

Omoronyia, I., Ferguson, J., Roper, M., and Wood, M. (2009) Using

developer activity data to enhance awareness during collaborative software

development. Computer Supported Cooperative Work, 18 (5-6). pp. 509-

558. ISSN 0925-9724

Copyright © 2009 The Authors

http://eprints.gla.ac.uk/70744/

Deposited on: 24 May 2013

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

http://eprints.gla.ac.uk/80241/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/

Using Developer Activity Data to Enhance

Awareness during Collaborative Software

Development

Inah Omoronyia, John Ferguson, Marc Roper & Murray Wood
Department of Computer and Information Sciences, University of Strathclyde, Glasgow G1 1XH,

UK (Phone: +44-01415483590 E-mail: inah.omoronyia@cis.strath.ac.uk; E-mail: john.

ferguson@cis.strath.ac.uk; E-mail: marc.roper@cis.strath.ac.uk; E-mail: murray.wood@cis.

strath.ac.uk)

Abstract. Software development is a global activity unconstrained by the bounds of time and

space. A major effect of this increasing scale and distribution is that the shared understanding that

developers previously acquired by formal and informal face-to-face meetings is difficult to obtain.

This paper proposes a shared awareness model that uses information gathered automatically from

developer IDE interactions to make explicit orderings of tasks, artefacts and developers that are

relevant to particular work contexts in collaborative, and potentially distributed, software

development projects. The research findings suggest that such a model can be used to: identify

entities (developers, tasks, artefacts) most associated with a particular work context in a software

development project; identify relevance relationships amongst tasks, developers and artefacts e.g.

which developers and artefacts are currently most relevant to a task or which developers have

contributed to a task over time; and, can be used to identify potential bottlenecks in a project

through a ‘social graph’ view. Furthermore, this awareness information is captured and provided as

developers work in different locations and at different times.

Keywords: context awareness, collaboration, relevance filtering, distributed teamwork, empirical

studies, global software development

1. Introduction

Software development is a collaborative effort where groups of developers work

together within a global time/space matrix. During such collaboration developers

need to maintain their awareness of how particular tasks or project artefacts are

progressing, what fellow developers are (or have been) doing and the current state

of resources associated with the project. In collocated settings the awareness

information that concerns developers directly or tangentially is achieved through

the use of instant messaging clients, emails, scrum meetings and developers

stopping at the desks of co-workers to update them on problems or to see what

Inah Omoronyia moved to the Norwegian University of Science and Technology (NTNU), Trondheim,

Norway during the course of this publication.

Computer Supported Cooperative Work (2009) 18:509–558 © The Author(s) 2009. This article

DOI 10.1007/s10606-009-9104-0 is published with open access at Springerlink.com

problems they are facing (Ko et al. 2007). Developing and maintaining such

awareness is more difficult in distributed software teams than collocated ones

(Cramton 2001). This is because the awareness information required in such settings

is tacit, inherent, dynamic and contextual. It is tacit since most of what developers do

in collaboration spaces builds from experience, skills, heuristics and interactions that

can hardly be documented (Busch and Richards 2001; Hadas and Frank 2001), and

inherent since this knowledge is deeply bound to these developers. Its dynamic

nature stems from the ever changing state of software projects. Finally, the relevance

of such information varies across differing project contexts.

A number of studies have revealed the problems caused by these peculiar

attributes of distributed teams. They include poor visibility and control of remote

resources; inadequate communication, collaboration and coordination across

distributed teams; diminishing trust; and lack of shared contextual awareness

(Boland and Fitzgerald 2004; Chisan and Damian 2004; Hargreaves and

Damian 2004). An industrial experience report on distributed software teams

located over ten sites identified shared contextual awareness of the work carried

out by different team members as a major issue (Kommeren and Parviainen 2007).

Herbsleb (2007) has suggested that this lack of contextual awareness information

makes it difficult to initiate contact and often leads to a misunderstanding of

communication content and motivation. The lack of context information limits

the potential to track the effect of changes in distributed, collaboration space

(Kommeren and Parviainen 2007).

On the other hand, distributed software development offers a number of theoretical

benefits, including shortened time-to-market cycles, more rapid response to customer

needs and a more effective resource pooling (Kommeren and Parviainen 2007). The

goal of the research reported in this paper is to bridge the gap between the reality of

distributed software development and these theoretical benefits by developing

awareness systems that emulate collocation in distributed settings.

