) is on the

frame for (r∪s)–{X}. In the next subsection, we describe a fusion algorithm that applies this axiom

repeatedly resulting in an efficient method for computing marginals.

2.3. A fusion algorithm

In this subsection, we describe a fusion algorithm for making inferences in a VBS using local computa-

tion. Suppose {{σ1, ..., σm}, ⊗, ↓} is a VBS with n variables and m valuations. Suppose that combina-

tion and marginalization satisfy the three axioms stated in section 2.2. Suppose we have to compute the

marginal of the joint valuation for variable X, (σ1⊗...⊗σm)↓{X}. The basic idea of the fusion algorithm is

to successively delete all variables but X from the VBS. The variables may be deleted in any sequence.

Axiom A2 tells us that all deletion sequences lead to the same answers. But, different deletion sequences

may involve different computational costs. We will comment on good deletion sequences at the end of this

section.

When we delete a variable, we have to do a “fusion” operation on the valuations. Consider a set of k

valuations ρ1, ..., ρk. Suppose ρi is a valuation for ri. Let FusX{ρ1, ..., ρk} denote the collection of

valuations after fusing the valuations in the set {ρ1, ..., ρk} with respect to variable X. Then

FusX{ρ1, ..., ρk} = {ρ↓(r−{X})}∪{ρi | X∉ri}
where ρ = ⊗{ρi | X∈ri}, and r = ∪{ri | X∈ri}. After fusion, the set of valuations is changed as follows.

All valuations that bear on X are combined, and the resulting valuation is marginalized such that X is

eliminated from its domain. The valuations that do not bear on X remain unchanged.

We are ready to state the theorem which describes the fusion algorithm.

Theorem 1. Suppose {{σ1, ..., σm}, ⊗, ↓} is a VBS, where σi is a valuation for si, and

suppose ⊗ and ↓ satisfy axioms A1–A3. Let X denote s1∪...∪sm. Suppose X∈X, and

suppose X1X2...Xn–1 is a sequence of variables in X–{X}. Then

(σ1⊗...⊗σm)↓{X} = ⊗{FusXn–1
{... FusX2

{FusX1
{σ1, ..., σm}}}}.
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Figure 2. The first valuation network shows the initial VBS. The second network is the result
after fusion with respect to W. The third network is the result after fusion with respect to X.

The fourth network is the result after fusion with respect to Y.

W X Y Z

σ1

X Y Z

Y Z

Z

σ2
σ4σ3

σ3 σ4

σ4

(σ1⊗σ2)↓{X}

((σ1⊗σ2)↓{X}⊗σ3)↓{Y}

(((σ1⊗σ2)↓{X}⊗σ3)↓{Y}⊗σ4)↓{Z}

Example 1 (Fusion Algorithm). Consider a VBS with four variables: W, X, Y, and Z, and four

valuations: σ1 for {W}, σ2 for {W, X}, σ3 for {X,Y}, and σ4 for {Y, Z}. Suppose we need to compute

the marginal of the joint for Z, (σ1⊗...⊗σ4)
↓{Z}. Consider the deletion sequence WXY. After fusion with

respect to W, we have (σ1⊗σ2)↓{X} for {X}, σ3 for {X, Y}, and σ4 for {Y, Z}. After fusion with respect

to X, we have ((σ1⊗σ2)↓{X}⊗σ3)
↓{Y} for {Y}, and σ4 for {Y, Z}. Finally, after fusion with respect to Y,

we have (((σ1⊗σ2)↓{X}⊗σ3)
↓{Y}⊗σ4)↓{Z} for {Z}. Theorem 1 tells us that

(((σ1⊗σ2)↓{X}⊗σ3)
↓{Y}⊗σ4)↓{Z} = (σ1⊗...⊗σ4)

↓{Z}. Thus, instead of doing combinations on the frame

for {W, X, Y, Z}, we do combinations on the frame for {W, X}, {X, Y}, and {Y, Z}. The fusion

algorithm is shown graphically in Figure 2. ■
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If we can compute the marginal of the joint valuation for one variable, then we can compute the

marginals for all variables. We simply compute them one after the other. It is obvious, however, that this

will involve much duplication of effort. Shenoy and Shafer (1990) describe an efficient algorithm for

simultaneous computation of all marginals without duplication of effort. Regardless of the number of

variables in a VBS, we can compute marginals of the joint valuation for all variables for roughly three

times the computational effort required to compute one marginal.

