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Abstract Over recent years the popularity of time series has soared. Given the wide-
spread use of modern information technology, a large number of time series may be
collected during business, medical or biological operations, for example. As a conse-
quence there has been a dramatic increase in the amount of interest in querying and
mining such data, which in turn has resulted in a large number of works introduc-
ing new methodologies for indexing, classification, clustering and approximation of
time series. In particular, many new distance measures between time series have been
introduced. In this paper, we propose a new distance function based on a derivative.
In contrast to well-known measures from the literature, our approach considers the
general shape of a time series rather than point-to-point function comparison. The new
distance is used in classification with the nearest neighbor rule. In order to provide a
comprehensive comparison, we conducted a set of experiments, testing effectiveness
on 20 time series datasets from a wide variety of application domains. Our experi-
ments show that our method provides a higher quality of classification on most of the
examined datasets.

Keywords Dynamic Time Warping · Derivative Dynamic Time Warping ·
Data mining · Time series

Responsible editor: Eamonn Keogh.

T. Górecki (B)
Faculty of Mathematics and Computer Science, Adam Mickiewicz University,
Umultowska 87, 61-614 Poznań, Poland
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1 Introduction

Time-series classification has been studied extensively by machine learning and data
mining communities, resulting in a variety of different approaches, ranging from neu-
ral (Petridis and Kehagias 1997) and Bayesian networks (Pavlovic et al. 1999) through
HMM-AR models (Penny and Roberts 1999) to genetic algorithms and support vec-
tor machines (Eads et al. 2002). Similarly we can find many distance measures for
similarity of time series data (a very good overview can be found in Ding et al. 2008).
Nevertheless, the simple method combining the nearest neighbor (1NN) classifier and
some form of Dynamic Time Warping (DTW) distance has been shown to be one of
the best performing time-series classification techniques (Ding et al. 2008).

DTW is a classical distance measure well suited to the task of comparing time series
(Berndt and Clifford 1994). It differs from Euclidean distance (ED) by allowing the
vector components being compared to “drift” from exactly corresponding positions.
It is an algorithm for measuring similarity between two sequences (e.g. time series)
which may vary in time or speed. The sequences are “warped” non-linearly in the time
dimension to determine a measure of their similarity independent of certain non-lin-
ear variations in the time dimension. In our work we used the original DTW, which is
parameter free. The most straightforward similarity measure for time series is the ED
(metric) and its variants based on the common L p norms. In this work we used the
L2 norm. ED has several advantages (Keogh and Kasetty 2003). The complexity of
evaluating this measure is linear, and it is easy to implement and indexable with any
access method, and in addition is parameter free. The L2 norm is competitive with
other more complex approaches, especially if the size of the training set is relatively
large (in Ding et al. 2008 and elsewhere it has been empirically shown that simple ED
is competitive with or superior to many of the complex distance measures, and has the
very important triangular inequality property). However, since the mapping between
the points of two time series is fixed, this distance is very sensitive to some distortion
in the data (offset and scale (amplitude)), and is unable to handle local time shifting.
Two subsequences of a time series may be very similar but at different offsets and/or
scales, and thus report a larger distance than warranted.

Effectiveness of the nearest neighbor method depends on the distance measure
(metric, similarity measure) used to compare objects in the classification process. At
present, in the domain of time series classification, distance functions are used which
mostly do point-to-point comparison in a time series. The measures often reduce such
distortions as occur if two time series do not have the same length or are locally out
of phase, etc. Nevertheless the perfect case is if the compared time series are similar
as functions—if the point values are identical.

It seems that in the classification domain there could be objects for which function
value comparison is not sufficient. There could be cases where assignment to one of the
classes depends on the general shape of objects (signals, functions) rather than on strict
function value comparison. Especially for time series it seems that some variability in
the “time” domain could have a great influence on the classification process.

In mathematics, an object associated with a function that responds to its variability
in “time” is the derivative of the function. The function’s derivative determines areas
where the function is constant, increases or decreases, and the intensity of the changes.

123



312 T. Górecki, M. Łuczak

The derivative determines the general shape of the function rather than the value of the
function at an actual point. The derivative shows what happens in the neighborhood
of the point. In the case of time series, it means that the function derivative considers
the behavior of a time series before and after some point in “time”.

It seems that especially in the case of time series such an approach to classification
can be very effective. We cannot expect that it is sufficient to compare time series only
as their derivatives. Although such datasets exist (e.g. the data set from Sect. 3.1),
in most cases the classification result more or less depends on function value com-
parison. It seems that the best approach is to create a method which considers both
function values of time series (point to point comparison) and values of the derivative
of the function (general shape comparison). The intensity of the influence of these two
approaches should be parameterized. Then we can expect that for different datasets
of time series the method will select the appropriate intensity of these two kinds of
comparisons and give the best classification results.

In this paper we construct a distance measure that considers the two above-men-
tioned approaches to time series classification. Thanks to this we are able to deal with
situations where examinated sequences are not different enough. For any fixed dis-
tance function there is formed a new parameterized family of distance measures, where
the fixed distance measure is used both to compute distances of time series (function
values) and their variability in “time” (distances of their derivatives). The new distance
functions so constructed are used in the nearest neighbor classification method.

For different datasets the parameters are chosen in the learning phase by a cross-
validation (leave-one-out) method. The distance measure is then used for classification
of a test data set.

