
Using Description Logic to Maintain
Consistency between UML Models

Ragnhild Van Der Straeten1, Tom Mens2, Jocelyn Simmonds1, and Viviane
Jonckers1

1 Systems and Software Engineering Lab
Department of Computer Science, Vrije Universiteit Brussel

Pleinlaan 2, 1050 Brussel, Belgium
rvdstrae@vub.ac.be, jsimmond@dcc.uchile.cl, viviane@info.vub.ac.be

2 Service de Génie Logiciel, Université de Mons-Hainaut
6, Av. du Champs de Mars, 7000 Mons, Belgium

tom.mens@umh.ac.be

Abstract. A software design is often modelled as a collection of UML
diagrams. There is an inherent need to preserve consistency between
these diagrams. Moreover, through evolution those diagrams get mod-
ified leading to possible inconsistency between different versions of the
diagrams. State-of-the-art UML CASE tools provide poor support for
consistency maintenance. To solve this problem, an extension of the UML
metamodel enabling support for consistency maintenance and a classi-
fication of inconsistency problems is proposed. To achieve the detection
and resolution of consistency conflicts, the use of description logic (DL)
is presented. DL has the important property of being a decidable frag-
ment of first-order predicate logic. By means of a number of concrete
experiments in Loom, we show the feasibility of using this formalism for
the purpose of maintaining consistency between (evolving) UML models.

1 Introduction

A software design is typically specified as a collection of UML diagrams [17].
Because different aspects of the software system are covered by many different
UML diagrams, there is an inherent risk that the overall specification of the
system becomes inconsistent and as such it is necessary to check the consistency
between related UML diagrams. Especially in the context of design evolution,
it is necessary to ensure that the overall consistency is preserved. Hence, it is
important to provide a means to detect and resolve the inconsistencies between
related UML diagrams and models.

A first type of consistency, indicating consistency between different models
within the same version, is called horizontal consistency. Evolution consistency
indicates consistency between different versions of the same model.

Unfortunately, current-day UML CASE tools provide poor support for main-
taining consistency between (evolving) UML models. This results in less main-
tainable and comprehensible models.

To counter this problem, there is first of all a need to specify the consis-
tency between (evolving) models in a formal and precise way. The current UML
metamodel [17] provides poor support for consistency preservation and software
evolution, e.g. versions are not supported. Therefore, the first contribution of this
paper is to show how such support can be integrated in the UML metamodel
with only some minor additions.

Based on the different kinds of inconsistencies observed between UML mod-
els, a classification of inconsistencies is proposed. To be able to detect and resolve
inconsistencies, both a formal specification of model consistency and a formal
reasoning engine relying on this specification is needed . Therefore, in this paper
we propose to use the formalism of description logic (DL) [2].

DL is a two-variable fragment of first-order predicate logic that offers a clas-
sification task based on the subconcept-superconcept relationship. In most de-
scription logics, this classification task is decidable and complete. While the
satisfiability problem is undecidable in first-order logic, most DLs have decid-
able inference mechanisms. These inference mechanisms allow to reason about
the consistencies of knowledge bases specified by DLs, as such these mechanisms
enable the identification and resolution of consistency problems.

As description logic tool we chose Loom [16] because of its extensive query
language and associated production rule system. This allows us to specify UML
models, their evolution, consistency rules and also design improvements in a
straightforward way. As such, the crucial activity of detecting and resolving
design inconsistencies can be partially automated, thus increasing the maintain-
ability of the software.

In the next section the developed UML profile for model consistency is ex-
plained. Before introducing the running example used in this paper in section 4,
a possible classification of inconsistencies is given in section 3. A motivation for
the use of description logic is given in section 5. Section 6 discusses some exper-
iments and section 7 gives a summary of related work. We conclude in section
8.

2 UML Profile for Model Consistency

With the current version of UML [17] we are not able to check model consistency
and to support model evolution. It must be possible to express the existence of
different versions of a model. Therefore, a UML profile for model consistency is
developed.

We deliberately confine ourselves to three kinds of UML diagrams: class di-
agrams, sequence diagrams and state diagrams. Consequently, our UML profile
consists of subsets of the Core, Model Management, Common Behaviour, Col-
laborations and State Machines packages of the UML metamodel. An overview
of the used subset of the Core package is shown in Figure 1. Remark that the
metaclass Modelelement is not displayed for reasons of clarity.