It is proposed that the benefits of collocation in virtual and distributed

collaboration spaces can be achieved by capturing the interaction activity trails

that occur within these spaces. These trails are built up as developers go about

their daily development tasks leaving historical traces behind. An empirical study

carried out by Fritz et al. suggests that these developer interactions can be used to

build models of awareness about a software code base (Fritz et al. 2007).

This paper starts by discussing related literature on awareness in general settings

before focussing on previous research that has aimed to provide support for increased

awareness in a collaborative and/or distributed software engineering environment.

From this review it becomes clear that awareness information needs, and the

mechanisms for dissemination in software development teams, are more easily

obtained in collocated than distributed scenarios. To achieve the potential benefits of

distributed, collaborative development further work is required that focuses attention

on who and what is relevant to particular work contexts within a software project. In

contrast to previous work, the approach proposed here aims to build an awareness

510 INAH OMORONYIA ET AL.

model without relying on developers ‘tagging’ particular artefacts or on the

limitations of the underlying configuration management system.

Based on the literature review, this research introduces a ‘Continuum of Relevance

Index’ (CRI) model that proposes a new approach to providing relevance awareness

information. CRI is derived from developer interactions in a shared collaboration

space. The basis of this model is the monitoring of key interactions, such as project

views, updates and creates, made by any developer while working in a distributed,

collaborative space. The model is used to provide real time relevance rankings that

are intended to enhance awareness of the relevance of tasks, developers and artefacts

to a selected development work context. The research question that is addressed is:

Can a model based on real-time monitoring of IDE interactions, such as creates, edits

and views, enhance contextual awareness during distributed, collaborative software

development? A qualitative investigation using a prototype implementation of CRI

has been carried out using advanced student based collaborative projects. Results of

the study demonstrate that the model can provide accurate relevance rankings, and

thereby has the potential to increase developer awareness of artefacts, developers and

tasks, and their interrelationships, over a range of collaborative project contexts.

2. Review of literature and problem formulation

2.1. Awareness concepts within the framework of collaborative work

Research literature on the concept of awareness in a general setting suggests that it is

both situation and domain dependant with no single meaning. As Schmidt (2002)

says, “The very word ‘awareness’ is one of those highly elastic English words that

can be used to mean a host of different things. Depending on the context it may mean

anything from consciousness to knowledge to attention or sentience, and from

sensitivity or apperception to acquaintance or recollection”. Dourish and Bellott

(1992) define awareness as understanding the activities of others, providing a context

for your own activity, while Gutwin and Greenberg (1998) present awareness as a

mechanism for enhancing coordination and efficiency when people work together.

Schmidt (2002) defines awareness as an attribute of action, doing it “heedfully,

competently, mindfully, accountably”. Whilst acknowledging that there are other

forms of awareness that exist, the following five awareness types concern the needs

of group work dynamics that exist during collaboration:

– Informal awareness is associated with a pervasive sense of who is around,

what they are doing, and what they are going to do. People have this kind of

knowledge when they work together in the same office. Informal awareness

can been used to facilitate casual interactions and initiate appropriate modes

of communication (Gross et al. 2005).

– Group-structural awareness constitutes information about groupmembers such as

their roles, status and position on certain issues (Gutwin 1997). Group-structural

awareness is essential to obtain knowledge of the expertise of other collaborators

511USING DEVELOPER ACTIVITY DATA TO ENHANCE AWARENESS

based on the roles they assume. This knowledge can prove important in choosing

who to initiate an interaction with for mentoring on project activities.

– Social awareness is the type of information collaborators have about each

other in a conversational or task context and includes information such as the

attention, interest and emotional state of collaborators (Gross et al. 2005).

Providing such awareness information helps minimise interruptions and

disturbances when engaging in collaborative processes, or rather ‘appropriate

obtrusiveness’, as described by Schmidt (2002).

– Workspace awareness concerns information about the interactions of other

collaborators with a shared project workspace and the artefacts it contains.

Gutwin et al. (1996) described a set of elements that collaborators may keep

track of during a collaborative process in a shared space and the relevant

questions associated with these elements—see Table 1.