The remainder of the paper is organized as follows. We first give an overview of
the methods on which the creation of our new distance measure was based (Sect. 2).
In the same section we explain what is new in our approach. In Sect. 3 we review
the concept of time series. At the end of that section we introduce our distance based
on derivatives. In Sect. 4 we describe how to optimize the calculation. The datasets
used are described at the beginning of Sect. 5. Later in that section we describe the
experimental setup. The results of the research are illustrated with graphs showing
the differences between the classifiers in the same section. Section 5 also contains
the results of our experiments on the described real datasets. Section 6 contains the
results of comparison of our method with related approaches, with statistical analysis
of the differences in classification accuracy. We conclude in Sect. 7 with discussion
of possible future extensions of the work.

2 Related works and new contribution

The use of derivatives in time series classification is not a novelty. Their use with
DTW was proposed by Keogh and Pazzani (2001). However they used only the dis-
tance between the derivatives, rather than the point-to-point distance between the time
series. They called their method Derivative Dynamic Time Warping (DDTW). They
tried to remove a major weakness of DTW. DTW tends to produce “singularities”,
i.e., alignments of a single point of a series with multiple points of another series.
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Their proposal reduces the singularity phenomenon. In a sense, DDTW can be seen as
DTW equipped with a preliminary preprocessing step, in which the original data points
are replaced with their derivatives. Keogh and Pazzani (2001) performed experiments
only on three datasets, and therefore it is hard to say that the efficiency of the method
was unequivocally confirmed. They did not test it in the context of the classification of
time series. Subsequent works, however, used DDTW and showed its effectiveness in
practice (recently Luan et al. 2010; Mokhtar et al. 2010). On the basis of this method
Kulbacki et al. 2002 created a measure which took into account the point-to-point
distance between time series. The measure of the distance between time series was the
product of the ED between two time series and the square of the difference of the esti-
mated derivatives. This approach also does not include the possibility of controlling
the extent to which the derivative affects the result of classification. The authors named
their method Value-Derivative Dynamic Time Warping (VDDTW). The authors dis-
cussed the application of this method to motion classification, but did not perform
any simulations. Benedikt et al. (2008, 2010) have gone even further. They introduced
a weighted sum, in which they also took into consideration second derivative. They
called their method Weighted Derivative Dynamic Time Warping (WDTW). However
they did not propose any methods for the choice of parameters. They showed only
a certain system of parameters, which were shown to be effective on the examined
example (face recognition).

The methods described above either do not have any parameters or the parame-
ters are integrated into the internal distance function d used in DTW (d is a distance
between two points of time series). In contrast, in our method the parameters are outside
the base distance functions dist (dist is a distance between time series). Thanks to this
approach, tuning of parameters is computationally simpler. Our method can use any
distance measure as the distance component, in particular DTW and ED. We can
also use a different point-to-point distance and another for derivatives. The paramet-
ric approach makes it possible to adapt to the data set, but without overtraining. As
was demonstrated by the simulations, on multiple datasets the approach with only the
derivative or only point-to-point distance does not work—an intermediate parameter
is needed. In spite of the need to search for a parameter, the computational complex-
ity is actually like for a method without a parameter. In fact, particularly for DTW,
there is no deterioration in performance on any data set. The method works well on
a wide range of datasets (we tested many different datasets). For all these reasons in
combination, our method seems to be (especially with DTW) a universal (and very
good) method for the classification of the time series, able to identify for which of the
data sets the impact of the derivative is helpful and to what extent. At the same time
our method preserves the computational complexity of the output method—there is
no computational overhead. The proposed distance inherits the lower bounds defined
for the original distance as well as the important triangular inequality property of the
original distance. Therefore, the proposed distance would also be indexed by a large
number of techniques that rely on metric properties.

Additionally, all related previous approaches were applied to one of a few domains.
We conducted a comprehensive study on a much larger scale, which provided general
knowledge that the use of derivatives can generally produce accuracy improvements
for ED and DTW.
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3 Methods

A time series is a sequence of observations which are ordered in time or space (Box
et al. 2008). Time is called the independent variable.

For simplicity and without any loss of generality, we assume that time is
discrete. Formally, a time series data is defined as a sequence of pairs T =
[(x1, t1), (x2, t2), . . . , (xn, tn)] (t1 < t2 < · · · < tn) where each xi is a data point
in d-dimensional feature space, and each ti is the time stamp at which xi occurs.
If the sampling rates of two time series are the same, we can omit the time stamps
and consider them as a sequences of d-dimensional data points. Such a representa-
tion is called the raw representation of the time series. The number of data points n
in given time series is called its length. In the rest of this article we will only use
one-dimensional time series, which are conveniently represented in the form x(i),
i = 1, 2, . . . , n.

3.1 An illustrative example

Let us consider a data set of time series consisting of three classes of objects. For every
four random numbers x1, x2, y1, y2 ∈ [0, 1] we can construct three kinds of signals
(Fig. 1).

The first class consists of rectangular signals, the second of increasing signals, and
the third of decreasing signals. Assignment to one of the classes does not depend
on a function value comparison, but on the general variability of the signals—their
shape.

For example, in Fig. 2 (left) there are two signals with the same class of objects—
rectangular signals. In a distance measure that compares only values of functions, the
Euclidean metric for example, these two signals are very far from each other. Never-
theless, in the same metric but comparing not the functions but their derivatives, the
signals are identical—the function derivatives are constant functions with a value of
0 on the “period” [0, 1]. But for signals from two different classes, for a rectangular
and an increasing one, we can see that the derivative separates them accurately (Fig. 2
(right)).

