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ABSTRACT 
An approach to managing the architecture of large software 
systems is presented. Dependencies are extracted from the code 
by a conventional static analysis, and shown in a tabular form 
known as the ‘Dependency Structure Matrix’ (DSM). A variety of 
algorithms are available to help organize the matrix in a form that 
reflects the architecture and highlights patterns and problematic 
dependencies. A hierarchical structure obtained in part by such 
algorithms, and in part by input from the user, then becomes the 
basis for ‘design rules’ that capture the architect’s intent about 
which dependencies are acceptable. The design rules are applied 
repeatedly as the system evolves, to identify violations, and keep 
the code and its architecture in conformance with one another. 
The analysis has been implemented in a tool called LDM which 
has been applied in several commercial projects; in this paper, a 
case study application to Haystack, an information retrieval 
system, is described. 

Categories and Subject Descriptors 
D.2.2 [Design Tools and Techniques]: Computer-aided software 
engineering (CASE). 
D.2.9 [Management]: Life cycle. 
D.2.11 [Software Architectures]: Information Hiding. 

General Terms 
Design, Algorithms, Management. 

Keywords 
Architecture, Dependency, Model, Matrix, DSM. 

1. INTRODUCTION 
Excessive inter-module dependencies have long been recognized 
as an indicator of poor software design. Highly coupled systems, 
in which modules have unnecessary dependencies, are hard to 
work with because modules cannot be understood easily in 
isolation, and changes or extensions to functionality cannot be 
contained. 

This paper describes an approach to managing software systems 
using dependencies. A tool extracts dependencies from code, and 

displays them using a scheme that highlights potential problems. 
The user enters ‘design rules’ that distinguish dependencies that 
are problematic because they violate architectural assumptions 
from dependencies that are expected and reasonable. As the 
system evolves over time, the rules are checked in subsequent 
analyses to flag deviations from the architecture, usually 
introduced unwittingly during ongoing development. 

The topic of this paper is the underlying dependency model, and 
the scheme by which potential problems are highlighted. An 
experimental application of the approach to a system of about 
200,000 lines of code is described, which suggests some of the 
approach’s promise, and also indicates areas needing attention. 

The extraction and exploitation of dependencies has been a 
subject of research since Parnas first formulated the notion of 
inter-module dependency in his early papers (most notably [5]). 
The particular representation that we use – a partitioned adjacency 
matrix – has been widely used in the analysis of manufacturing 
processes, where it is referred to as the ‘dependency structure 
matrix’ or ‘design structure matrix’ or DSM. The potential 
significance of the DSM for software was noted by Sullivan et al 
[7], in the context of evaluating design tradeoffs, and has been 
applied by Lopes et al [18] in the study of aspect-oriented 
modularization. MacCormack et al [19] have applied the DSM to 
analyze the value of modularity in the architectures of Mozilla 
and Linux. Our approach, however, seems to be the first 
application of DSM for the explicit management of inter-module 
dependencies, and the tool Lattix Inc’s dependency manager 
(henceforth LDM) seems to be the first publicly available 
implementation of DSM analysis for software. 

Our paper begins, in Section 2, with a short introduction to the 
dependency structure matrix, explaining its origins in the design 
for manufacturing process. Section 3 explains our application of 
the DSM to software, and why it appears to be well-suited to the 
problems of large-scale software design. Section 4 describes the 
key elements of our process for discovering and analyzing the 
architecture of existing systems. Section 5 reports on the 
application of the approach to Haystack, an information retrieval 
system whose codebase has evolved over several years. The paper 
closes in Section 6 with a discussion of related work, in particular 
the Reflexion Model Tool of Murphy,  Notkin and Sullivan [3]. 

2. THE DEPENDENCY STRUCTURE 
MATRIX 
The dependency structure matrix (DSM) was invented for 
optimizing product development processes. Although it has 
broader applications – including, as we shall see, to software – we 
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shall describe it in its original context to make the discussion as 
concrete as possible. 

In the development of a product, a collection of tasks is 
performed. These tasks have dependencies on one another, either 
because of physical objects that must flow from task to task, or 
because of information that one task requires and which another 
task provides. The structure of dependencies amongst these tasks 
is a strong indicator of the efficiency of the process as a whole 
[1]. If the tasks are tightly coupled, with many cyclic 
dependencies, the pipeline will stall frequently, and tasks will 
need to be repeated because of dependencies on tasks that follow 
them. 