In our UML profile, horizontal as well as evolution consistency can be ex-
pressed by defining two stereotypes for the Trace metaclass: HorizontalTrace and

Generalization

Class

AssociationEnd

Feature

Attribute Operation -body : ProcedureExpression
Method

Parameter
Action

Association

-specialization *

-parent 1..1

-generalization *

-child 1..1
-specification

1..1 *

-participant 1..1

-association *

-association

1

-connection

2..*

*

*

0..1

-parameter *
-type 1..1 -typedParameter

*

-type

1..1

-typedFeature

*
-owner

0..1

-feature

*

Fig. 1. Subset of UML Core Package

EvolutionTrace (see Figure 2). To this extent, we also need a notion of Versioned-
Model, which is a stereotype for the Model metaclass. It adds a tag-value pair
(version,Integer) to denote the model version. The term vertical consistency
also exists, but is not treated here. It is used to specify the relationship between
a model and a refinement of this model that includes more specific details. In
the UML metamodel, the Refinement relationship, which is a stereotype of the
Abstraction metaclass, can be used for this purpose.

ModelElement Model Abstraction Trace

-version : int
VersionedModel

CompositeModel

HorizontalTrace EvolutionTrace PrimitiveModel

ClassModel SequenceModel StateModel

-namespace 0..1 -ownedElement *
-supplier

1..*

-supplierDependency

*

-client 1..* -clientDependency *

-container

0..1

-vmodel

*

Fig. 2. Subset of UML Model Management Package

To specify the kind of models that can be related by horizontal or evolution
consistency, the Model metaclass in the package Model Management is stereo-

typed to distinguish between primitive models and composite models. Primitive-
Model is a stereotyped Model that can be specialised (stereotyped) further into
ClassModel, SequenceModel and StateModel. CompositeModel is a stereotyped
Model that is a container of VersionedModels all belonging to the same version.
In order to keep track of the models belonging to a CompositeModel, a tag-
value pair (vmodel, Set(VersionedModel)) is introduced. For VersionedModel, a
tag-value pair (container, CompositeModel) is needed. Both tag-value pairs are
represented together as a bidirectional association in Figure 2.

Further well-formedness rules must be specified for the newly introduced
Model and Trace stereotypes and tag-value pairs:

– A CompositeModel contains at least one PrimitiveModel (either directly or
indirectly).

– All VersionedModels contained in the same CompositeModel should have the
same version number.

– A HorizontalTrace can only be specified between VersionedModels belonging
to the same CompositeModel.

– An EvolutionTrace can only be specified between different versions of the
same VersionedModel.

We also need a subset of the packages Common Behaviour and Collaborations
as depicted in Figure 3. To be able to indicate if an AttributeLink is accessed
or updated, the UninterpretedAction metaclass is stereotyped into UpdateAction
and AccessAction. A slightly different but equally valid alternative is proposed
in [14]. To keep track of the AttributeLink that is accessed or updated by an
instance of AccessAction or UpdateAction, different kinds of tag-value pairs are
introduced. The pair (updateAttr, AttributeLink) for stereotype !Update"
keeps track of the updated attribute link. These pairs are again represented as
associations in Figure 3.

Finally, a subset of the State Machines packages will be needed. As a first ap-
proximation, we ignore the metaclasses SynchState, SubMachineState, StubState,
SignalEvent and TimeEvent and the meta attribute isConcurrent of metaclass
CompositeState.

This extended subset of the UML metamodel covers the basic notions of
class, sequence and state diagrams and permits the detection and resolution of
inconsistencies.

3 Classification of Inconsistency Conflicts

In this section, we propose a classification of inconsistency conflicts that can
be observed between (evolving) UML class, sequence and state diagrams. The
proposed classification is based on two dimensions.

The first dimension indicates whether structural or behavioural aspects of
the models are affected. Structural inconsistencies arise when the structure of
the system is incomplete, incompatible or inconsistent with respect to existing
behaviour.