Fig. 1 Example data set—three classes of signals
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Fig. 2 Signals from the
example data set (top) and their
derivative functions (bottom)

3.2 Dynamic Time Warping distance

Suppose we have two time series

x = {x(i) : i = 1, 2, .., n} and y = {y( j) : j = 1, 2, .., m}

of length n and m respectively. To align two sequences using DTW we construct an
n×m matrix where the element (i, j) of the matrix contains the distance d(x(i), y( j))
between the two points x(i) and y( j). In this paper, we will call the distance d the
internal distance of DTW. Each matrix element (i, j) corresponds to the alignment
between the points x(i) and y( j). A warping path W is a contiguous set of matrix
elements that defines a mapping between x and y. The kth element of W is defined as
wk = (i, j)k so we have

W = w1, w2, . . . , wk, . . . , wK , max(n, m) ≤ K ≤ n + m − 1.

The warping path is subject to three constraints:

• w1 = (1, 1) and wK = (n, m) (boundary conditions);
• For wk = (a, b) and wk−1 = (a′, b′), a − a′ ≤ 1 and b − b′ ≤ 1 (continuity);
• For wk = (a, b) and wk−1 = (a′, b′), a − a′ ≥ 0 and b − b′ ≥ 0 (monotonicity).

As DTW distance we take the path which minimizes the warping cost:

DTW(x, y) = min
W

{
K∑

k=1

wk

}
.

The path can be found using dynamic programming to evaluate the following recur-
rence which defines the cumulative distance γ (i, j) as the distance d(i, j) found
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in the current cell and the minimum of the cumulative distances of the adjacent
elements:

γ (i, j) = d(x(i), y( j)) + min{γ (i − 1, j − 1), γ (i − 1, j), γ (i, j − 1)}.

3.3 Distance based on derivative

If dist is a distance measure for two time series f and g, a new distance measure d̂istab

is defined by

d̂istab( f, g) := a dist( f, g) + b dist( f ′, g′), (1)

where f ′, g′ are discrete derivatives of f , g, and a, b ∈ [0, 1] are parameters. The
discrete derivative of a time series f with length n is defined by

f ′(i) = f (i) − f (i − 1), i = 2, 3, . . . , n (2)

where f ′ is a time series with the length n − 1.
Each distance function dist which we use in our method we will call the base

distance. In this work, we use two base distances: ED and DTW.
The distance function d̂istab is used with the 1NN method in the classification

process. The parameters a, b are chosen in the learning phase. In this paper we use
the cross-validation (leave-one-out) method on the learning data set in the process of
parameter tuning.

Note that there is nothing in the way that the distance between time series and the
derivatives in (1) differed. For example, DTW between the derivatives and ED between
the time series. However in this paper we always take the same distance function. For
an arbitrary distance function dist, we will denote the new distance measure by DDdist
(derivative distance), for example DDDTW or DDED.

We chose the simplest and the most common definition of the discrete derivative
of (discrete) function. In papers concerning time series classification using derivatives

we can find several other definitions. For example: f ′(i) = f (i)− f (i−1)+ f (i+1)− f (i−1)
2

2

in Keogh and Pazzani (2001) or f ′(i) = f (i+1)− f (i−1)
2 in Gullo et al. (2009). In the

second paper we can read some arguments that proposed there two-point derivative
estimator can be in some cases better than the first three-point one. We examined a
few different definitions in our method and some other distances using derivative and
results were ambiguous (see Appendix).

Following all these suggestions and seeking the simplest method we chose the
formula (2). If the same length of the derivative and the function is needed (for exam-
ple in other distance functions using derivative compared in Sect. 6) the assumption
f ′(1) = f ′(2) is made.
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Fig. 3 Dependence of
parameters a, b and α

4 Optimization

4.1 Parameter dimension

We do not have to check all values of a, b ∈ [0, 1]. If a1 = ca2 and b1 = cb2, where
c > 0 is a constant (i.e. points (a1, b1), (a2, b2) are linearly dependent), we have

d̂ista1b1( f1, g1)
=
<
>

d̂ista1b1( f2, g2) ⇐⇒ d̂ista2b2( f1, g1)
=
<
>

d̂ista2b2( f2, g2)

so, we can choose points (a, b) on any continuous line between the points (0, 1) and
(1, 0). For example, it can be a straight line or a quarter of a circle:

a = (1 − α),

b = α,
α ∈ [0, 1]; a = cos α,

b = sin α,
α ∈ [

0, π
2

]
.

In the second case, we have equal distances between parameters (Fig. 3), so we choose
that parameterization as more appropriate for a research work. However, especially if
the subset of the parameters α is dense enough, the choice of parameterization should
not be critical. In the next part of the paper we will use one parameter α instead of a, b.

4.2 Parameter tuning

In the training phase we have to tune the parameter α. Let A ⊂ [
0, π

2

]
be a finite

subset of k parameters. We have to compute the cross-validation (leave-one-out) error
rate on the learning data set for every α ∈ A and choose the parameter for the smallest
value of the error (1NN method). However, we can do this in several ways, differing
in computational and memory complexity.