The term ‘dependency structure matrix’ refers both to a particular 
representation of such dependencies, and to algorithms for 
reorganizing the dependencies by reordering and clustering tasks. 
The matrix is a simple adjacency matrix with tasks labeling the 
horizontal and vertical axes, and a mark in the ith column and jth 
row when the ith task depends on the jth. Dependencies of tasks on 
themselves are not considered, so there are never marks along the 
diagonal. In some applications, the strength of the dependencies is 
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given numerically, but we shall first consider only binary values, 
writing an ‘X’ for the presence of a dependency, and nothing for 
its absence. 

One important criterion that is used to evaluate the matrix is that 
the dependency relation should be acyclic. This means, in matrix 
terms, that the tasks can be permuted so that the matrix is lower 
triangular – that is, with no entries above the diagonal.  

Figure 1 shows a simple DSM. Examining column 1 we note that 
task A depends on task C; examining column 3 we note that task 
C depends on tasks A and B. Because tasks A and C are mutually 
dependent, the tasks cannot be reordered to make the matrix lower 
triangular. However, if A and C are regarded as a single 
composite task, the cycle can be eliminated. This transformation 
is known as partitioning, and its result is shown in Figure 2, with 
the composite tasks indicated by shading. Such a DSM, which has 
been rearranged so that all dependencies either fall below the 
diagonal or within groups, is said to be in block triangular form. 

The grouping of tasks can be shown in different ways. A new 
compound task can be formed [2] as in Figure 3; in this case, the 
matrix becomes lower triangular. Alternatively, the identities of 
the basic tasks can be retained, by introducing some hierarchical 
structure, as in Figure 4, in which the grouping of A and C is 
shown by their indentation. 

Algorithms have been developed to optimize the ordering of tasks 
and their aggregation into groups. Such algorithms are known as 
partitioning algorithms, and include those of Warfield [10] and of 
Gebala and Eppinger [9]. A different class of algorithms, 
described by Hartigan [11], and known as clustering algorithms, 
optimizes the ordering and aggregation to reduce the number of 
off-diagonal dependencies. Their purpose is not merely to 
eliminate cycles, but to reduce the incidence of any dependencies 
between task clusters. Clustering has been used for architectural 
decomposition [13], and to optimize the organization of product 
development teams [14][15][22]. 

3 APPLYING THE DSM TO SOFTWARE 
The application of the DSM to software, with modules playing the 
role of tasks, is straightforward and yet appears to have several 
advantages over more widely used dependency representations: 

• The matrix representation itself scales better than box-and-
line diagrams; the inclusion of hierarchy, as shown in 
Figures 4 through 10, is particularly helpful.  

• The criteria that motivate partitioning in product 
development workflow have analogues in the structure of 
software systems. Parnas discussed the elimination of cyclic 
dependencies  in his early paper [5]. The term ‘layered’ is 
often used approvingly of systems in which modules can be 
partitioned into layers, with each module having 
dependencies only on modules within the layer or belonging 
to the layer below [17]. Partitioning finds layers and 
highlights cycles. 

• The partitioning algorithms provide an automatic mechanism 
for architectural discovery in a large code base. Partitioning 
eliminates cycles by forming subsystems. The groupings and 
orderings recommended by these algorithms can be applied 
straightforwardly to reorganize the code base so that its 



inherent structure (evident, in Java for example, in the 
package namespace hierarchy) matches the desired structure. 

3.1 LDM’s Dependency Notion 
The LDM tool uses a standard notion of dependency, in which a 
module A depends on a module B if there are explicit references 
in A to syntactic elements of B. Currently, a module is a Java 
class, but a more fine-grained analysis is possible. This simple but 
effective notion of dependency works well for understanding 
design dependencies, in which modifications to one module might 
affect another. It is less well suited to determining runtime 
properties (such as how failures can propagate between modules), 
which require a deeper static analysis. 

As in other dependency tools (such the Reflexion Model Tool  
[3]), the extraction of dependences can be decoupled from their 
analysis, so the techniques we describe here would apply equally 
well on top of more sophisticated static analyses. 

