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Abstract

This work introduces the technique of using a carefully chosen determining set to
prove the existence of a distinguishing labeling using few labels. A graph G is said
to be d-distinguishable if there is a labeling of the vertex set using 1, . . . , d so that
no nontrivial automorphism of G preserves the labels. A set of vertices S ⊆ V (G)
is a determining set for G if every automorphism of G is uniquely determined by
its action on S. We prove that a graph is d-distinguishable if and only if it has a
determining set that can be (d − 1)-distinguished. We use this to prove that every
Kneser graph Kn:k with n ≥ 6 and k ≥ 2 is 2-distinguishable.

1 Introduction

The distinguishing number of a graph G is the smallest integer d so that each vertex of
G can be labeled with an integer from {1, . . . , d} in such a way that no automorphism
of G, other than the identity, preserves the labels. Albertson and Collins introduced
distinguishing in [3]. There has been a flurry of activity on distinguishing in the last few
years: see e.g. [1, 2, 4, 6, 7, 8, 9, 13, 14, 15, 17, 18, 20].

A subset S of vertices of a graph G is called a determining set if whenever two auto-
morphisms agree on the elements of S, they agree on all of G. That is, the image of S
under an arbitrary automorphism determines the automorphism completely. The deter-
mining number of a graph G is the smallest integer r so that G has a determining set of
size r. Boutin introduced determining in [5].

Both distinguishing labelings and determining sets illuminate and quantify the sym-
metry of a graph. However, there are fundamental differences between these two concepts.
A distinguishing labeling adds a new aspect (vertex labels) to the graph in order to break
all graph symmetries. In this situation labeling two vertices with different labels may
effectively ‘break’ more than one automorphism. In contrast a determining set, while
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adding nothing new to the graph, seeks to capture the differences between automor-
phisms. If multiple automorphisms have the same action on a given pair of vertices, those
two vertices alone are not sufficient to differentiate the automorphisms in question. More
information (in the form of more vertices in the determining set) is needed.

We see in Theorem 3 that if a graph has determining number k, its distinguishing
number is at most k + 1. However, a graph may have small distinguishing number and
large determining number. For example, the determining number of the Kneser graph
Kn:k is at least log2(n + 1) [5], while we see in Theorem 4 that if n ≥ 6 and k ≥ 2, its
distinguishing number is only 2. Thus the difference between the distinguishing number
and the determining number for a given graph can be arbitrarily large.

Determining sets provide a useful tool for finding distinguishing numbers. Theorem
3 tells us that to prove G has distinguishing number at most k + 1, it suffices to find a
determining set that can be k-distinguished. In particular, to prove that G has distin-
guishing number at most 2, it suffices to find (a superset of) a determining set that can
be 1-distinguished (as a subset) or whose induced subgraph is asymmetric. We use this
method to find the distinguishing numbers for Kneser graphs.

The paper is organized as follows. Section 2 gives background on both distinguishing
numbers and determining numbers. The connections between distinguishing and deter-
mining are exposed in Section 3. Finally, Section 4 establishes the distinguishing numbers
of the Kneser graphs.

2 Background

Definition 1. A labeling f : V (G) → {1, . . . , d} is said to be d-distinguishing if φ ∈
Aut(G) and f(φ(x)) = f(x) for all x ∈ V (G) implies that φ = id. The distinguishing num-

ber of G, denoted here by Dist(G), is the minimum d such that G has a d-distinguishing
labeling.

Note that we have a d-distinguishing labeling of a graph G if and only if the label-
ing together with the structure of G uniquely identifies every vertex. Every graph has
a distinguishing labeling since we can label each vertex with a different integer from
{1, · · · , |V (G)|}. Furthermore, there are graphs, e.g. Kn and K1,n, for which such a
labeling is optimal or nearly optimal. Also note that Dist(G) = Dist(G

c

).

The distinguishing number, introduced in [3], was inspired by a recreational puzzle of
Frank Rubin [16]. Rubin’s puzzle is (in the current language) to find Dist(Cn). One attrac-
tion of the puzzle is its contrasting solutions. While Dist(C3) = Dist(C4) = Dist(C5) = 3,
when n ≥ 6, Dist(Cn) = 2.