Context awareness is a more generic concept in which context refers to the set

of circumstances or facts that surround a particular event or situation (Webster

2006). From a computer science perspective context awareness was initially

perceived as referring to the location of an entity (Dey et al. 2001). The notion

has now evolved to not just a location but part of a process with different state

transitions (Bolchini et al. 2007).

Each of these five awareness types is associated with the notion of context. For

instance, informal awareness provides information on the presence and location

of collaborators and is therefore highly dynamic. Similar observations can be

made about the changing states of group-structural, social and workspace

awareness. Furthermore, since collaborators work on different tasks and different

resources and form different perceptions of their workspace, such awareness is

highly contextual and therefore cannot be generalised.

Table 1. Elements of workspace awareness (Gutwin et al. 1996).

Element Relevant questions

Identity Who is participating in the activity?

Location Where are they?

Activity level Are they active in the workspace?

Actions What are they doing?

Intentions What are they going to do?

Where are they going to be?

Changes What changes are they making?

Where are the changes being made?

Objects What objects are they using?

Extents What can they see?

Abilities What can they do?

Sphere of Influence Where can they have effects?

Expectations What do they need me to do?

512 INAH OMORONYIA ET AL.

In the remainder of this paper, contextual awareness is implied each time the

word awareness is used.

2.2. Disseminating awareness information in computer mediated collaboration

Insight on how awareness is supported in electronic and virtual shared

workspaces is increasingly important, especially in scenarios where time and

space are parameters for defining a collaboration process. Researchers have

pursued a variety of strategies to keep collaborators aware of important

information. Cadiz et al. (2001) suggested that these strategies generally fall into

one of three categories: polling, alerts and peripheral awareness.

Polling involves making information accessible and allows collaborators to

repeatedly check, or ‘poll’, the information. This is advantageous when an

individual has knowledge of where to repeatedly check for updates on

information. It is also an appropriate mechanism to disseminate awareness when

such information is required on an ‘as needed’ basis.

Alerts involve intentionally interrupting an individual to provide awareness

information and overcome the drawback associated with polling of only finding

information when they poll the information source. Alerts can be delivered via

audio or visual cues and can range from highly to minimally intrusive, utilising

intelligent algorithms to determine if the cost of interruption is worth the benefit

(Horvitz et al. 1999). The main disadvantage of this approach is that alerts often

do disrupt users from their primary task (Cutrell et al. 2001; McFarlane 1999).

Peripheral awareness works by filling a user’s peripheral attention with

information such that it envelops them without distracting them. The goal is to

present the information so that it works its way into a user’s mind without intentional

interruption. Peripheral forms of disseminating awareness have been provided using

peripheral audio (Alexanderson 2004; Pacey and MacGregor 2001), peripheral

vision or a mix of peripheral visual and audio cues (Cadiz et al. 2001; Heiner

et al. 1999; Weiser and Brown 1996). The disadvantage of peripheral awareness is

that it is possible to ignore important information that appears only at the periphery.

Furthermore, the challenge is to figure out what should be presented peripherally, and

to strike a balance between too much and too little (Pedersen 1998).

Kantor and Redmiles (2001) argue that there is no optimal strategy to provide

awareness information in collaboration spaces because of the associated

advantages and disadvantages. For example, if one author is changing a

document, a co-author and an end user of the document are likely to benefit

from different awareness strategies.

2.3. Awareness information needs and dissemination in software development teams

The awareness requirements amongst collaborating software developers generally

focus on the need for information on people, project resources and development

513USING DEVELOPER ACTIVITY DATA TO ENHANCE AWARENESS

tasks. As such, they have much in common with the general awareness

information needs over shared workspaces identified by Gutwin et al. (1996) as

shown in Table 1. A study conducted by Ko et al. (2007) showed that the most

frequently sought information during software development included awareness

about tasks, artefacts and co-workers. The study also suggested that developers

frequently sought information about how the resources they depended on

changed; what their fellow team-mates had been doing; and what information

was relevant to their task. These awareness information requirements focus on

two broad perspectives. The historical perspective is where information is sought

about the overall impact of project entities on a selected work process (e.g.

developers seeking information on which artefacts are relevant to accomplish a

selected task). The recent perspective is where information is sought about the

current state of entities in the workspace (e.g. what team-mates are doing, or

recent changes on artefacts that developers depend on).