1. For every parameter α ∈ A we do cross-validation on a training data set. If the
training set consists of n elements, then for every α we have to compute n(n − 1)

values of distance measure dist for a function and the same number for its deriv-
ative. Thus the method has a time complexity of O(k n2).
This is the simplest but the most time-consuming method. If we know nothing
more than the number of distance function computations, we will have to follow
this approach. However, the structure of the new distance measure d̂ist allows
some optimizations.
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2. Note that for every parameter α (all parameters a, b in the distance function d̂istab

(Eq. 1)) the base distance measures dist do not depend on these parameters. In
a cross-validation process for every parameter the same distance function values
are computed. We can avoid this by computing the distance values once and keep-
ing them in memory. Before the cross-validation phase, we can compute distance
matrices for the distance measure dist (for all pairs of training data set elements)
for a function and its derivative. Then, using these matrices, for every parame-
ter we compute the distance measure d̂ist. This way, the calculation has a time
complexity of O(n2). A disadvantage of this method is that we have to reserve a
computer memory for distance matrices with complexity of O(n2).

3. In the two above procedures, the tuning of the parameter is as follows. We fix a
parameter α and then (by cross-validation) for every element of a training data set
we calculate an appropriate number (n − 1) of distance functions d̂ist. We repeat
this for every parameter α. However, we can proceed in the opposite direction.

First, we fix one element e of the training data set. Then we take an element e1 	=
e and for every parameter α we compute the distance function d = d̂istab(e1, e)
and put its value in a vector D (with k elements). Note that we need to compute
only two distance measures dist (for the function and its derivative). Then for the
next element e2 	= e from the training set, we repeat the procedure and obtain a
new distance vector d2. Now we compare the positions of the vectors D and d2.
In every position of vector D we put the smaller one. We create a vector L (with
k elements) in whose positions we put labels of elements e1, e2 corresponding
to values of the vector D. We repeat the procedure for the next elements of the
training set (ei 	= e, i = 3, 4, . . . , n). As a result we obtain vector L with labels
of nearest neighbors of the element e for every parameter α. This is one step of
the cross-validation process. We performed classification of element e for all α

parameters. Note that we computed the distance function dist only 2(n −1) times.
Repeating the procedure for all elements from the training data set, we obtain
the cross-validation error rate for all parameters. The code of the algorithm is
presented in Sect. 5.1.

The above algorithm has all the advantages and none of the disadvantages of the
previous two methods. The number of computations of distance functions dist has
a complexity of O(n2) and we do not have to keep distance matrices in memory.
Because the most time-consuming part of the algorithm is usually calculations of
the distance functions dist, the computation time depends to a small degree on the
number of parameters (especially for large values of n). Thanks to this fact, we
can choose a large subset of parameters in the cross-validation process without
increasing the computation time of the parameter tuning phase.

4.3 Lower bound and triangular inequality

For many distance measures it is possible to find their lower bound (Keogh 2002).
Then the lower bound can be used in the nearest neighbor method to speed up compu-
tations. We can also find a lower bound of our new distance measure. If low is a lower
bound of a distance dist, then
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l̂owab( f, g) := a low( f, g) + b low( f ′, g′)

is a lower bound of the distance d̂istab (see Appendix for proof).
If the base distance dist is a metric, then the new distance d̂ist is also a metric. If

dist is not a metric but obeys the triangular inequality, then the distance d̂ist obeys the
triangular inequality as well:

d̂istab( f, g) ≤ d̂istab( f, h) + d̂istab(h, g)

(see Appendix for proof).

5 Experimental results

5.1 Experimental setup

We performed experiments on 20 data sets. Information on the data sets used is pre-
sented in Table 1.

The data sets originate from the UCR Time Series Classification/Clustering Home-
page (Keogh et al. 2006).

Table 1 Summary of data sets

Data set Number of classes Size of training set Size of testing set Time series length

50 words 50 450 455 270

Adiac 37 390 391 176

Beef 5 30 30 470

CBF 3 30 900 128

Coffee 2 28 28 286

ECG 2 100 100 96

Face (all) 14 560 1,690 131

Face (four) 4 24 88 350

Fish 7 175 175 463

Gun-point 2 50 150 150

Lightning-2 2 60 61 637

Lightning-7 7 70 73 319

Olive oil 4 30 30 570

OSU leaf 6 200 242 427

Swedish leaf 15 500 625 128

Synthetic control 6 300 300 60

Trace 4 100 100 275

Two patterns 4 1,000 4,000 128

Wafer 2 1,000 6,174 152

Yoga 2 300 3,000 426
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We chose two distance measures to use with the new distance function. Note,
however, that our method can work with any distance measure. The ED is the most
straightforward similarity measure for time series, and DTW is one of the most effec-
tive distance functions for time series. Thus we have two similarity measures denoted
by DDED and DDDTW. For each data set we calculated the classification error rate on a
test subset (to learn the model we used a training subset, leave-one-out, 1NN method).
We found all parameters using the training subset. An appropriate distribution of the
training and test sets was proposed by the authors of the repository (each data set is
divided into a training and testing subset).

In the case of the data set in Sect. 3.1 we generated 200 observations from each class
separately for the training and testing subset. In total we obtained 600 observations in
each subset. The length of each time series was 100. Points x1, x2 were drawn from
the discrete uniform distribution U [1, 100], and y1, y2 from the continuous uniform
distribution U (0, 1).