Operation CallAction CreateAction DestroyAction UnInterpretedAction

UpdateAction AccessAction Action

Class

Object

Link

Stimulus

LinkEnd

AttributeLink

Attribute AssociationEnd Association

1..1 *

1..1 -instance *

-instantiation 1..1

*

-receiver

1..1 *

* -argument * -owner 0..1

-ownedLink *

-sender 1..1 *

1

-connection

2..*

-activator

0..1

* -stimulus *

-communicationLink

0..1

*

1..1

*

1..1

*

1..1

*

-accesAttr 1..1

*

-updateAttr

1..1

1

-slot *

-dispatchAction 1..1

-stimulus

*

Fig. 3. Subset of UML Common Behaviour and Collaborations Packages

The second dimension considers the type of affected model. For this purpose,
class diagram, sequence diagram and state diagram are classified following the
four layers of the meta-tower of the MDA standard[3], i.e. Instance, Model,
Meta-Model and Meta-Meta-Model. A class diagram belongs to the Model
level because the model elements it represents (more specifically, classes and
associations) serve as definitions for instances (more specifically, objects, links,
transitions and events) in sequence and state diagrams which belong to the
Instance level. Conflicts can occur at the Model level, between the Model

Behavioural Structural
Model-Model dangling (type) reference

inherited association conflict

Model-Instance incompatible definition instance definition missing

Instance-Instance invocable behaviour conflict disconnected model
observable behaviour conflict
incompatible behaviour conflict

Table 1. Two-dimensional inconsistency conflict table

and Instance level, or at the Instance level. The classes of observed conflicts
are listed in table 1. Because of space limitations, only the instance definition
missing and incompatible behaviour conflicts are detailed here.

– Instance definition missing occurs when an element definition does not
exist in the corresponding class diagram(s). This class of conflicts represents
structural conflicts between class, sequence and state diagrams because the
structure of the software system as specified in the class diagram is incom-
plete or incompatible with respect to existing instances. These conflicts can
be caused by removing elements from a diagram or having not yet included
the necessary element(s). This class of conflicts represents the following con-
flicts:
• Classless instance arises when an object in a sequence diagram is the

instance of a class that does not exist in any class diagram.
• Classless statechart arises when the state diagram is associated to a class

that does not exist in any class diagram.
• Dangling (inherited) feature reference arises when a stimulus, event,

guard or action references an attribute or operation that does not exist
in the corresponding class (or its ancestors).

• Dangling (inherited) association reference arises when a certain link (to
which a stimulus (or stimuli) is related) in a sequence diagram is an
instance of an association that does not exist between the classes of the
linked objects (or between the ancestors of these classes).

– Incompatible behaviour conflicts indicate conflicting behaviour defini-
tions between state diagram(s) and sequence diagram(s). More particularly
this conflict arises when the ordered collection of stimuli received by an ob-
ject in a sequence diagram does not exist as a sequence of events in the state
diagram of that class.

Concrete examples of the above conflicts are shown in the next section.

4 Running Example

To illustrate how description logic can help us to maintain the consistency be-
tween evolving UML models, we introduce a running example. Figure 4 shows
a class diagram containing a Document class hierarchy together with a Printer
and Previewer class. Three types of documents exist: ASCIIDoc, PSDoc and
RTFDoc. Document itself is an abstract class. The class diagram also contains a
Printer and Previewer class allowing the user to print or preview a document.

The left-hand side of Figure 5 depicts a sequence diagram specifying the
printing behaviour of an ASCII document. An instance of ASCIIDoc receives a
print message, as a consequence the content of the document is converted and
sent to the printer. The ASCII content needs to be converted because in this
example, the Printer is supposed to be a PostScript printer. We have similar
sequence diagrams for printing a RTFDoc and a PSDoc. In the case of a PS-
Doc, the convert message is obviously unnecessary. There are also three similar
sequence diagrams for previewing documents.