In collocated teams such awareness information has been disseminated via

polling and alert mechanisms such as email and instant messaging clients.

Development teams also use frequent, brief meetings throughout the day to stay

aware of work effort and problems. Also, developers will stop by a co-worker’s

office, chat in the hallway or over coffee to update them on problems or see what

problems they are facing (Curtis et al. 1988). Research studies demonstrate that

the social nature of software development work is also driven by awareness

information. For instance, Perry et al. (1994) reported that over half of

developers’ time was spent interacting with team members, of which much of

the communication was to maintain awareness. Ko et al. (2007) also highlighted

that co-workers were the most frequent resource when seeking information.

Furthermore, simply watching another developer carry out a task (Segal 1995),

and observing changes to project artefacts (Dix et al. 2004) have also been used

as a source of awareness in collocated software development.

Awareness information needs in distributed software development teams are

not significantly different from collocated needs. In distributed teams developers

also seek to maintain awareness of other developers activities including the code

artefacts and the tasks they are working on. Gutwin et al. (2004) found that

distributed developers sought to maintain a broad awareness of who were the

main people working on their project and what their expertise was.

For distributed teams, however, obtaining and disseminating awareness informa-

tion is more challenging and mostly dependent on electronic means. Studies carried

out on open source projects showed that awareness was mainly maintained using

text-based communication such as mailing lists and instant messaging clients

(Gutwin et al. 2004). The main advantage of text-based channels stems from their

simplicity of use, but they depend on commitment from developers to read the shared

text and making their project communications public (Biehl et al. 2007).

Version check-in logs in configuration management systems have also been

used to obtain awareness of work in both distributed and collocated software

514 INAH OMORONYIA ET AL.

development. de Souza et al. (2003) showed that collocated developers often

gauge expertise by inspecting check-in logs. Similarly, Gutwin et al. (2004)

reported that distributed developers obtained awareness through check-in logs,

with changes being automatically sent to a mailing list of subscribed developers.

The advantage of check-in logs is that they are based on the actual manipulation

of project artefacts.

However, awareness information from check-in logs is not always sufficient.

While these logs can help find other developers, they generally do not distinguish

levels of expertise (McDonald and Ackerman 1998)—though Expertise Browser

(Mockus and Herbsleb 2002) would appear to be an exception to this. This

becomes more complicated when an artefact has been worked on by several

developers with differing levels of expertise. While strict partitioning and code

ownership rules may be enforced to help avoid this problem, in distributed

software such as open source development, code ownership is not always

obtainable. Gutwin et al. showed that partitioning was not so strongly applied on

open source projects and developers were free to work where they saw fit

(Gutwin et al. 2004). Study findings have also shown the lack of clear ownership

and partitioning in distributed, open source projects and concluded that the

structure of a project alone is not sufficient for developers to obtain the awareness

necessary to coordinate their actions (Mockus et al. 2002).

The closest imitation of collocation during distributed software development

has been through the use of media spaces. A typical media space consists of

permanent video and audio connections between geographically distributed sites.

The permanent connection of media spaces has been shown to reduce the cost of

initiating collaboration and to contribute to the creation of a common social space

irrespective of distance (Bly et al. 1993; Farshchian 2001; Singh 1999). While

media spaces cannot replace face-to-face awareness they do provide an

opportunity to obtain awareness information that is not normally possible without

‘being there’ (Bly et al. 1993). The use of video conferencing, video phone and

desktop video with audio capabilities in distributed development have also been

studied by de Freitas et al. (2008). However, the use of such synchronous

channels is highly challenging for distribution that is characterised by different

time zones. Furthermore, this mode of awareness lacks the flexibility of

mechanisms such as email and check-in logs, where information can be more

easily searched and referred to at convenience.

On the whole, these studies suggest that awareness support for distributed

software development teams is still inadequate from both a historical and a recent

perspective. Empirical studies have revealed that most tools are designed to

answer a specific kind of question, focussed on a particular type of code artefact

(Sillito et al. 2008). Also, most approaches treat information seeking questions as

if they were asked in isolation rather than part of an ongoing dialogue which can

be necessary to obtain full contextual awareness during distributed software

development. Finally, it is clear that collocated software development has

515USING DEVELOPER ACTIVITY DATA TO ENHANCE AWARENESS

awareness information benefits that are more difficult to obtain during distributed

development. As a result, collocated teams are likely to achieve higher

productivity, shorter schedules, and higher satisfaction among stakeholders

(Teasley et al. 2002). The goal is therefore to build tools for distributed teams

that emulate the attributes of collocation awareness in their design.