In the LDM tool, the DSM can be configured to display an ‘X’ for 
a dependency or to display a dependency strength representing the 
number of references between two modules that is responsible for 
their dependence. 

LDM offers DSM algorithms for partitioning; it does not 
currently offer automatic clustering. The default decomposition 
used by LDM is based on the code organization: the Java package 
structure. The matrix presented is hierarchical (as in Figure 4), 
and the algorithms and manual intervention can be applied at 
different levels. 

Users can edit the systems structure.  They can reorder modules 
and partition by hand, and create, delete, and move subsystems to 
reflect their understanding of the architecture. Dependencies are 
automatically recalculated and re-aggregated as the structure is 
changed. 

3.2 Architectural Patterns 
A DSM can readily reveal an underlying architectural pattern in 
an existing system, and highlight deviations from it. For example, 
Figure 5 shows layering, in which each layer depends on the 
layers underneath but not on the layers above. Figure 6 shows a 
strictly layered system [20] in which each layer depends only on 
the layer immediately below it. 

Figure 7 shows a change propagator: a subsystem that depends 
on a large number of subsystems and in turn has many subsystems 
depending on it. Change propagators make systems brittle because 
they increase the likelihood that the effect of a change will 
propagate to a disproportionately large portion of the system. In 
this case, the propagator is Project because, as shown in column 
9, it depends on a large number of subsystems, and as shown in 
row 9, a large number of subsystems depend on it. A change in 
Services  could affect nearly the entire system, because 
ProjectLoader depends on Services, Project depends on 
ProjectLoader, and every subsystem depends on Project.  

Baldwin and Clark argue that the value of modular systems 
comes, in large part, from hidden subsystems [2]. Hidden 
subsystems can be replaced easily, and are easier to maintain 
because they have a limited and well-defined interface to the 
system and are therefore unaffected by most modifications. 
 

 
Figure 5: Layered System 

 

 
Figure 6: Strictly Layered System 

 

 
Figure 7: DSM with a Change Propagator 

 

 
Figure 8: Hidden Subsystems 

 
Figure 9: Imperfectly Layered System 



Figure 8 shows two subsystems comp-1 and comp-2, which are 
regarded as hidden within the subsystem domain, because no 
other subsystem depends on them. 

A key advantage of matrix over graph representations is that the 
preponderance of dependencies in the lower triangular part of a 
matrix makes it easy to see the layering pattern even when the 
layering is itself imperfectly pattern even when the layering is 
itself imperfectly implemented. Figure 9 shows a system that is 
not completely layered because of dependencies in column 5. 
Module util depends on application and model, but  dependency 
strengths suggest that this dependency is not as strong as the 
reverse dependency of application or model on util.  

Note that an approach based on DSMs does not imply that every 
software architecture should have a layered, acyclic structure. The 
merit of the DSM approach is simply that it highlights those 
aspects of the architecture that deviate from these norms. This 
allows a succinct characterization of a system’s architecture in 
terms of which deviations are acceptable. Some simply represent 
flaws: violations of the architectural design that can be corrected 
by modifying the code. Others, however, result from conscious 
design tradeoffs, in which the software architect has decided with 
good reason to deviate from a pure layered architecture. 

3.3 Examples 
Figure 10 shows a DSM for JUnit version 3.8.1, an open source 
regression testing framework.  This DSM was created by loading 
the JUnit jar file into LDM and then applying the partitioning 
algorithm. The DSM shows that JUnit is a layered system with 
clean separation of the user interface layers from the underlying 
core logic. 

Figure 11 shows the DSM (created by the same process) for jEdit 
version 4.2, an open source editor with about 800 classes. Its 
layering, unlike JUnit’s, is not immediately apparent. The large 
number of dependencies in column 151 shows that there are a 
number of classes in the top level package jedit that reference 
most of the other subsystems. It also shows that most of the other 
subsystems also reference these classes. This suggests that a 
refactoring might be in order to reduce the coupling. 

3.4 Design Rules 
The distinction between acceptable and unacceptable 
dependencies is expressed using design rules, which are provided 
by the user, and applied to the displayed DSM, in order to 
highlight the dependencies that violate the intended architectural 
design. A design rule may require, for example, that a library 
subsystem has no dependencies on the rest of the application, or 
that only certain parts of a core subsystem may depend on GUI 
modules. 