Now, consider an evolution of this sequence diagram, as illustrated in Fig-
ure 5. The basic evolution step consists of introducing a Visitor design pattern
[13]. The overall idea of the Visitor pattern is to gather related operations and

+print()
+preview()

Document
+preview(in d : Document)

Previewer

+print()
+preview()
-convert()

ASCIIDoc
+print()
+preview()

PSDoc
+print()
+preview()
-convert()

RTFDoc

+print(in d : Document)
Printer

Fig. 4. Class diagram version 1

anActor anASCIIDoc : ASCIIDoc aPrinter : Printer anActor anASCII : ASCIIDoc aPrintVisitor : PrintVisitor aPrinter : Printer
print()

convert()

print(d:Document)

print()

accept(v:Visitor)

visitASCIIDoc(d:ASCIIDoc)

getContents()

convert()

print(d:Document)

Fig. 5. Sequence diagram version 1 and its evolved version 2

localize them in a visitor. For this purpose, a PrintVisitor class is introduced
together with an accept method in all the classes of the Document hierarchy.
The accept method calls a specific visit method for each different kind of print
functionality. For example, in the evolved sequence diagram on the right of Fig-
ure 5, accept invokes the method visitASCII on the PrintVisitor class to print
the contents of the document. A similar evolution is needed for printing PS and
RTF documents.

With respect to consistency, we would like to know whether the original
class diagram of Figure 4 is still consistent with the evolved sequence diagram
on the right of Figure 5. Intuitively, one can see that the answer is negative. The
following inconsistencies with the original class diagram can be derived from the
evolved sequence diagrams:

1. The sequence diagram refers to an object of a class PrintVisitor that does
not belong to the class diagram. This is an example of a classless instance.

2. As a consequence of the first conflict, the PrintVisitor class does not define
the methods visitPSDoc, visitASCIIDoc and visitRTFDoc. In addition,
none of the subclasses of Document define an accept method. These are
occurrences of dangling feature reference.

3. The class PrintVisitor does not have an association with the Printer class.
Such an association is needed, because a print message is sent from Print-
Visitor to Printer. This is an example of the dangling association reference
conflict.

4. Finally, from the original class diagram and the evolved sequence diagram
a design improvement can be deduced. Every subclass of Document has a
print method in the original class diagram. From the sequence diagrams we
observe that the print message has the same implementation for each Doc-
ument subclass: it simply redirects responsibility to the visitor by invoking
the accept method. This allows us to derive that the print method can be
pulled up (pull up method refactoring [11]) and as such disappears in the
subclasses of Document but becomes concrete in the Document class.

If all the inconsistencies and design improvements are addressed, the class
diagram given in Figure 7 can be derived.

After the introduction of the evolved sequence diagrams, a state diagram
for ASCIIDoc is introduced. The state machine in Figure 6 shows the substates
of the Print superstate. The Print superstate is entered if an accept event
(raised by the invocation of the accept() operation) occurs and it implies that
the Accepting state is entered. A convert event (raised by the invocation of the
convert() operation) causes a transition to the Converting state and finally, the
getContents event (raised by the invocation of the getContents() operation)
causes a transition to the Visited state.

Accepting

Visited

Converting

accept

convert
getContents

Fig. 6. State diagram inconsistent version

In this case, we would like to know whether the part of the state diagram
as shown in Figure 6 is consistent with the sequence diagram on the right of
Figure 5. The evolved sequence diagram of Figure 5 and the part of the state
diagram in Figure 6 also conflict because the order in which the messages are
received by the object anASCII is different from the order in which the corre-
sponding events occur in the state diagram.

In the remainder of this paper, we will show how to use the formalism of de-
scription logic to automatically detect and resolve these kinds of inconsistencies
between different kinds of UML diagrams.

+print()
+preview()
+accept(in v : Visitor)

Document

+accept(in v : Visitor)
+convert()

ASCIIDoc
+accept(in v : Visitor)

PSDoc
+convert()
+accept(in v : Visitor)

RTFDoc

+visitPS(in d : PSDoc)
+visitRTF(in d : RTFDoc)
+visitASCII(in d : ASCIIDoc)

Visitor
+visitPS(in d : PSDoc)
+visitRTF(in d : RTFDoc)
+visitASCII(in d : ASCIIDoc)

PrintVisitor

+visitPS(in d : PSDoc)
+visitRTF(in d : RTFDoc)
+visitASCII(in d : ASCIIDoc)

PreviewVisitor

+print()
Printer

+preview()
Previewer

Fig. 7. The evolved class diagram, i.e. class diagram version 2

5 Description Logic

Description Logics (DLs) are a family of knowledge representation formalisms.
These formalisms allow us to represent the knowledge of the world by defining
the concepts of the application domain and then use these concepts to specify
properties of individuals occurring in the domain. The basic syntactic building
blocks are atomic concepts (unary predicates), atomic roles (binary predicates)
and individuals (constants). The expressive power of the language is restricted.
It is a two-variable fragment of first-order predicate logic and as such it uses a
small set of constructors to construct complex concepts and roles.