2.4. Enhancing context awareness in distributed software development

environments

Current software development environments (IDEs), such as Eclipse, NetBeans,

and Visual Studio, are enhanced with facilities to make software development

easier. These include source code editors, compilers, interpreters, debuggers,

visualisations and code generators. The size, complexity and distributed nature of

current projects also bring a demand for further features to support development.

The following discusses a range of approaches that have been used to enhance

contextual awareness during distributed software development within such IDEs.

2.4.1. Obtaining context by social tagging

A tag is a keyword assigned to a piece of information to help describe it. Social

tagging describes the collaborative activity of marking shared content to organize it

for future navigation, filtering or search (Yew et al. 2006). This concept has been

introduced into a number of IDE components to enhance contextual awareness

during distributed, collaborative software development. Storey et al. (2006)

presented TagSEA (Tags for Software Engineering Activities in Eclipse) based on

the concept of waypoints (locations of interest) and social tagging (social book-

marking). The waypoint analogy corresponds to marking specific locations in the

software such as Java source code elements (classes, methods, packages etc.). User-

created annotations, written as comments embedded in the code, result in very

explicit landmarks for readers and support navigation and coordination. While

preliminary feedback suggests that implicitly captured meta-data combined with the

lightweight nature of tagging is a promising technique for supporting contextual

awareness in distributed software development, it can become unwieldy in practice

and outdated over time. The concept of social tagging can also be found in Jazz,1

which is a real-time team collaboration platform based on the Eclipse IDE for

integrating work across the different phases of a software development lifecycle. One

of the aims of Jazz is to introduce contextual awareness into the collaboration

environment (Hupfer et al. 2004). With Jazz developers can initiate chats, which can

then be saved as code annotations on the section of the code artefact involved in the

discussion (Cheng et al. 2004).

The use of tagging can also be found in CASS (Cross Application Subscription

Services)—a software development awareness infrastructure (Kantor and

Redmiles 2001). CASS provides a notification server for the distribution of

516 INAH OMORONYIA ET AL.

awareness information which enables developers to subscribe to types of information

that they believe will affect them and to specify which types of awareness tool the

information should be sent through (email etc.). The outcome of this configuration is

that developers get contextual awareness information on the state of different aspects

of a software system that directly affects their work. The main challenge with using

CASS appears to lie with the configuration that needs to be carried out by the

developer to get the tool running. This might be asking a lot from a developer who is

not familiar with the development space.

Finally, Froehlich and Dourish (2004) presented Augur as a visualisation tool

that provides a line-oriented view for supporting distributed software develop-

ment processes. These views are formed by tagging developers to different

aspects of an artefact they have been associated with. Initial evaluation of Augur

with open source software developers suggests that generating views based on

tagging the activities of developers to subsections of artefacts is both meaningful

and valuable to software developers.

2.4.2. Obtaining context by mining relational properties among software project

entities

During software development a wide variety of relationships are formed. These

relationships can be structural relations, based on direct and indirect links amongst

artefacts that comprise a project, or they can be social relations based on direct and

indirect links among developers collaborating on a project. A hybrid of these can also

be obtained, based on associations between developers and artefacts that are associated

with a shared software project. The use of such project structural and social relations

has also been modelled by context awareness mechanisms within IDEs.

The Rational Team Concert (RTC), a plug-in to Jazz (Jazz 2008), enables

contextual awareness by mining relational properties of entities within shared

software projects. Each ‘Project Area’ contains the artefacts for a project and has

an associated process which governs how the project is run and the way Jazz

behaves. Project areas are decomposed into a set of ‘Team Areas’, which describe

the teams that work on the project. Each team area has a list of team members and

the ‘Process Role’ they play within the team. A user can be a member of more

than one team. Each team area can define ‘Process Customizations’ of the process

to tailor Jazz for the team and its sub-teams. Finally, the planned work is

described by ‘Work Items’. The types of work items used in a project area are

defined by the process (Jazz 2008). This rigorous relational view offers the

potential to enhance traceability and contextual awareness of the state of different