Continuous checking of design rules, akin to regression testing, 
can be used to keep a code base in sync with its design. 
Architectural creep becomes less of a problem, and flaws 
(especially those introduced by new team members) are caught as 
soon as they are introduced. 

                                                                 
1 In the displayed DSM and in design rules, the symbol * refers to 
immediate components of a package; in design rules, ** refers to 
all direct or indirect descendants. 
 

 
Figure 10: DSM for JUnit 

 

 
Figure 11: DSM for jEdit 

The very expression of design rules has benefits that go beyond a 
shared articulation of design intent. When current design rules are 
violated for good reasons, it forces the revision of design rules 
thereby making architectural evolution explicit. 

The DSM itself provides a convenient way to input design rules, 
by having the user click on cells to identify allowed or forbidden 
relationships. Design rules exploit the hierarchical structure too, 
since a rule specified for a subsystem can apply to all its 
constituents. 

3.4.1 Specifying Design Rules 
Design rules come in two forms 

S1 can-use S2 
S1 cannot-use S2 

indicating that S1 can and cannot depend on S2. In their simplest 
form, the specifiers S1 and S2 are names drawn from the program’s 
namespace (such as Java packages or classes). More generally, 
they can be lists of arbitrary path names with wildcards. 

The user can also define specifiers to use as an orthogonal 
classification of program elements; for example, subsystems that 
access a database might be classified as persistence, and 
subsystems that are web-based servlets or Java server pages as 
presentation, allowing rules such as: 

presentation cannot-use persistence 



Classification can be manual, or can be computed automatically 
(for example, according to which external libraries a subsystem 
uses). 

Rules are by default inherited, so that a rule for a subsystem 
applies to its components. They are interpreted in order, so that 
one rule can override another to handle exceptions. Rules can be 
applied equally to external systems; the rule: 

S can-use org.apache.** 

for example, permits dependences on all external libraries whose 
names start with org.apache. This provides a technique to 
control the proliferation of external library usage. 

3.4.2 Using a DSM to Represent Design Rules 
In LDM, design rules are shown visually (Figure 12) by marking 
the corners of a cell with green and black to indicate whether a 
dependency is permitted.  For a can-use rule, the cell has a green 
triangle in the upper left corner; for a cannot-use rule, the cell has 
a black triangle in the lower left corner. A dependency in a cell 
governed by a cannot-use rule is a design rule violation, indicated 
by a red triangle in the upper right corner. 

Note that often we turn off the display of the green triangle. This 
makes the display easier to read by enabling the user to focus on 
dependencies which are not permitted. In subsequent figures, a 
triangle in the lower left-hand corner of a cell shows where a 
dependency is prohibited, except for Figure 18, in which the 
triangles highlight violations. 

3.4.3 Example of Design Rules for Patterns 
Architectural patterns can be expressed with design rules. For 
example, the following rules, shown visually in Figure 13, express 
layering (where $root refers to the top-level node in the 
hierarchy): 

$root can-use $root 
model cannot-use application 
domain cannot-use application, model 
framework cannot use application, model, 

domain 
util cannot-use application, model, 

domain, framework 

A strictly layered system might be specified thus: 
$root cannot-use $root 
application can-use application, model 
model can-use model, domain 
domain can-use domain, framework 
framework can-use framework, util 
util can-use util 

In this case it was more convenient to specify the top-level rule as 
a cannot-use, and override it. The rules are shown visually in 
Figure 14. 

A system with independent components might be specified thus: 
comp-1 cannot-use comp-2, comp-3 
comp-2 cannot-use comp-1, comp-3 
comp-3 cannot-use comp-1, comp-2 

and shown as in Figure 15. 

 
Figure 12: DSM with Rule View 

 

 
Figure 13: Design Rules for a Layered System 

 

 
Figure 14: Design Rules for a Strictly Layered System 

 

 
Figure 15: Design Rules for Independent Components  

4. AN APPROACH TO MANAGING 
DEPENDENCIES 
In this section, we give a brief overview of how LDM is used in 
the context of a development project to manage dependencies.  

Although the dependencies that underlie the DSM are extracted 
automatically, establishing the right hierarchical structure – which 
we call the conceptual architecture – relies on guidance from the 
user. As mentioned above, the tool by default uses the program’s 



own package structure as an initial hierarchy, but this usually does 
not reflect the important architectural structure fully.  