The most important feature of these logics is their reasoning ability. This rea-
soning allows us to infer knowledge that is implicitly present in the knowledge
base. Concepts are classified according to subconcept-superconcept relationships,
e.g. ASCIIDoc is a Document. In this case, ASCIIDoc is a subconcept of Document

and Document is the superconcept of ASCIIDoc. Classification of individuals pro-
vides useful information on the properties of individuals e.g., if an individual is
classified as an instance of ASCIIDoc, we infer that it is also a Document. Instance
relationships may trigger the application of rules that insert additional facts into
the knowledge base e.g., the specification of a rule stating that all ASCIIDocs have
a Printer, has as result that an individual known to be an ASCIIDoc, is also known
to have a Printer. The classification reasoning task is one of the main reasons
why we resort to DL.

Another important feature of DL systems is that they have an open world
semantics, which allows the specification of incomplete knowledge. Due to their
semantics, DLs are suited to express the design structure of a software applica-
tion. For example, Caĺı [5] et al. translated UML class diagrams to the description
logic DLR.

Even with all the expressive power of first-order logic, it is not possible to
define the transitive closure of a relation in first-order logic. In [4] this is also
recognized as a deficiency of OCL. The well-formedness rules of the UML meta-
model which are expressed in OCL make heavy use of additional operations to
navigate over the metamodel. These operations are often recursive and this could
be avoided if it was possible to express transitive closure in OCL [4]. In most
DLs it is however possible to define the transitive closure of a role.

Several implemented DL systems exist (e.g., Loom, Classic, and so on). Below
we explain one such system, and argument why we have selected it for carrying
out our experiments.

5.1 Translation of UML Profile into Loom

The Loom system offers reasoning facilities on concepts and individuals for the
DL ALCQRIFO. This logic extends the basic description logic ALC with qual-
ified number restrictions on roles, inverse roles, role hierarchy and nominals.
The reason why we have chosen Loom, also its distinguishing feature from other
DL systems, is the incorporation of an expressive query language for retrieving
individuals and its support for rule-based programming.

Our UML profile will be specified in Loom in terms of atomic concepts and
roles as well as more complex descriptions that can be built from them with
concept constructors. As an example we give the translation into Loom of the
meta association vmodel. Meta associations are translated into Loom as roles
between concepts. The association vmodel between a CompositeModel and a
VersionedModel is translated into the role vmodel with as domain the concept
CompositeModel and as range VersionedModel.

;Relation compositeModel-versionedModel
(LOOM:defrelation vmodel
:domain CompositeModel
:range VersionedModel)
(LOOM:defrelation container ;container is the inverse of vmodel
:is (:inverse vmodel))

UML metaclasses are translated into Loom concepts. As an example, the
translation of the metaclass CompositeModel which is a stereotyped Model is
given:

;Concept COMPOSITEMODEL
(LOOM:defconcept CompositeModel
:is (:and VersionedModel
(:all vmodel VersionedModel))
:in-partition $VersionedModel$)

In the same way all the other classes, associations and attributes in the UML
metamodel are translated into Loom. Logic rules are also used to specify the
OCL well-formedness rules of our UML profile.

The modeling elements of the user-defined class, sequence and state diagrams
are specified as instances of the appropriate classes, association and attributes of
the UML metamodel. This guarantees the consistency of the user-defined model
elements with the UML metamodel. As an example, the Document class is repre-
sented by the instance Document-1.0 of the concept Class. Furthermore, different
properties for Document-1.0 are specified, e.g. this class has two operations pre-
sented by print-Document-1.0 and preview-Document-1.0 which are instances of
the concept Operation. The complete translation of the metamodel into Loom
code can be found in [18].