We use the cross-validation (leave-one-out) method to find the best parameter α in
our classifier. If the minimal error rate is the same for more than one value of parame-
ter α we choose the smallest one. We implemented the most effective algorithm from
those discussed in Sect. 4.2(3). From the set [0, π

2 ] is chosen the finite subset of param-
eters α, from 0 to π

2 with fixed step 0.01. The code of the algorithm in MATLAB is
presented below.

% e - list of time series in learning data set(cell vector of vectors)
% labels - vector of labels of elements of list e
% dist - base distance function (ED, DTW)

step = 0.01;
alpha = 1 : step : pi/2;
a = cos(alpha);
b = sin(alpha);

n = length(e);
k = length(alpha);
mistakes(1 : k) = 0; % vector of numbers of misclassified elements

for i = 1 : n
D(1 : k) = inf; % vector of minimal distances
L(1 : k) = 0; % vector of ‘minimal’ labels
for j = [1 : i-1, i+1 : n] % leave-one-out

d = a * dist(e{j}, e{i}) + b * dist(diff(e{j}), diff(e{i}));
D(d < D) = d(d < D);
L(d < D) = labels(j);

end
mistakes = mistakes + (L ˜= labels(i));
end
errors = mistakes / n; % error rates for every parameter alpha

5.2 Main results

Let us return briefly to the previously discussed example (Sect. 3.1). In Fig. 4 we
see that we have similar conclusions using our method both with Euclidean (DDED)
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Fig. 4 Dependence of classification error on the participation of the derivative (parameter α) for the exam-
ple data set (dashed line CV error, solid line test error)

Table 2 Testing error rates

Data set ED DED DDED DTW DDTW DDDTW
DDED − ED

ED
DDDTW − DTW

DTW

50Words 36.92 48.35 36.92 30.99 30.33 24.62 0.00 −20.57

Adiac 38.87 41.94 37.60 39.64 41.18 30.18 −3.29 −23.87

Beef 46.67 43.33 43.33 50.00 43.33 43.33 −7.14 −13.33

CBF 14.78 66.00 14.78 0.33 45.33 0.33 0.00 0.00

Coffee 25.00 14.29 7.14 17.86 17.86 10.71 −71.43 −40.00

ECG 12.00 15.00 10.00 23.00 13.00 17.00 −16.67 −26.09

Face (all) 28.64 28.52 28.64 19.23 13.37 9.82 0.00 −48.92

Face (four) 21.59 47.73 21.59 17.05 40.91 17.05 0.00 0.00

Fish 21.71 18.86 19.43 16.57 8.00 5.71 −10.53 −65.52

Gun-point 8.67 8.67 8.67 9.33 1.33 2.00 0.00 −78.57

Lightning-2 24.59 49.18 27.87 13.11 36.07 13.11 13.33 0.00

Lightning-7 42.47 68.49 43.84 27.40 46.58 32.88 3.23 20.00

Olive oil 13.33 20.00 13.33 13.33 20.00 13.33 0.00 0.00

OSU leaf 48.35 60.74 47.93 40.91 11.57 12.40 −0.85 −69.70

Swedish leaf 21.12 44.16 21.12 20.80 11.84 9.76 0.00 −53.08

Synthetic control 12.00 65.33 12.00 0.67 50.00 0.67 0.00 0.00

Trace 24.00 41.00 23.00 0.00 1.00 0.00 −4.17 0.00

Two patterns 9.33 61.28 9.33 0.00 0.33 0.00 0.00 0.00

Wafer 0.45 0.94 0.47 2.01 2.04 2.01 3.57 0.00

Yoga 16.97 25.07 17.37 16.37 17.97 14.40 2.36 −12.02

Mean −4.58 −21.58

and DTW (DDDTW) distance. In both cases, the smallest classification error is
obtained with a considerable share of derivatives. In the case of DTW we have a
continuous decline in error with increasing share of the derivative. However, when
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Fig. 5 Comparison of test errors

using the ED we observe an initial increase in error, and then a relatively rapid
decline.

The main result is shown in Table 2. In the columns ED and DTW we have (abso-
lute) error rates on the test subset with 1NN method for Euclidean and DTW distance
respectively. In the columns DED and DDTW we have (absolute) error rates for meth-
ods only with derivatives. In the columns DDED and DDDTW we have absolute error
rates, while in the next two columns we have relative error rates. Note that in the first
four columns are the results for the distance function which in fact are components
of our method. ED is in fact DDED with a = 1, b = 0 (α = 0), DED is DDED with
a = 0, b = 1 (α = π

2 ), DTW is DDDTW with a = 1, b = 0 (α = 0), and DDTW is
DDDTW with a = 0, b = 1 (α = π

2 ).
We clearly see that in both cases we obtain a significant reduction in the average

relative error of classification (the last row of Table 2). In the case of ED the reduc-
tion amounts to 4.58, while for DTW reduction is as high as 21.58. Interestingly, this
reduction occurs in the first case for most data sets, while in the case of DTW the
error is reduced or remains unchanged. For ED there is improvement in the case of 7
data sets, while 4 are worse, and for 9 there is no difference. However in the case of
DTW there is improvement for 11 data sets, worsening for only one, and for 8 there is
no difference. Figure 5 presents a graphical comparison of DD methods and its base
distance measures that suggests that our method is clearly superior to others on most
of the examined data sets.