Deletion Sequences. Different deletion sequences may involve different computational efforts. For

example, consider the VBS in the above example. In this example, deletion sequence WXY involves less

computational effort than, for example, XYW, as the former involves combinations on the frame for two

variables only whereas the latter involves combination on the frame for three variables. Finding an optimal

deletion sequence is a secondary optimization problem that has shown to be NP-complete (Arnborg et al.,

1987). But, there are several heuristics for finding good deletion sequences (Kong, 1986; Mellouli, 1987;

Zhang, 1988; Kjærulff, 1990).

One such heuristic is called one-step-look-ahead (Kong, 1986). This heuristic tells us which variable

to delete next. As per this heuristic, the variable that should be deleted next is one that leads to combination

over the smallest frame. For example, in the VBS described above, if we assume that each variable has a

frame consisting of two configurations, then this heuristic would pick W over X and Y for first deletion

since deletion of W involves combination on the frame for {W, X} whereas deletion of X involves combi-

nation on the frame for {W, X, Y}, and deletion of Y involves combination on the frame for {X, Y, Z}.

After W is deleted, for second deletion, this heuristic would pick X over Y. Thus, this heuristic would

choose deletion sequence WXY.

3 DS THEORY OF BELIEF FUNCTIONS
In this section, we describe the main features of DS theory of belief functions in terms of the framework of

VBS described in the previous section. The basic unit of knowledge representation is called a basic prob-

ability assignment (bpa) function.

Definition 1 (Bpa function). A basic probability assignment (bpa) function µ  for h is

a function µ: 2Wh → [0, 1] such that Σ{µ(a) | a∈2Wh} = 1. (2Wh denotes the set of all

nonempty subsets of Wh).

Intuitively, µ(a) represents the degree of belief assigned exactly to a (the proposition that the true

configuration of h is in the set a) and to nothing smaller. A bpa function is the belief function equivalent

of a probability mass function in probability theory. Whereas a probability mass function is restricted to

assigning probability masses only to singleton configurations of variables, a bpa function is allowed to

assign probability masses to sets of configurations without assigning any mass to the individual

configurations contained in the sets.
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Consider the following bpa function µ for h: µ(Wh) = 1, and µ(a) = 0 for all other a ∈2Wh. We shall

call such a bpa function vacuous. It represents a state of complete ignorance.

Belief Functions. The information contained in a bpa function can be expressed in several different

ways. One way is in terms of the belief function defined as follows.

Definition 2 (Belief function). A belief function β for h corresponding to bpa

function µ for h is a function β: 2Wh → [0, 1] such that

β(a) = Σ{µ(b) | b ⊆ a} (1)

for each a ∈ 2Wh.

Intuitively, whereas the quantity µ(a) measures the belief that one commits exactly to a, the quantity

β(a) measures the total belief that one commits to a.

It is shown in Shafer (1976, p. 39) that we can recover µ from β:

µ(a) = ∑{(–1)|a–
 
b| β(b) | b⊆ a},

where |a– b| denotes the number of elements in the set a– b.

Plausibility Function. Another way of expressing the information contained in a bpa function µ is

in terms of the plausibility function π defined as follows.

Definition 3 (Plausibility function). A plausibility function π for h corresponding to

bpa function µ for h is a function π: 2Wh → [0, 1] such that

π(a) = Σ{µ(b) | b ∩ a ≠ ∅} (2)

 for each a ∈ 2Wh.

Since the probability mass µ(b) can move into a if and only if b ∩ a ≠ ∅, π(a) measures the total

probability mass that can move into a, i.e., π(a) measures the extent to which one finds a plausible.

Suppose ~a denotes the complement of a; ~a = Wh− a. Since {b∈2Wh | b ⊆ a}∪{b∈2Wh|

b ∩ ~a ≠ ∅} = 2Wh, β(a) = 1 − π(~a), and π(a) = 1 − β(~a). Thus π(a) also measures the extent to

which the given evidence fails to refute a.

Since {b∈2Wh | b ⊆ a} ⊆ {b∈2Wh| b ∩ a ≠ ∅}, β(a) ≤ π(a) for every subset a of Wh. Both β

and π are monotone: β(a) ≤ β(b) and π(a) ≤ π(b) whenever a ⊆ b.

Although belief functions and plausibility functions are easier to interpret than bpa functions, bpa

functions are easier to work with mathematically. Bpa functions correspond to nonzero valuations in VBS.