(create ’Document-1.0 ’Class)
(tellm (:about Document-1.0
(name Document)
(Has-feature print-Document-1.0)
(Has-feature preview-Document-1.0)
(Is-parent-of Document-ASCIIDoc-1.0)
(Is-parent-of Document-PSDoc-1.0)
(Is-parent-of Document-RTFDoc-1.0)
(IsAbstract true)
(In-namespace Class-Diagram-1.0)))

6 Experiments

To carry out our experiments, the diagrams of Figure 4, Figure 5 and Fig-
ure 6 were manually translated into Loom. To detect and resolve inconsistencies
between models Loom’s query processor is used. Due to space limitations only
important fragments of the developed Loom predicates are shown. All predicates
for all the inconsistencies as detailed in section 3 can be found in [18].

Classless instance. To detect that there are objects in an evolved sequence
diagram which are instances of classes that do not belong to any class diagram,
the following rule is specified:

(retrieve (?class ?obj ?seq-diagram)
(:and (Class ?class)
(the-prev-ver ?class NIL)
(Instance-of-class ?obj ?class) ;is ?obj an instance of ?class
(In-namespace ?obj ?seq-diagram))) ;is ?obj present in ?seq-diagram

The the-prev-ver role links different versions of the same model elements.
The statement (the-prev-ver ?class NIL) checks for all classes which do not
have a previous version. With this predicate we automatically detect that the
evolved sequence diagram used an object (aPrintVisitor) that is an instance
of a new class (PrintVisitor) that was not present in the original class diagram.

Dangling feature and association reference. With a similar predicate,
we detect the new operations visitASCII(ASCIIDoc), visitPS(PSDoc),
visitRTF(RTFDoc), accept(Visitor) and getContents() that are introduced
in the evolved sequence diagrams and are not present in the original class di-
agram. Another Loom predicate is used to detect a new association between

PrintVisitor and Printer, because an instance of Printvisitor sends the print
message to Printer.

For most of the detected inconsistencies we also provide rules to automatically
resolve them. For example, if the evolved sequence diagram contains some new
operations (e.g., accept and visitASCII), we can add them to the evolved
class diagram using the following predicate. This predicate retrieves the owner
of the operation by querying the object that receives the stimulus associated
to the corresponding action. In this case, the initiator meta association and
dispatchaction metaclass are used.

(do-retrieve (?stim ?obj ?class ?action ?op)
(:and
(Stimulus ?stim)
(Received-by ?stim ?obj) ;object ?obj receives stimulus ?stim
(Instance-of-class ?obj ?class) ;object ?obj is an instance of ?class
(Initiates ?stim ?action) ;stimulus ?stim initiates the action ?action
(DispatchAct-op ?action ?op) ;operation ?op has dispatchaction ?action
(Is-owned-by ?op NIL)) ;operation ?op does not belong to any class
(tellm (Is-owned-by ?op ?class)))

The statement (tellm (Is-owned-by ?op ?class)) resolves the inconsis-
tency by making the operation ?op a member of the class ?class.

Finally, it is possible to identify candidates for the method pull-up refactor-
ing. This is done using the information that is available in the sequence diagrams.
These predicates can be found in [18].

Incompatible behaviour. To check if there is an incompatible behaviour
conflict, the order of the received operations by an object is compared with
the order of operations associated to the events of its state machine. For this
purpose the names of the operations received by an object and the names of
the operations associated to the events are retrieved. Again, the initiator meta
association and dispatchaction metaclass are used, as shown in the following
fragment of the logic predicate used to detect this conflict:

...(:and
(Receiver-of ?obj ?stim) ;object ?obj receives stimulus ?stim
(Initiates ?stim ?action) ; ?stim initiates ?action
(DispatchAct-op ?action ?op) ;?op has dispatchaction ?action
(name ?op ?name)... ;?name is the name of ?op

In order to retrieve the operations associated to events in the state machine,
the information contained by the Transition metaclass is used. The source and
target state of the transition are retrieved and the event which triggers the
transition and finally the name of the corresponding operation is retrieved for
comparison.

... (:and
(Is-source-of ?from-state ?transition)
(Triggered-by ?transition ?event) ;?transition is triggered by ?event
(Is-occurrence-of ?event ?op) ;operation ?op is related to ?event
(name ?op ?name) ;?name is the name of ?op
(Is-target-of ?state ?transition))...

Discussion. We applied all the above mentioned rules to the example of
section 4. This enable us to detect and resolve all inconsistencies as specified in
that section. It is also possible to generate a new version of the class diagram, that
incorporated the new information that the user added to the sequence diagram.
The inconsistency between the behaviour specified in the sequence diagram on
the right of Figure 5 and the state diagram in Figure 6 is also detected by our
rules.