Definition 2. A subset S ⊆ V (G) is said to be a determining set if whenever g, h ∈
Aut(G) and g(x) = h(x) for all x ∈ S, then g = h. The determining number of G, denoted
here by Det(G), is the minimum r such that G has a determining set of cardinality r [5].
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Another way to think about determining sets is that S is a determining set if and only
if every vertex in the graph can be uniquely identified by its relationship to the vertices
in S. A basis for a vector space is an analogue of a determining set. Thus in a vector
space the determining number is just the dimension. An early form of a determining set
is the concept of a base for a group action. Formally, a base for a permutation action on
a set Ω is a subset of Ω such that the only permutation of Ω that fixes every element in
the subset is the identity. [11]

Every graph has a determining set, since any set containing all but one vertex is
determining. There are graphs, e.g. Kn and K1,n, for which such a determining set is
optimal or nearly optimal. Also note that Det(G) = Det(G

c

).

Every n-cycle has a determining set consisting of any two non-antipodal vertices.
Note that for n ≥ 6, Dist(Cn) = Det(Cn) = 2, but for 3 ≤ n ≤ 5, Dist(Cn) = 3 while
Det(Cn) = 2.

Recall that Stab(S) = ∩s∈SStab(s) is the pointwise stabilizer of the set S. The fol-
lowing theorem characterizes determining sets in terms of stabilizers and will be useful in
the next section. Its proof is straightforward.

Theorem 1. [5] Let S be a subset of the vertices of the graph G. Then S is a determining
set for G if and only if Stab(S) = {id}.

3 Linking Distinguishing and Determining

We already know what it means for (the set of vertices of) a graph to be d-distinguished.
In order to connect determining sets and distinguishing labelings we also need to know
what it means for a subset of vertices to be d-distinguished.

Definition 3. Let S ⊆ V (G). A labeling f : S → {1, · · · , d} is called d-distinguishing if
φ ∈ Aut(G) and f(φ(x)) = f(x) for all x ∈ S implies that φ ∈ Stab(S).

That is, φ may not be the identity (it might move vertices that are not in S), but φ
fixes S pointwise.

Theorem 2. Let S ⊆ V (G). Let H be the subgraph of G induced by S. A d-
distinguishing labeling for H as a graph induces a d-distinguishing labeling for S as a
subset of V (G).

Proof. Find a d-distinguishing labeling for H and use this same labeling for the vertices of
S. Leave the remaining vertices of G unlabeled. Suppose that φ ∈ Aut(G) preserves labels
(and non-labels). Since φ preserves the property of being labeled it induces a bijection on
S. Further the induced bijection preserves labels, adjacency, and non-adjacency among
the vertices of S. Thus φ induces a label preserving automorphism of H, which implies
that φ induces the identity automorphism on H. That is, as a permutation φ fixes the
vertices of H; but these are the vertices of S. Thus φ ∈ Stab(S).
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Note that it may be possible to distinguish a subset of vertices in a graph with fewer
labels than are needed to distinguish its induced subgraph. For example, consider C6. Let
S consist of two adjacent vertices and a third vertex not adjacent to either of the other two.
The subgraph induced by this set is an edge and an isolated vertex. Its distinguishing
number is 2. However, when viewed as a subset of C6, S is 1-distinguishable. Any
automorphism that flips the edge must transpose the third vertex with a vertex outside
the set, which has no label. This is impossible.

Theorem 3. G has a d-distinguishable determining set if and only if G can be (d + 1)-
distinguished.

Proof. If G has a d-distinguishable determining set S, then so distinguish it. Label all
vertices not in S with the label d + 1. If φ ∈ Aut(G) preserves labels of G, then it
preserves the labels of S. Because this is a distinguishing labeling for S, φ ∈ Stab(S).
Since S is a determining set, Stab(S) = {id}. Thus φ = id and the labeling of G is
(d + 1)-distinguishing.