Before we can define combination and marginalization for bpa functions, we need the concepts of

projection of configurations, and projection and extension of subsets of configurations.

Projection of configurations. Projection of configurations simply means dropping extra

coordinates; if (w,x,y,z) is a configuration of {W,X,Y,Z}, for example, then the projection of (w,x,y,z)

to {W,X} is simply (w,x), which is a configuration of {W,X}. If g and h are sets of variables, h⊆g, and

x is a configuration of g, then x↓h denotes the projection of x to h.
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Projection and Extension of Sets of Configurations. If g and h are sets of variables, h⊆g,

and g is a nonempty subset of Wg, then the projection of g to h, denoted by g↓h, is the subset of Wh

given by g↓h = {x↓h | x∈g}. For example, If a is a subset of W{W,X,Y,Z}, then the projection of a to

{X,Y} consists of the elements of W{X,Y} which can be obtained by projecting elements of a to W{X,Y}.

By extension of a subset of a frame to a subset of a larger frame, we mean a cylinder set extension. If

g and h are sets of variables, h is a proper subset of g, and h is a nonempty subset of Wh, then the exten-

sion of h to g is h×Wg-h. Let h↑g denote the extension of h to g. For example, if a is a nonempty

subset of W{W,X}, then the extension of a to {W,X,Y,Z} is a×W{Y,Z}.

Marginalization. Suppose µ is a bpa function for h. Suppose X∈h. We may be interested only in

propositions about variables in h–{X}. In this case, we would like to marginalize µ to h–{X}.

Definition 4 (Marginalization). Suppose µ is a bpa function for h, and suppose

X∈h. The marginal of µ for h–{X}, denoted by µ↓(h–{X}), is the bpa function for h–{X}

defined as follows:

µ↓(h–{X})(a) = Σ{µ(b) | b ⊆ Wh such that b↓(h–{X}) = a}
for all nonempty subsets a of Wh–{X}.

Theorem 2 states that the marginalization operation for belief function satisfies Axiom A2 stated in

section 2.2.

Theorem 2. Suppose µ is a bpa function for h, and suppose X1, X2 ∈ h. Then

(µ↓(h–{X1}))↓(h–{X1,X2}) = (µ↓(h–{X2}))↓(h–{X1,X2}).

Example 2 (Bpa functions and marginalization). We would like to determine whether a

stranger (about who we know nothing about) is a pacifist or not depending on whether he is a Republican

or not and whether he is a Quaker or not. Consider three variables R, Q and P. R has two configurations: r

(for Republican), ~r (not Republican); Q has two configurations: q (Quaker) and ~q (not Quaker); and P

has two configurations: p (pacifist) and ~p (not pacifist). Our knowledge that most (at least 90 percent)

Republicans are not pacifists and that most (at least 99 percent) Quakers are pacifists is represented by the

bpa function µ for {R,Q,P} shown in Table 1 (the construction of this bpa function will be explained later

in this section—see Example 3).

Note that the marginal of µ for R is the vacuous bpa function for R, i.e., µ↓{R}({r, ~r}) = 1. Thus, we

have no knowledge whether the stranger is a republican or not. Similarly, notice that the marginals of µ for

{Q} and {P} are also vacuous. The marginal of µ for {R, P} is as follows:

µ↓{R,P}({(r,~p), (~r,p), (~r,~p)}) = 0.90, µ↓{R,P}({(r,p), (r,~p), (~r,p), (~r,~p)}) = 0.10

Thus the plausibility of a Republican pacifist is only 0.10. Similarly, notice that the marginal of µ for {Q,

P} is as follows:

µ↓{Q,P}({(q,p), (~q,p), (~q,~p)}) = 0.99,

µ↓{Q,P}({(q,p), (q,~p), (~q,p), (~q,~p)}) = 0.01.
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Thus the plausibility of a non-pacifist Quaker is only 0.01. Finally note that the marginal of µ for {R, Q}

is as follows:

µ↓{R,Q}({(r,~q), (~r,q), (~r,~q)}) = 0.891,

µ↓{R,Q}({(r,q), (r,~q), (~r,q), (~r,~q)}) = 0.109

Thus the plausibility of a Republican Quaker is only 0.109. ■

Next, we state a rule for combining bpa functions. This rule is called Dempster’s rule (Dempster,

1967, pp. 335–337).