For our current experiments, we manually translate the UML models into DL
format. However, we are currently working on an automatic translation of UML
models (exported from Poseidon in XMI 1.2 format) using XSLT. To this extent,
we intend to use the SAXON XSLT processor tool (saxon.sourceforge.net).

7 Related work

Finkelstein et al. [10] explain that consistency between partial models is neither
always possible nor is it always desirable. They suggest to use temporal logic to
identify and handle inconsistencies. Grundy et al. [15] claim that a key require-
ment for supporting inconsistency management is the facilities for developers
to configure when and how inconsistencies are detected, monitored, stored, pre-
sented and possibly automatically resolved. They describe their experience with
building complex multiple-view software development tools supporting inconsis-
tency management facilities.

A wide range of different approaches for checking consistency has been pro-
posed in the literature. Engels et al. [8] motivate a general methodology to deal
with consistency problems based on the problem of protocol statechart inheri-
tance. In that example, statecharts as well as the corresponding class diagram
are important. Communicating Sequential Processes (CSP) are used as a math-
ematical model for describing the consistency requirements. This idea is further
enhanced in [7, 9] with dynamic meta modeling rules as a notation for the consis-
tency conditions because of their graphical, UML-like notation. Model transfor-
mation rules are used to represent evolution steps, and their effect on the overall
model consistency is explored.

Ehrig and Tsiolakis [6] investigate the consistency between UML class and se-
quence diagrams. UML class diagrams are represented by attributed type graphs
with graphical constraints, and UML sequence diagrams by attributed graph
grammars. As consistency checks between class and sequence diagrams only ex-
istence, visibility and multiplicity checking are considered. In [20] the information
specified in class and statechart diagrams is integrated into sequence diagrams.
The information is represented as constraints attached to certain locations of
the object lifelines in the sequence diagram. The supported constraints are data
invariants and multiplicities on class diagrams and state and guard constraints
on state diagrams. Fradet et al. [12] use systems of linear inequalities to check
consistency for multiple view software architectures.

Finally, note that consistency of models should not be confused with consis-
tency of a modeling language. UML has been formalized within rewriting logic

and implemented in the Maude system by Ambrosio Toval and his students [1,
19]. Their objectives are to formalize UML and transformations between differ-
ent UML models. They focus on using reflection to represent and support the
evolution of the metamodel.

8 Conclusion

In this paper we propose and validate an approach to detect and resolve incon-
sistencies between different versions of a UML model, specified as a collection of
class diagrams, sequence diagrams and state diagrams. For research purposes,
we restrict ourselves to a significant subset of the UML metamodel.

The formalism used, is description logic, a decidable fragment of first-order
predicate logic. More specifically, we use the Loom knowledge representation tool
to formally specify UML models as a collection of concepts and roles.

Logic rules are used to detect and to suggest ways to resolve inconsistencies.
Based on a simple but illustrative example, we illustrate the feasibility of the
approach. Until now, we only use small examples. The question remains if our
approach remains feasible for larger models.

Obviously, a lot of future work remains to be done. We will investigate how
the formal properties of DL can help us to prove interesting properties about
consistency between UML models. We need to further automate the consis-
tency maintenance process, by directly invoking the description logic engine from
within a UML CASE tool (such as Poseidon), and providing feedback about the
detected inconsistencies to this CASE tool. We need to incorporate other kinds
of UML diagrams (such as collaboration diagrams and activity diagrams). We
need to extend our ideas to deal with co-evolution and consistency maintenance
between different levels of abstraction, more specifically, source code and UML
models. This idea, which is also explored in [14] will allow us to provide bet-
ter formal support for the round-trip engineering and model-driven architecture
process.

References

1. J. Alemán, A. Toval, and J. Hoyos. Rigorously transforming UML class diagrams.
In Proc. 5th Workshop Models, Environments and Tools for Requirements Engi-
neering (MENHIR), 2000. Universidad de Granada, Spain.

2. F. Baader, D. McGuinness, D. Nardi, and P. Patel-Schneider. The Description
Logic Handbook: Theory, Implementation and Applications. Cambridge University
Press, 2003.