Of course, the interesting question is that of what derivative contribution in the final
distance measure is optimal. Could we obtain some arbitrary quantity that determines
for all cases that such and such participation will give us the best result of classifica-
tion? The answer to this question is negative, as is illustrated by Figs. 6 and 7. We see
that in both cases the optimal share of the derivative may be zero, average, or that it
exclusively should be used.

Pursuing this approach, we can ask whether at least for the same data for the meth-
ods of DDED and DDDTW, we can offer a universal value which will determine an
optimal contribution to the derivative in the final distance. The answer is negative, as
is confirmed by Fig. 8. In this case we see that, although the increasing importance
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Fig. 6 Dependence of classification error on the participation of the derivative (parameter α) for method
DDED (dashed line CV error, solid line test error)

Fig. 7 Dependence of classification error on the participation of the derivative (parameter α) for method
DDDTW (dashed line CV error, solid line test error)

Fig. 8 Dependence of classification error on the participation of the derivative (parameter α) for the data
set swedishleaf (dashed line CV error, solid line test error)

of the derivative in the case of method DDED worsens the classification, in the case
of DDDTW it improves (significantly). Thus we see that for each data set and each
method, we should select the optimal derivative share independently of others.
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Fig. 9 Dependence of classification error on the participation of the derivative (parameter α) for the exam-
ple data set with noise and DDED method without and with smoothing (dashed line CV error, solid line test
error)

5.3 Noise and smoothing

The function derivative is very sensitive to even small changes of function values.
Adding noise to a signal has a small influence on function value comparison, but it
can have a great influence on function derivative comparison. We have to take this
into consideration in our method. We can use any smoothing method before using
our distance measure. We do not need to smooth the function before function value
comparison, but only before function derivative comparison. We did so with the exam-
ple in Sect. 3.1 and for ED. The result is shown in Fig. 9. On the left subplot is the
classification error rate after we added noise with normal distribution N (0, 0.001).
We can see that if participation of the derivative increases the error rate also increases.
On the right subplot is the situation after we smoothed the signal before function
derivative comparison (the signal for function value comparison includes the noise).
To smooth the signal we used a moving average with a length of 10. We see that then
the shape of the classification error curve is similar to the shape before addition of
noise (Fig. 4, left subplot).

Some slight smoothing before function derivative comparison can also produce a
good result for data sets of signals without noise. We used the above procedure (with
a moving average length of 3) to the data sets in the paper. For our method with ED
both the mean of relative error rates decreased (from −4.58 to −7.69) and more data
sets were classified better than by the method without smoothing. For our method
with DTW distance the mean of relative error rates increased a little (from −21.58 to
−17, 94) but also more data sets were classified better (Fig. 10).

We have to admit that the length of the moving average was taken arbitrarily. For
other lengths the results may be different. We have to be very careful when smoothing
signals for function derivative comparison. Changing the signal by smoothing can
affect information which is important to the classification process. Too much smooth-
ing can eliminate the influence of derivative function comparison.
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Fig. 10 Comparison of test errors for smoothing versions of DDED and DDDTW

6 Comparison with related works

As we can see in Table 2 and Fig. 5, DDDTW with 1NN seems a fairly good universal
classifier of time series. It is interesting to compare the method with other ones using
DTW distance and derivatives. We compare DDDTW to the following distance func-
tions known from the literature (mentioned in Sect. 2). All these distance functions
are in fact DTW distances with a different internal distance function d.
DTW—standard DTW distance that compares only values of functions:

d( f (i), g( j)) = (
f (i) − g( j)

)2;

DDTW—Derivative DTW (Keogh and Pazzani 2001)—DTW distance that compares
only values of derivatives:

d( f (i), g( j)) = (
f ′(i) − g′( j)

)2;

VDDTW—Value-Derivative DTW (Kulbacki et al. 2002)—DTW distance that com-
pares both functions and derivatives and combines them multiplicatively:

d( f (i), g( j)) = (
f (i) − g( j)

)2(
f ′(i) − g′( j)

)2;

WDTW—Weighted DTW (Benedikt et al. 2008)—DTW distance that compares func-
tions, first and second derivatives, and combines them additively (the weights are fixed
at 1, 2, 2 as suggested in the above paper):

d( f (i), g( j)) = (
f (i) − g( j)

)2 + 2
(

f ′(i) − g′( j)
)2 + 2

(
f ′′(i) − g′′( j)

)2
.

In all distance functions we use the same derivative formula (2) (for different derivative
estimators results, see Appendix).

The results of the comparison are shown in Table 3. In the columns we have (abso-
lute) error rates on the test subset with the 1NN method for the previously described
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Table 3 Testing error rates (absolute) in comparing classifiers