Definition 5. Consider two bpa functions µ1 and µ2 for h1 and h2, respectively. Suppose

K = Σ{µ1(a)µ2(b) | (a↑(h1∪h2))∩(b↑(h1∪h2)) ≠ ∅ }. The combination of µ1 and µ2,

denoted by µ1⊗µ2, is the function for h1∪h2 given by

K–1Σ{µ1(a)µ2(b) | (a↑(h1∪h2))∩(b↑(h1∪h2)) = c } if K ≠ 0

(µ1⊗µ2)(c) = 
0 if K = 0

for all nonempty c⊆Wh1∪h2
.

If K = 0, then µ1⊗µ2 is not a bpa function. In this case, µ1⊗µ2 is not a nonzero valuation. This

means that the knowledge in µ1 and µ2 are inconsistent. If K ≠ 0, then K is a normalization constant that

ensures that µ1⊗µ2 is a bpa function.

Example 3 (Dempster’s rule of combination). Consider two pieces of independent knowledge

as follows:

1. Most Republicans (at least 90 percent) are not pacifists.

2. Most Quakers (at least 99 percent) are pacifists.
If µ1 is a bpa function representation of the first piece of knowledge, and µ2 is a bpa function

representation of the second piece of knowledge, then µ1⊗µ2 represents the aggregation of these two

pieces of knowledge. The first piece of knowledge can be represented by the bpa function µ1 for {R,P} as

follows:

µ1(W{R,P}−{(r,p)}) = 0.90, µ1(W{R,P}) = 0.10

Table I.
A bpa function µ for {R,Q,P}.

2W{R,Q,P} µ

{(r,~q,~p), (~r,q,p), (~r,~q,p), (~r,~q,~p)} 0.891

{(r,q,~p), (r,~q,~p), (~r,q,p), (~r,~q,p), (~r,q,~p), (~r,~q,~p)} 0.009

{(r,q,p), (r,~q,p), (r,~q,~p), (~r,q,p), (~r,~q,p), (~r,~q,~p)} 0.099

{(r,q,p), (r,q,~p), (r,~q,p), (r,~q,~p), (~r,q,p), (~r,q,~p), (~r,~q,p), (~r,~q,~p)} 0.001
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(i.e., the plausibility of pacifist Republicans is only 0.10). Similarly, the second piece of knowledge can

be represented by the bpa function µ2 for {Q,P} as follows:

µ2(W{Q,P}−{(q,~p)}) = 0.99, µ2(W{Q,P}) = 0.01

(i.e., the plausibility of non-pacifist Quakers is only 0.01). Then the bpa function µ1⊗µ2 = µ, say, shown

in Table 1, represents the aggregate knowledge. ■

Theorem 3 (Shafer, 1976). Dempster’s rule of combination has the following properties:

C1. (Commutativity) µ1⊗µ2 = µ2⊗µ1.
C2. (Associativity) (µ1⊗µ2)⊗µ3 = µ1⊗(µ2⊗µ3).

C3. If µ1 is vacuous, then µ1⊗µ2 = µ2.

C4. In general, µ1⊗µ1 ≠ µ1. The bpa function µ1⊗µ1 believes in the same propositions as

µ1, but it will do so with twice the degree, as it were.

The bpa function µ1⊗µ2 represents aggregation of knowledge contained in bpa functions µ1 and µ2

only when the bpa functions µ1 and µ2 are independent, i.e., the bpa functions µ1 and µ2 do not contain

some common knowledge. Property C4 tells us that double-counting of knowledge may lead to erroneous

information. Thus it is important to ensure that the bpa functions being combined are independent.

We have already shown that axioms A1 and A2 are valid for bpa functions. Theorem 4 below states

that axiom A3 is also satisfied.

Theorem 4. Suppose µ1 and µ2 are bpa functions for h1 and h2, respectively. Suppose

X∉h1, and suppose X∈h2. Then (µ1⊗µ2)↓((h1∪h2)–{X}) = µ1⊗(µ2
↓(h2−{X})).

Since all three axioms required for local computation of marginals are satisfied, the fusion algorithm

described in section 2.3 can be used for reasoning from knowledge expressed as bpa functions. The next

section describes a small example to illustrate the use of the fusion algorithm to find marginals.

4. AN EXAMPLE
In this section, we describe an example in complete detail to illustrate the use of DS belief-function theory

in managing uncertainty in expert systems.

Is Dick a Pacifist? Consider the following independent items of evidence. Most (at least 90

percent) Republicans are not pacifists. Most Quakers (at least 99 percent) are pacifists. Dick is a

Republican (and we are more than 99.9 percent certain of this). Dick is a Quaker (and we are more than

99.9 percent certain of this). Is Dick a pacifist?