Not surprisingly, an iterative process seems to work best, 
combining an understanding of the problem domain and the 
system itself with information obtained from the tool’s DSM 
analyses. 

Once the conceptual architecture has been defined and the 
corresponding DSM obtained, the design rules are developed. 

Our experience so far in using this approach has been as 
consultants applying the LDM tool to projects for our clients. 
Typically, we progress as follows: 

1. Understand Application. We obtain a working knowledge of 
the function and use of the application, by reading user 
documentation and, when possible, running the application.  

2. Create Preliminary DSM. We run LDM to create a preliminary 
DSM using the hierarchical structure of the code’s own 
namespace. 

3. Create Conceptual Architecture. We interview the architects 
and senior developers who have an understanding of how the 
entire application is structured. We then create a conceptual 
architecture, usually in diagrammatic form as a directed graph. 
The DSM is then updated to reflect this hierarchical structure, and 
we examine the resulting dependencies, as aggregated by this 
structure. The structure is refined by removing irrelevant 
subsystems, moving subsystems, and adding new levels in the 
hierarchy. 

5. Audit Dependencies. With the hierarchy in place, we now 
embark on a careful analysis, using LDM, of the dependencies. 
We identify dependencies that appear to violate the intended 
layering or modularity. 

6. Define Design Rules.  A set of design rules is then developed to 
explain the dependencies generated. Dependencies that are 
considered acceptable even though they violate the overall 
architectural intent are permitted by creating exception rules. For 
each rule, a rationale is recorded. 

7. Architectural Remediation. Once a conceptual architecture has 
been defined and a corresponding dependency model obtained, 
architectural violations are highlighted by the tool. Initial 
remediation generally involves package reorganization so that the 
package and file hierarchy corresponds to the subsystem hierarchy 
that was created in the DSM. Other remediation may require more 
substantive code changes so that the dependencies conform to the 
design rules, for example, by creating new interfaces, or adopting 
patterns such as Factory and Listener. 

8. Ongoing Dependency Management. By this point, the code has 
been brought into conformance with the architectural intent, as 
articulated in the hierarchical structuring and in the design rules. 
As the code is developed further, LDM is applied to flag 
deviations from this intent. In most cases, we expect the 
deviations to represent flaws that should then be fixed, but in 
some cases, the deviations will represent evolving changes to the 
architecture which should be accommodated by changes to the 
hierarchy and design rules themselves. 

This process does vary for each application since the quality and 
quantity of system documentation differs greatly, as does the 
availability of key architects with critical insights. Steps may be 
repeated simply to reconcile conflicting information from 
different sources. 

5. A CASE STUDY: A DEPENDENCY 
MODEL FOR HAYSTACK 
In order to determine whether our approach meets its goals, we 
undertook a case study with the following questions in mind: 

• Can the dependency model capture the architecture and scale 
of a program with significant complexity? 

• Can the dependency model help in the management of the 
program’s architecture? Is the dependency model useful for 
extracting the architecture of the program? Does the model 
help in reengineering the software architecture? 

• Can the dependency model ease future maintenance of the 
architecture? Can design rules capture the extracted 
architecture of the program? Are they able to provide support 
for architectural exceptions? 

 
Our choice for this case study was Haystack [12], a research 
prototype of a tool for managing personal information. The 
current incarnation of the tool has been under development for 4 
years, with the core application consisting of 196,707 lines of 
Java code (as measured by Unix wc, which includes comments 
and whitespace). Being a test-bed for research ideas, the program 
has portions whose current use is different from the original 
intent, as well as small portions of code that are not currently 
used. 

Although the code was developed by a team, the original design 
was the work of a single developer who has since left. There is 
very little documentation of the architectural structure – not even 
a high-level architectural diagram. The reengineering task 
therefore reflected the challenge faced in many software projects, 
in which the architectural descriptions, if they ever existed, are no 
longer in sync with the code. 

Our plan in conducting this study was to develop a conceptual 
architecture with the help of LDM, then identify violations, and 
determine what code changes and refactorings would be needed to 
make the code conform. 

The study was conducted by one of the authors of this paper, a 
graduate student with 5 years’ experience in system programming 
in Java and C++. He had been a developer of some extensions to 
Haystack, but was not familiar with the entire codebase, and had 
not worked with DSM’s or LDM prior to the study. 