Data set DTW DDTW VDDTW WDTW DDDTW

50Words 30.99 30.33 32.09 27.25 24.62

Adiac 39.64 41.18 33.25 36.57 30.18

Beef 50.00 43.33 46.67 50,00 43.33

CBF 0.33 45.33 6.78 25.56 0.33

Coffee 17.86 17.86 10.71 21.43 10.71

ECG 23.00 13.00 14.00 15.00 17.00

Face (all) 19.23 13.37 12.13 9.23 9.82

Face (four) 17.05 40.91 38.64 27.27 17.05

Fish 16.57 8.00 8.57 11.43 5.71

Gun-point 9.33 1.33 2.67 1.33 2.00

Lightning-2 13.11 36.07 34.43 24.59 13.11

Lightning-7 27.40 46.58 47.95 35.62 32.88

Olive oil 13.33 20.00 13.33 13.33 13.33

OSU leaf 40.91 11.57 25.62 36.36 12.40

Swedish leaf 20.80 11.84 12.48 13.92 9.76

Synthetic control 0.67 50.00 8.33 26.33 0.67

Trace 0.00 1.00 0.00 1.00 0.00

Two patterns 0.00 0.33 0.03 0.00 0.00

Wafer 2.01 2.04 2.56 1.69 2.01

Yoga 16.37 17.97 17.77 15.08 14.40

Table 4 Average relative error
rates

X DTW DDTW VDDTW WDTW

Mean −21.58 −33.72 −32.29 −27.21

distance functions (the best results are bolded). We see that our classifier is slightly
worse than one of the compared classifiers only on 6 of the 20 examined data sets
(once than DTW, three times than DDTW and three times than WDTW). Our method
should always gives the results not worse than DTW and DDTW (because it contains
these models as components). Sometimes this is not happening. The blame for this lies
not always perfect parameter selection method, which in this case is the CV. Simply a
method sometimes do not find correctly the optimal values of parameter. This is due
to a situation in which a learning set do not fully reflect the structure of the test set.

As a measure of relative performance we may use the average of the relative error
rates ( DDDTW −X

X ) across data sets. We can find this information in Table 4.
We can see that we obtain an average reduction in the relative error rates ranging

from 21.58 (DTW) to 33.72% (DDTW). These differences seem significant.
However, to confirm statistically the quality of our classifier, in the next step we test

the null-hypothesis that all classifiers perform the same and the observed differences
are merely random. We used the Iman and Davenport (1980) version of the F-test,
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Table 5 Mean ranks
DTW DDTW VDDTW WDTW DDDTW

3.25 3.60 3.30 3.05 1.80

which is a non-parametric equivalent of the repeated-measures ANOVA. The F-test is
recommended because it is less conservative than other tests (Looney 1998; Demšar
2006). It ranks the classifiers for each data set separately, the best performing classifier
receiving the rank of 1, the second best the rank of 2 and so on (in case of ties average
ranks are assigned).

Let Ri j be the rank of the j th of K methods on the i th of N data sets and let
R j = 1

N

∑N
i=1 Ri j .

The Iman and Davenport test compares the mean ranks R1, R2, . . . , RK (given in
Table 5) of classifiers and is based on the statistic

S = (N − 1)S1

N (K − 1) − S1
(3)

where

S1 = 12N

K (K + 1)

K∑
i=1

R2
i − 3N (K + 1)

is the Friedman (1937, 1940) statistic. The statistic S is distributed according to the
F-distribution with K −1 and (K −1)(N −1) degrees of freedom. In our case N = 20
and K = 5. The value of statistic S given by (3) is equal to 4.62. The corresponding
critical value is equal to 2.49 for α = 0.05. We see that the null-hypothesis that all
classifiers give the same results is rejected (the p-value is 0.002) and we can proceed
with a post-hoc test.

Hence in the next step we can use the Nemenyi (1963) test procedure, in which all
classifiers are compared to each other. The Nemenyi test is similar to the Tukey test for
ANOVA and is used when all classifiers are compared to each other. The performance
of two classifiers is significantly different at the experimentwise error rate α if

|Ri − R j | > q(α, K ,∞)

(
K (K + 1)

12N

)1/2

,

i = 1, . . . , K − 1, j = i + 1, . . . , K , (4)

where the values of q(α, K ,∞) are based on the Studentized range statistic (Hollander
and Wolfe 1973; Demšar 2006). However, Demšar (2006) showed that when all clas-
sifiers are compared with a control classifier, we can use, instead of the Nemenyi
test, one of the general procedures for controlling the family-wise error in multiple
hypothesis testing, such as the Bonferroni–Dunn correction (Dunn 1961). Although
these methods are generally conservative and sometimes lack power, in this specific
case they are more powerful than the Nemenyi test, since the latter adjusts the critical
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value for making K (K − 1)/2 comparisons, whereas when comparing with a control
we make only K −1 comparisons. The power of the post-hoc test is much greater when
all classifiers are compared only to a control classifier and not between themselves.
Hence we should not make pairwise comparisons when we in fact only test whether
a newly proposed method is better than the existing ones. To perform this test we can
use the inequality (4), but using the critical values for α/(K − 1).

The right-hand side of the inequality (4) is equal to 1.249 for N = 20, K = 5
and α = 0.05/4. Using the mean ranks from Table 5 we see that our classifier is
significantly better than each of the compared ones at the experimentwise error rate
α = 0.05.

7 Conclusions and future work

In this paper we have introduced and studied a new time series distance based on
derivative. We used this distance to classify time series with the 1NN method. Our
research showed that our method gives very good results. On many data sets our dis-
tance measure is superior to both the ED and the DTW. The proposed method, thanks
to a parametrical approach, makes it possible to choose an appropriate model for any
data set. Due to the high nonlinearity, the method does not easily lead to a rigorous the-
oretical analysis. However the experiments that we have conducted justify the power
and usefulness of our method.