We will model the four items of evidence as bpa potentials as follows. Consider three variables R, Q,

and P, each with two configurations in their respective frames. R=r represents the proposition that Dick is

a Republican, and R=~r represents the proposition that Dick is not a Republican. Similarly for Q and P.

The four items of evidence are represented by bpa potentials µ1 for {R,P}, µ2 for {Q, P}, µ3 for {R},
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and µ4 for {Q}, respectively, as displayed in Table 2. Figure 3 shows the valuation network for this

example.

If we apply the fusion algorithm using deletion sequence RQ, we get (µ1⊗µ2⊗µ3⊗µ4)
↓{P} =

(µ1⊗µ3)
↓{P}⊗(µ2⊗µ4)

↓{P}. The details of the computations are shown in Table 3. The degree of belief

that Dick is a pacifist is 0.9008. Notice that we can avoid the normalization operation in Dempster’s rule in

the intermediate stages and do it just once at the very end (the last combination operation). ■

The use of local computation in computing marginals of the joint bpa function has been widely studied.

Some of the influential works in this area are those by Shenoy and Shafer (1986, 1990), Kong (1986),

Shafer, Shenoy and Mellouli (1987), Mellouli (1987), and Dempster and Kong (1988). The fusion

algorithm applied to the case of belief function theory is an abstraction of the methods described in these

papers.

5. CONCLUSIONS
We have described the framework of valuation-based systems (VBS), we have described three axioms that

permit the use of local computation in computing marginals of the joint valuation, and we have described a

fusion algorithm for computing marginals using local computation. Next, we have described the essential

features of DS theory of belief functions and described how this theory fits in the framework of VBS.

Elsewhere, we have described how VBS serve as a language for constructing expert systems (Shenoy,

1989). Thus, the correspondence between the theory of belief functions and the framework of VBS should

facilitate the use of DS belief-function theory in expert systems.
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Table II.
The bpa potentials µ1, µ2, µ3, and µ4 in Is Dick a Pacifist? example.

2W{R, P} µ1 2WR µ3

{(r,~p), (~r,p), (~r,~p)} .90 {r} .999

{(r,p), (r,~p), (~r,p), (~r,~p)} .10 {r, ~r} .001

2W{Q, P} µ2 2WQ µ4

{(q,p), (~q,p), (~q,~p)} .99 {q} .999

{(q,p), (q,~p), (~q,p), (~q,~p)} .01 {q, ~q} .001

Figure 3. The valuation network for the Is Dick a Pacifist? example.

R P Q

µ1 µ2
µ4µ3

Table III.

The computation of (µ1⊗µ3)
↓{P}⊗(µ2⊗µ4)

↓{P}.

2W{R,P} µ1⊗µ3 2W{Q,P} µ2⊗µ4

{(r,~p)} .8991 {(q,p)} .98901

{(r,p), (r,~p)} .0999 {(q,p), (q,~p)} .00999

{(r,~p), (~r,p),

(~r,~p)} .0009

{(q,p), (~q,p),

(~q,~p)} .00099

{(r,p), (r,~p),

(~r,p), (~r,~p)} .0001

{(q,p), (q,~p),

(~q,p), (~q,~p)} .00001

2WP (µ1⊗µ3)
↓{P} (µ2⊗µ4)

↓{P}
(µ1⊗µ3)

↓{P}

⊗(µ2⊗µ4)
↓{P}

{p} .0000 .98901 .9008

{~p} .8991 .00000 .0892

{p, ~p} .1009 .01099 .0100
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6. PROOFS
In this section, we give proofs for all results in the paper. First we state and prove a lemma needed to

prove Theorem 1.

Lemma 1. Suppose {{σ1, ..., σm}, ⊗, ↓} is a VBS where σi is a valuation for si, and

suppose ⊗ and ↓ satisfy axioms A1–A3. Let X denote s1∪...∪sm. Suppose X∈X. Then

(σ1⊗...⊗σm})↓(x–{X}) = ⊗FusX{σ1, ..., σm}.