5.1 Defining the Architecture 
The code base was loaded into LDM which created a DSM 
(shown in Figure 16) based on the package structure. This 
revealed the contrast between previous architectural decisions 
(embedded in the directory structure) and the exceptions to those 
decisions (shown by dependencies above the diagonal in the 
matrix). It quickly became clear that the hierarchical package 
structure did not reflect the architecture well, although the 
individual packages grouped classes reasonably well. 
Using the approach described in Section 4, the conceptual 
architecture of Figure 17 was created. The corresponding DSM 



 
Figure 16: Initial DSM for the Haystack code base 

for the conceptual architecture is shown in Figure 17. LDM’s 
partitioning algorithm was a great help in discovering layering. 
The rapid recomputation of aggregated dependencies as the 
hierarchy is changed was found to be essential, because it allowed 
us to experiment with different structurings and examine their 
consequences in terms of dependencies. The progress we made in 
understanding the architecture is apparent in a comparison of 
Figures 16 and 18 – in particular, the elimination of many 
dependencies in the upper right portion of the matrix. 

5.2 Leveraging the Architecture 
Having developed a conceptual architecture, we then used LDM 
to reveal extra dependencies. An unexpected benefit of building a 
DSM with a cleaner architecture was that by going over the extra 
dependencies and expanding the hierarchy in the matrix, it was 
possible to very quickly to find the cause of the extra 
dependencies. In fact, in the DSM in Figure 18, four regions 
(numbered 1-4) are supposed to be free of dependencies; regions 
1-3 because they are in the top-right diagonal and would represent 
cycles, and region 4 because (as shown in the architectural 
diagram) it represents the independence of the UI from the Server. 

Analysis of the dependencies in these regions suggests the 
remediation necessary in order to clean up the architecture: 

• Region 1 represents dependencies from what is known as the 
project’s data-model. These modules form the building 
blocks of the entire system and therefore are not supposed to 
depend on any other modules. Examining the extra 
dependencies shows that they are caused mainly due to static 
methods. These dependencies show the practice in Haystack 
of not using any particular criteria in placing non-instance 
based helper methods. While these methods should ideally be 
in another module, they are in the data model for ease in 
finding and using them. 

• Region 2 represents dependencies from the project’s 
inference engines. These engines have resulted from the 
evolution and extension of two smaller inference engines one 
primarily used in the server and the other in the UI. Over 
time, they had evolved to have different strengths and are 
being used inconsistently in the code. A redesign of this 
component was already being contemplated. The extra 
dependencies in the grid highlight this need. 



• Region 3 and 4 dependencies represent minor project 
inconsistencies. Examining these extra dependencies shows 
that resolving each one needs a small and local design 
decision, and have likely been caused because of the absence 
of an architectural diagram in the past. 

Beyond helping identify these regions of extra dependencies, the 
rearchitected DSM yielded significant benefits. Just from the 
DSM it is apparent that subsystems for server extensions and user 
interface (ozone) extensions have no major dependencies on the 
rest of the system. This means that they can be changed or newer 
extensions added without significant risk to the system. In fact, a 
large number of these components are now hidden subsystems of 
the server and the user interface. 

Similarly, we were able to create a new abstraction for inference 
engines (region 2) with the DSM without actually writing code. 
While we still needed to refactor the code so that the new 
abstractions would be properly layered and easily available, the 
DSM allowed us to define the details of the new abstraction by 
allowing us to examine all dependencies that would arise from 
creating the abstraction. 

 

 
Figure 17: Haystack - Conceptual Architecture  

5.3 Maintaining the Architecture 
In order to maintain the discovered architecture while re-
architecting and for future development, we described the 
architecture using design rules. Three types of rules were defined: 

1. Rules to reflect the layering (as shown by regions 1-3). For 
example, the rules for region 1 were: 

data-model cannot-use $root 
data-model can use edu.mit.lcs.haystack.* 

2. Rules to indicate the key design decision of the independence 
of server and the user-interface:: 

ozone cannot-use server 

3. Rules to characterize the usage of external libraries. This 
included defining how the base system and extensions use 
external libraries, and were similar to examples shown 
before. 