We are currently adapting our distance measure to account for the second deriva-
tive and higher. In addition, we are experimenting with the use of different distance
measures for the value and for derivatives. We are also looking for functions other
than derivative which can be used in a similar manner (for example Batista et al.
2011 introduced complexity of time series, which is the length of the line obtained by
stretching them).

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

8 Appendix

8.1 Lower bound and triangular inequality proof

Let us define the distance function d̂istab by

d̂istab( f, g) := a dist1( f, g) + b dist2( f ′, g′), a, b ∈ [0, 1],

where dist1, dist2 are distances between time series and their derivatives.
If low1, low2 are lower bounds of the distances dist1, dist2:

low1( f, g) ≤ dist1( f, g),

low2( f ′, g′) ≤ dist2( f ′, g′),
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then

l̂owab( f, g) := a low1( f, g) + b low2( f ′, g′) ≤
≤ a dist1( f, g) + b dist2( f ′, g′) =
= d̂istab( f, g).

Therefore, l̂owab is a lower bound of the distance function d̂istab.
If dist1, dist2 obey the triangular inequality:

dist1( f, g) ≤ dist1( f, h) + dist1(h, g),

dist2( f ′, g′) ≤ dist2( f ′, h′) + dist2(h
′, g′),

then

d̂istab( f, g) = a dist1( f, g) + b dist2( f ′, g′) ≤
≤ a(dist1( f, h) + dist1(h, g)) + b(dist2( f ′, h′) + dist2(h

′, g′)) =
= (a dist1( f, h) + b dist2( f ′, h′)) + (a dist1(h, g) + b dist2(h

′, g′)) =
= d̂istab( f, h) + d̂istab(h, g).

Therefore, the distance function d̂istab obeys the triangular inequality.

8.2 Derivative influence comparison

We use three derivative estimators:

f ′(i) = f (i) − f (i − 1) (1)

f ′(i) = f (i + 1) − f (i − 1)

2
(2)

f ′(i) = f (i) − f (i − 1) + f (i+1)− f (i−1)
2

2
(3)

with methods: DDTW, VDDTW, WDTW and DDDTW. The results of the compar-
ison are shown in Table 6. In the columns we have (absolute) error rates on the test
subset with the 1NN method for the previously described distance functions and deriv-
ative estimators. The last row describes the number of wins (including ties) of each
derivative for each distance function separately.

To confirm statistically that the quality of classifiers does not depend on the kind
of derivative we test the null-hypothesis that all methods perform the same and the
observed differences are merely random. We used the Iman and Davenport version
of the F-test described in Sect. 6. We obtain the p-value 0.534 for DDTW, 0.778 for
VDDTW, 0.329 for WDTW and 0.641 for DDDTW. We see that the null-hypothesis
that all derivatives give the same results is not rejected for all classifiers, hence all
methods do not statistically differ.
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Table 6 Comparison of the derivative formulas

DDTW VDDTW WDTW DDDTW

(1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3)

50Words 30.33 30.77 30.77 32.09 32.75 32.31 27.25 27.03 27.03 24.62 25.05 24.18

Adiac 41.18 40.15 41.43 33.25 32.23 33.50 36.57 35.81 36.83 30.18 31.20 30.43

Beef 43.33 53.33 46.67 46.67 50.00 46.67 50.00 50.00 50.00 43.33 43.33 43.33

CBF 45.33 38.89 40.67 6.78 3.56 4.22 25.56 3.22 10.67 0.33 0.33 0.33

Coffee 17.86 10.71 17.86 10.71 10.71 10.71 21.43 21.43 21.43 10.71 10.71 10.71

ECG 13.00 16.00 17.00 14.00 16.00 12.00 15.00 17.00 13.00 17.00 23.00 15.00

Face (all) 13.37 12.96 12.66 12.13 11.48 11.78 9.23 8.22 8.05 9.82 18.93 18.76

Face (four) 40.91 34.09 37.50 38.64 42.05 40.91 27.27 29.55 27.27 17.05 17.05 17.05

Fish 8.00 8.57 10.29 8.57 7.43 6.86 11.43 10.86 11.43 5.71 8.00 5.14

Gun-point 1.33 0.67 0.67 2.67 1.33 2.67 1.33 1.33 1.33 2.00 3.33 4.00

Lightning-2 36.07 31.15 32.79 34.43 21.31 37.70 24.59 11.48 14.75 13.11 13.11 14.75

Lightning-7 46.58 46.58 42.47 47.95 45.21 41.10 35.62 26.03 27.40 32.88 30.14 32.88

Olive oil 20.00 26.67 20.00 13.33 20.00 13.33 13.33 13.33 13.33 13.33 13.33 13.33

OSU leaf 11.57 12.40 11.57 25.62 26.03 24.38 36.36 37.19 37.19 12.40 13.22 11.16

Swedish leaf 11.84 10.24 11.52 12.48 10.40 11.84 13.92 12.64 13.28 9.76 8.48 11.20

Synthetic
control

50.00 34.00 43.33 8.33 10.33 7.33 26.33 4.33 10.67 0.67 0.67 0.67

Trace 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

Two patterns 0.33 0.10 0.25 0.03 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Wafer 2.04 2.48 2.21 2.56 2.16 2.63 1.69 2.09 2.03 2.01 2.01 2.01

Yoga 17.97 18.43 17.70 17.77 18.43 18.50 15.80 15.87 15.93 14.40 14.03 13.60

Wins 7 10 7 7 9 10 9 14 10 13 12 14
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