3. J. Bézivin and N. Ploquin. Tooling the MDA framework: a new software main-
tenance and evolution scheme proposal. Journal of Object-Oriented Programming
(JOOP), 2001.

4. J.-P. Bodeveix, T. Millan, C. Percebois, C. L. Camus, P. Bazes, and L. Ferraud.
Extending OCL for verifying UML model consistency. In L. Kuzniarz, G. Reggio,
J. Sourrouille, and Z. Huzar, editors, Consistency Problems in UML-based Software
Development, Workshop UML 2002, Technical Report, 2002.

5. A. Caĺı, D. Calvanese, G. De Giacomo, and M. Lenzerini. Reasoning on UML class
diagrams in description logics. In Proc. of IJCAR Workshop on Precise Modelling
and Deduction for Object-oriented Software Development (PMD 2001), 2001.

6. H. Ehrig and A. Tsiolakis. Consistency analysis of UML class and sequence di-
agrams using attributed graph grammars. In H. Ehrig and G. Taentzer, editors,
ETAPS 2000 workshop on graph transformation systems, pages 77–86, March 2000.

7. G. Engels, J. Hausmann, R. Heckel, and S. Sauer. Testing the consistency of
dynamic UML diagrams. In Proc. Sixth International Conference on Integrated
Design and Process Technology (IDPT 2002), June 2002. Pasadena, CA, USA.

8. G. Engels, R. Heckel, and J. M. Küster. Rule-based specification of behavioral
consistency based on the UML meta-model. In M. Gogolla and C. Kobryn, ed-
itors, Proc. Int’l Conf. UML 2001 - The Unified Modeling Language. Modeling
Languages, Concepts, and Tools, number 2185 in Lecture Notes in Computer Sci-
ence, pages 272–286. Springer-Verlag, October 2001. Toronto, Canada.

9. G. Engels, R. Heckel, J. M. Küster, and L. Groenewegen. Consistency-preserving
model evolution through transformations. In J.-M. Jézéquel, H. Hußmann, and
S. Cook, editors, Proc. Int’l Conf. UML 2002 - The Unified Modeling Language.
Model Engineering, Concepts, and Tools, number 2460 in Lecture Notes in Com-
puter Science, pages 212–227. Springer-Verlag, October 2002. Dresden, Germany.

10. A. Finkelstein, D. M. Gabbay, A. Hunter, J. Kramer, and B. Nuseibeh. Incon-
sistency handling in multi-perspective specifications. In European Software Engi-
neering Conference, LNCS, pages 84–99. SpringerVerlag, 1993.

11. M. Fowler. Refactoring: Improving the Design of Existing Programs. Addison-
Wesley, 1999.

12. P. Fradet, D. Le Métayer, and M. Périn. Consistency checking for multiple view
software architectures. In Proc. Int’l Conf. ESEC/FSE’99, volume 1687 of Lecture
Notes in Computer Science, pages 410–428. Springer-Verlag, 1999.

13. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Languages and Systems. Addison-Wesley, 1994.

14. P. V. Gorp, H. Stenten, T. Mens, and S. Demeyer. A UML extension for automating
source-consistent design improvements based on refactoring contracts. In Proc. 6th
International Conference on the Unified Modeling Language, 2003.

15. J. C. Grundy, J. G. Hosking, and W. B. Mugridge. Inconsistency management for
multiple-view software development environments. IEEE Transactions on Software
Engineering, 24(11):960–981, 1998.

16. R. MacGregor. Inside the loom description classifier. SIGART Bull., 2(3):88–92,
1991.

17. Object Management Group. Unified Modeling Language specification version 1.5.
formal/2003-03-01, March 2003.

18. J. Simmonds. Consistency maintenance of UML models with description logics.
Master’s thesis, Department of Computer Science, Vrije Universiteit Brussel, Bel-
gium and Ecole des Mines de Nantes, France, September 2003.

19. A. Toval and J. Alemán. Formally modeling UML and its evolution: a holistic
approach. In S. Smith and C. Talcott, editors, Formal Methods for Open Object-
based Distributed Systems IV, pages 183–206. Kluwer Academic Publishers, 2000.

20. A. Tsiolakis. Semantic analysis and consistency checking of UML sequence dia-
grams. Master’s thesis, Technische Universität Berlin, April 2001. Technical Report
No. 2001-06.