The red triangles in the top right corner of cells in Figure 18 
highlight the conflicts once the above design rules are entered. 
These rules allow for the periodic automatic checking of the code 
base for design violations. 

5.4 Evaluating DSMs 
By and large, the approach worked well on the case study. 
Although we  have not yet been able to assess the efficacy of 
design rules in  ongoing development, we found the tool very 
helpful in extracting the  architecture, identifying problems and 
checking the results of  refactoring. Our experience confirmed the 
value of the two key  features of DSM's: the hierarchical structure, 
and the partitioning  algorithm. Without these features, we would 
not have been able to  handle a code base even of this size; a box-
and-line diagram  extracted directly from the code is 
unintelligible. 

We had two kinds of problems. First, matrices, such as the DSM, 
while  inherently more scalable a representation of relations than 
graphs,  are not always easy to read. In particular, finding the cell 
that  corresponds to a relationship between two elements has a 
greater  cognitive overhead, and following the edges of a relation  
transitively requires going back and forth between row and 
column  indices rather than simply following arrows along a path. 
With time,  however, our proficiency at reading DSM's increased. 
Second, there  were limitations of the underlying dependency 
model. Haystack's  design involves two orthogonal classifications; 
while we could have  constructed two separate DSM's, we would 
have liked to have been able  to use the tool to understand the 
interplay of dependencies between  the two views. Also, we 
occasionally wanted a more refined notion of  dependency, which 
maps a client class to the class it uses at runtime  rather than to the 
class it declares as a use in its code. There  seems to be no 
fundamental reason why a richer dependency model (such  as [6]) 
could not be incorporated into the tool. 



 
Figure 18: DSM for Haystack after Hierarchy Reorganization (triangles indicate design rules violations)

6. RELATED WORK 
The importance of understanding dependencies between modules 
has also been understood and emphasized by other researchers. 
Our work is perhaps most similar to the work on the Reflexion 
Model Tool (RMT)[3]. Our design rules combine the reflexion 
map and the idealized model. When there are multiple, orthogonal 
views of the architecture this will make our design rules less 
succinct than the idealized model of RMT; on the other hand, 
when a single hierarchy is dominant, our design rules are likely to 
be simpler to express than the model and map of RMT together. 
We believe that our hierarchical matrix representation scales 
better than the graphical representation of RMT. The use of DSM 
algorithms for architectural discovery is a major benefit of our 
approach; it would be interesting to see how it might be 
incorporated into RMT. 

Hierarchical representations are, of course, not new. Tran et al. [4] 
examines systems in terms of their hierarchical decomposition, 
using Harel’s higraphs. 

Heuristic algorithms for organizing a system into layers have been 
investigated in the context of the reverse engineering tool Rigi 
[16]. Rigi seems to be less flexible than LDM in allowing a 
mixture of manual and automatic organization, and in terms of its 
ability to scale. We have not been able to evaluate the  
 

 

effectiveness of Rigi’s algorithms in comparison to the DSM 
algorithms, but such a study would be worthwhile.  

A number of tools are available for extracting dependencies from 
code, such as sa4j from IBM, OptimalJ from Compuware and 
JDepend from Clarkware Consulting. These do much the same as 
the frontend of LDM. 

Jackson [6] has proposed a more elaborate notion of dependence, 
in which interfaces are not treated as modules in their own right, 
but rather mediate dependencies. We plan to explore whether this 
notion might be useful in our context. 

A dependence-based view of software is, of course, only one of 
several useful views. In Kruchten’s “4+1” model of software 
architecture [8], our representation of the system corresponds 
roughly to the ‘development view’. 

7. CONCLUSION 
The approach we have described seems to be lightweight enough 
to be usable in practice, and yet offers benefits that have not been 
available in previous approaches. It seems to scale well, and 
provides, with little effort from the user, a view of the system that 
is valuable, especially during ongoing development, or when 
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reengineering. The approach we have described does not disrupt 
standard development processes, and seems to offer a notion of 
architecture and architectural conformance that is compatible with 
the intuitions of practicing software engineers. 

In future work, we plan to explore more refined notions of 
dependence and the role they might play. We are also 
investigating the impact of design rules on the evolution of the 
architecture of software systems, which we believe will be 
especially valuable in distributed organizations where 
architectural intent is harder to communicate and maintain. 
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