Suppose that G is (d + 1)-distinguishable. Then so distinguish it. Let S be the set
of vertices with labels 1, · · · , d. We want to show that S is both d-distinguished and a
determining set. Suppose that φ ∈ Aut(G) preserves the given labels of S. Then it pre-
serves the labels of the remaining vertices of G. But since this is a distinguishing labeling
of G, φ = id , which implies that φ ∈ Stab(S). Thus we have a d-distinguishing labeling
for S. Now suppose that φ ∈ Stab(S). Then it preserves labels 1, · · · , d. Furthermore,
since vertices outside of S can only be sent to vertices outside of S, φ also preserves the
label d + 1. Thus φ preserves all labels which implies that φ = id . Thus Stab(S) = {id}
and therefore S is a determining set.

Note that by the theorems above, if we can find a determining set for G so that the
subgraph induced by it is d-distinguishable, then G is (d + 1)- distinguishable. We’ll use
this with d = 1 in the following section.

4 Distinguishing Kneser Graphs

Let Kn:k denote the Kneser graph where n ≥ 2k + 1. Here V (Kn:k) consists of all of
the

(

n

k

)

k-element subsets of [n] = {1, 2, . . . n}, and uv ∈ E(Kn:k) when the subsets
corresponding to u and v have empty intersection. It is well known that automorphisms
of Kn:k correspond to permutations of [n]; thus Aut(Kn:k) ∼= Sn [10]. It is immediate
that Kn:1

∼= Kn: thus Dist(Kn:1) = n. The Petersen graph is K5:2, and it is known that
Dist(K5:2) = 3 [3]. Our purpose in this section is to show that these are the only Kneser
graphs that are not 2-distinguishable.

Theorem 4. If k ≥ 2 and n 6= 5, then Dist(Kn:k) = 2.
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Proof. It is straightforward to see that Kn:2 is isomorphic to (L(Kn))
c

, the complement
of the line graph of the n-clique. Lovasz observed that when n ≥ 6, Dist((L(Kn))

c

) = 2
[3]. Thus we may assume that k ≥ 3.

Throughout this proof all addition will be modulo n. Furthermore, when we say that
two integers are consecutive, that also means modulo n. Also, we use n rather than 0 to
denote integers that are evenly divisible by n.

We wish to give a special notation to a subset of the vertices of Kn:k. Let Vi denote
the vertex that corresponds to the k-element subset {i, i + 1, . . . , i + k − 1}. Notice that
ViVj ∈ E(Kn:k) when k ≤ |j − i| ≤ n − k. Boutin has shown that {V1, V2, . . . , Vn−k} is a
determining set for Kn:k [5]. In each of the two following constructions we find a superset
of this determining set that induces a 1-distinguishable subgraph. Using Theorems 2 and
3 then yield our result.

Case 1) Suppose that n ≥ 3k. In this case we prove that the complement of Kn:k is 2-
distinguishable, which proves that Kn:k itself is 2-distinguishable. Note that in (Kn:k)

c

two
vertices are adjacent precisely when their associated subsets have nontrivial intersection.
Let F denote the subgraph of (Kn:k)

c

induced by {Vi : 1 ≤ i ≤ n − k + 1}. Since
any superset of a determining set is determining, V (F ) is also a determining set. It
is worth remarking that F is just a power of a path. Specifically F ∼= P

k−1

n−k+1 where
Pn−k+1 is the path with n − k + 1 vertices. (That is, two vertices in F are adjacent if
their distance in Pn−k+1 is at most k − 1.) Note that within F , vertex Vj is adjacent to
min{k − 1, j − 1} vertices to its ‘left’ and min{k − 1, n− k + 1− j} vertices to its ‘right’.
Thus degF (Vj) = k + j − 2 if 1 ≤ j ≤ k − 1, degF (Vj) = 2k − 2 if k ≤ j ≤ n− 2k + 2 and
degF (Vj) = k − 1 + (n − k + 1 − j) = n − j if n − 2k + 3 ≤ j ≤ n − k + 1.

We now add one additional vertex to V (F ) to create an asymmetric induced subgraph
of (Kn:k)

c

. Let Y denote the vertex that corresponds to the subset {2, 4, . . . , 2k}. Let G =
Gn:k denote the subgraph of (Kn:k)

c

induced by {Y, V1, . . . , Vn−k+1}. Figure 1 shows G10:3.
It is immediate that Y is adjacent (within G) to precisely V1, . . . , V2k. Using the degrees we
computed above for F , it is straightforward to see that degG(Y ) = 2k, degG(Vj) = k−1+j
for 1 ≤ j ≤ k − 1 and degG(Vj) = 2k − 1 for k ≤ j ≤ min{2k, n − 2k + 2}. Further,
since n ≥ 3k, n − k + 1 ≥ 2k + 1 which implies that Y is not adjacent to Vn−k+1. Thus
degG(Vn−k+1) = n − (n − k + 1) = k − 1. (We won’t specifically need the degree when
min{2k, n − 2k + 2} < j < n − k + 1.)