Proof of Lemma 1. Suppose σi is a valuation for si, i = 1, ..., m. Let s = ∪{si | X∈si}, and let r =

∪{si | X∉si}. Let ρ = ⊗{σi | X∉si}, and σ = ⊗{σi | X∈si}. Note that X∈s, and X∉g. Then

(σ1⊗...⊗σm)↓(x–{X}) = (ρ⊗σ)↓((r∪s)–{X})

= ρ⊗(σ↓(s–{X})) (using axiom A3)

= (⊗{σi | X∉si})⊗(σ↓(s–{X}))

= ⊗FusX{σ1, ..., σm}. ■

Proof of Theorem 1. By axiom A2, (σ1⊗...⊗σm)↓{X} is obtained by sequentially marginalizing all

variables but X from the joint valuation. A proof of this theorem is obtained by repeatedly applying the

result of Lemma 1. At each step, we delete a variable and fuse the set of all valuations with respect to this

variable. Using Lemma 1, after fusion with respect to X1, the combination of all valuations in the resulting

VBS is equal to (σ1⊗...⊗σm)↓(x–{X1}). Again, using Lemma 1, after fusion with respect to X2, the

combination of all valuations in the resulting VBS is equal to (σ1⊗...⊗σm)↓(x–{X1,X2}). And so on. When

all variables but X have been deleted, we have the result. ■

Proof of Theorem 2. Suppose µ is a bpa function for h, and suppose X1, X2 ∈ h. Then

(µ↓(h-{X1}))↓(h–{X1,X2})(a)

= Σ{µ↓(h-{X1})(b) | b ⊆ Wh–{X1} such that b↓(h–{X1,X2}) = a}
= Σ{Σ{µ(c) | c⊆Wh such that c↓(h–{X1}) = b} | b⊆Wh–{X1} such that b↓(h–{X1,X2}) = a}
= Σ{µ(c) | c⊆Wh such that (c↓(h–{X1}))↓(h–{X1,X2}) = a}
= Σ{µ(c) | c⊆Wh such that c↓(h–{X1,X2}) = a}.

Similarly, we can show that

(µ↓(h–{X2}))↓(h–{X1,X2}) = Σ{µ(c) | c⊆Wh such that c↓(h–{X1,X2}) = a}. ■

Proof of Theorem 3. All four properties follow trivially from the definition of Dempster’s rule of

combination. ■
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Proof of Theorem 4. First, note that the normalization factor in the combination on the left-hand side,

say K1, is the same as the normalization factor in the combination on the right-hand side, say K2, i.e., K1

= K2, as shown below.

K2 = Σ{µ1(a)µ2
↓(h2−{X})(e) | (a↑(h1∪(h2–{X}))∩(e↑(h1∪(h2–{X})) ≠ ∅ }

= Σ{µ1(a)Σ{µ2(b) | b↓(h2–{X}) = e} | (a↑(h1∪(h2–{X}))∩(e↑(h1∪(h2–{X})) ≠ ∅ }
= Σ{µ1(a)µ2(b) | (a↑(h1∪(h2–{X}))∩((b↓(h2–{X}))↑(h1∪(h2–{X})) ≠ ∅}

= Σ{µ1(a)µ2(b) | (a↑(h1∪(h2–{X}))∩(b↑(h1∪(h2–{X})) ≠ ∅}

= Σ{µ1(a)µ2(b) | (a↑(h1∪h2))∩(b↑(h1∪h2)) ≠ ∅}

= K1 = K, say.

Next,

(µ1⊗µ2)↓((h1∪h2)–{X})(d) =

= Σ{(µ1⊗µ2)(c) | c↓((h1∪h2)–{X}) = d}

= Σ{K–1Σ{µ1(a)µ2(b) | (a↑(h1∪h2))∩(b↑(h1∪h2)) = c } | c↓((h1∪h2)–{X}) = d}
= K–1Σ{µ1(a)µ2(b) | ((a↑(h1∪h2))∩(b↑(h1∪h2)))↓((h1∪h2)–{X}) = d}

= K–1Σ{µ1(a)µ2(b) | (a↑((h1∪h2)–{X})∩(b↑((h1∪h2)–{X}) = d}

= K–1Σ{µ1(a)µ2(b) | (a↑(h1∪(h2–{X}))∩((b↓(h2–{X}))↑(h1∪(h2–{X})) = d}

= K–1Σ{µ1(a)Σ{µ2(b) | b↓(h2–{X}) = e}|(a↑(h1∪(h2–{X}))∩e↑(h1∪(h2–{X})) = d}

= K–1Σ{µ1(a)µ2
↓(h2−{X})(e)|(a↑(h1∪(h2–{X}))∩(e↑(h1∪(h2–{X})) = d}

= (µ1⊗(µ2
↓(h2−{X})))(d). ■
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