We now show that G is 1-distinguishable. Any automorphism of G must fix Y and
Vn−k+1, since these are the unique vertices of maximum and minimum degrees. Suppose
σ ∈ Aut(G). Then since σ fixes Y , it induces a permutation, σ̂, on the vertices of F . But
σ̂ must preserve adjacency among the vertices of F since it preserves their adjacencies
as vertices of G. Thus σ̂ ∈ Aut(F ). Thus any automorphism of G is an automorphism
of F that fixes Vn−k+1. If Vn−k+1 is fixed, then so is V1, since these are the two vertices
in F whose degrees equal k − 1. For 2 ≤ j ≤ k − 1 the vertex Vj is adjacent to V1

and degF (Vj) = k − 2 + j. These two properties uniquely identify each such Vj. For
k ≤ j ≤ n − 2k + 2, degF (Vj) = 2k − 2. For each such j, Vj is adjacent to the already
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Figure 1: G10:3

identified vertices Vj−1, Vj−2, . . . , Vj−k+1. This uniquely identifies each of these vertices.
Finally, for n − 2k + 3 ≤ j ≤ n − k, each Vj is uniquely identified by its degree in F and
its adjacency to Vn−k+1.

Thus G is 1-distinguishable and by Theorems 2 and 3 we get that (Kn:k)
c

is 2-
distinguishable. Thus we may conclude that Kn:k is 2-distinguishable.

Case 2) Suppose that 2k + 1 ≤ n ≤ 3k − 1. Then n = 2k + r where 1 ≤ r ≤ k − 1. Note
that here we work with Kn:k rather than its complement. Let H denote the subgraph of
Kn:k induced by {Vi : 1 ≤ i ≤ n}. It is worth remarking that H is Kn

k
, the circular clique

[12, 19]. It is easy to check that the degree of each vertex in H is n−2k+1 = r+1. Since
any superset of a determining set is determining, V (H) is a determining set. We then
find an asymmetric, and therefore 1-distinguishable, induced subgraph of Kn:k containing
these vertices. By Theorems 2 and 3 this guarantees that Kn:k is 2-distinguishable.

Our goal is to create an induced subgraph of G that consists of H with a path of length
2 attached to V1 and a path of length 1 attached to Vk+1. By doing so we differentiate V1

and Vk+1 and thereby create an asymmetric graph. Let U1, U2, and X denote the vertices
that correspond with the k-subsets of [n] indicated below:

U1 ↔ {k + 1, k + 2, . . . , 2k − r, 2k + 1, . . . , 2k + r};

U2 ↔ {2k − r + 2, . . . , 2k, r + 1, . . . , k, 1}; and

X ↔ {2k + 1, . . . , 2k + r, r + 1, . . . , k}.

It is straightforward to check that

1. U1Vi ∈ E(Kn:k) if and only if i = 1;

2. U2U1 ∈ E(Kn:k) and U2Vi /∈ E(Kn:k) ∀i ∈ [n]; and

3. XUi /∈ E(Kn:k) for i = 1, 2 and XVi ∈ E(Kn:k) if and only if i = k + 1.

Let J = Jn:k denote the subgraph of Kn:k induced by V1, . . . , Vn, U1, U2, and X. By
construction degJ(V1) = degJ(Vk+1) = r + 2; degJ(X) = degJ(U2) = 1; degJ(U1) = 2; and
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degJ(Vi) = r + 1 when 2 ≤ i ≤ k or k + 2 ≤ i ≤ n. Just by looking at the degrees of
the vertices of J and the degrees of their neighbors within J , it is immediate that every
automorphism of J fixes U1, U2, X, V1, and Vk+1. Figure 2 shows J8,3.
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Figure 2: J8,3

With reasoning similar to that of the previous case, every automorphism of J that
fixes U1, U2, X, V1 and Vk+1 induces an automorphism of H that fixes V1 and Vk+1. Thus,
it only remains to show that every automorphism of H that fixes V1 and Vk+1 fixes all of
H. The following lemma, which may be of independent interest, is useful.

Lemma 1. Suppose H is the subgraph of Kn:k induced by S = {V1, . . . , Vn} where
Vi ↔ {i, . . . , i + k − 1}. If k ≥ 3, then the automorphisms of H that are induced by
permutations of [n] preserve or reverse the cyclic ordering of the vertices of H.

Proof. If σ ∈ Sn is a permutation on [n], let σ̃ denote the induced action of σ on V (Kn:k)
i.e. σ̃({i1, i2, . . . ik}) = {σ(i1), σ(i2), . . . , σ(ik)}. Let S = {V1, . . . , Vn} and suppose σ is
such that σ̃(S) = S. We proceed by contradiction.

Suppose that σ 6∈ Dn. That is, suppose that σ does not preserve the ‘cycle modulo n.’
Then σ takes two integers whose difference is 1, say 1 and 2, and maps them to integers
whose difference is more than 1. Then σ(1) = r ∈ {1, . . . , n} and σ(2) 6= r + 1, r − 1.

Since σ(2) is not ‘next to’ σ(1), something else that wasn’t originally ‘next to’ 1 is
mapped by σ to be ‘next to’ σ(1). More precisely, since σ(2) is neither r + 1 nor r − 1,
there exist t 6∈ {1, 2, n} so that σ(t) = r + 1 or σ(t) = r − 1. Without loss of generality
assume there is such a t for which σ(t) = r + 1.

Since σ̃(V1) ∈ S, there exists i so that σ̃(V1) = {i, . . . , i + k − 1} when put in proper
cyclic order. We can assume that σ(1) < i + k − 1. (If not, replace σ by (1 2 · · ·n)−1σ
and repeat the argument.) Since r = σ(1) is not the last integer when {σ(1), . . . , σ(k)}
is put in cyclic order as {i, . . . , i + k − 1}, then r + 1 = σ(t) must be in {σ(1), . . . , σ(k)}.
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This implies that t ∈ {1, . . . , k}. Since t 6= 1, 2, we have that t ∈ {3, . . . , k}. Since k ≥ 3,
such a t can exist.

Now consider σ̃(Vn−k+3). Since 3 ≤ t ≤ k and n > 2k, t 6∈ {n − k + 3, . . . , n, 1, 2}.
Thus σ(1) must be the last integer in σ̃(Vn−k+3) ↔ {σ(n − k + 3), . . . , σ(n), σ(1), σ(2)}
when cyclically ordered. But similarly we also have that t 6∈ {n − k + 2, . . . , n, 1}, so
σ(1) must also be the last integer in the the cyclic ordering of σ̃(Vn−k+2) ↔ {σ(n − k +
2), . . . , σ(n), σ(1)}. Since the Vi are uniquely determined by their final elements, this
implies that σ̃(Vn−k+3) = σ̃(Vn−k+2) which implies that Vn−k+3 = Vn−k+2, a contradiction.
Thus σ ∈ Dn.

Notice that when σ ∈ Dn is a power of the n-cycle (that is, it contains no reflection),
then σ̃(Vi) = Vσ(i). When σ ∈ Dn contains a reflection, then σ̃(Vi) = Vσ(i+k−1). Thus
every automorphism in Aut(H) induced by permutation of [n] preserves or reverses the
cyclic ordering of S = {V1, · · · , Vn}.

By the preceding lemma, since V1 and Vk+1 are not antipodal on the n cycle, the only
automorphism of H that fixes both V1 and Vk+1 is the identity. By the remarks preceding
the lemma every automorphism of J must fix V1 and Vk+1. Consequently the only auto-
morphism of Kn:k that maps J to J is the identity. Thus J is an asymmetric graph and
V (J) is a 1-distinguishable determining set for Kn:k. It follows that Dist(Kn:k) = 2.

Acknowledgment: We are indebted to an anonymous referee for discovering a minor
error in an earlier version of this paper.
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