entities within a project. For instance, information about the state of a work item

can be derived by viewing the code artefact resources and the developers that the

work item is associated with. Similarly, contextual information about a project

team can be derived by navigating the different team members and processes

associated with the project team. The potential downside of RTC is that each of

517USING DEVELOPER ACTIVITY DATA TO ENHANCE AWARENESS

these entities and their inter-relations has to be defined by the user-for non-trivial

projects this could be quite demanding. It is also worth noting that, during

evaluation, participants expressed some concern that Jazz might be used by

unethical managers to monitor their work instead of being used as a coordination

aid to enhance awareness (Cheng et al. 2004).

The work of de Souza et al. (2007) in developing Ariadne also demonstrated

the use of relational properties among entities to derive contextual awareness

within IDEs. Ariadne, another plug-in for the Eclipse IDE, analyses software

projects for dependencies, whilst collecting authorship information from

configuration management repositories. The tool translates technical dependen-

cies (e.g. call graphs) among components into social dependencies among

developers (by annotating components with social information) and creates a

visualisation to convey this information. Ariadne is used to identify developers

who are more likely to be communicating, by assuming that developers with

similar dependencies are likely collaborators. The accuracy of Ariadne is

therefore dependent on the state of a versioning system.

A number of other tools and models have been developed to enhance contextual

awareness in distributed software development based on mining relational properties

that exist amongst software project entities. Bruegge et al. (2006) presented Sysiphus

as a tool that supports the creation and subsequent browsing of a graph created by

linking artefacts, as well as annotations and comments on those artefacts. It achieves

this by encouraging collaborators to make communication and issues (tasks) explicit

in the context of system models and also to become aware of relevant stakeholders.

Cubranic et al. (2005) describes the design and evaluation of Hipikat, a tool that

draws on information retrieval techniques to help developers identify artefacts that

are related to an initial artefact used to generate a query. Evaluation shows that the

tool finds useful starting points for exploring the code. Finally, Expertise Browser

(Mockus and Herbsleb 2002) uses data from version control systems to locate

developers with desired expertise in geographically distributed software develop-

ment projects. Expertise is automatically constructed from ‘experience atoms’which

correspond to individual revision control changes (deltas). Evaluation of Expertise

Browser showed that newer and remote development sites tended to use the tool to

find individuals with particular expertise while larger, more established sites used the

tool to discover the particular expertise held by individuals or organisations.

2.4.3. Obtaining context by monitoring developer interactions

Interactions that are carried out in collaboration space can be viewed as having

different levels of impact on the state of a project. By associating different

weightings to interactions based on their perceived levels of impact on the state of

a shared project it is possible to obtain contextual awareness.

This concept of weighting the severity of developer interactions can be seen in

the modelling of Palantír (Sarma and Hoek 2002; Sarma et al. 2003). Palantír is a

518 INAH OMORONYIA ET AL.

workspace awareness tool that complements configuration management systems.

It enhances awareness by continuously sharing information regarding operations

performed by all developers. The tool specifically informs a developer which

other developers change which other artefacts. Furthermore, Palantír provides a

measure of the severity of those changes (based on the proportion of the file that

has changed) and graphically displays this information in a configurable manner.

The accuracy of Palantír is highly dependent on consistent use of a version

management system by collaborating developers.

FASTDash (Fostering Awareness for Software Teams Dashboard) (Biehl et al.

2007) is a visualisation tool that highlights the current activity of team members,

such as which files are changing, who is changing them and how they are being used.

The visualisations can also be annotated, allowing members to supplement context

information with status details. FASTDash is optimised for developers working in

close proximity and time and may be less useful across different time zones or in

cases where collaborators are given the freedom of choice of place and time of work.

2.4.4. Obtaining context by combining developer interactions and relational

properties

The Team Tracks project (Deline et al. 2005) utilises the notion of relational property

and frequency of an interaction. Team Tracks helps developers understand

unfamiliar source code by mining navigation data as development teams go about

their daily programming activities. Team Tracks is based on two insights: the more

often developers visit a part of the code the more important it is; and the more often

developers visit two parts of the code in succession the more related they are. To help

a newcomer quickly find the most important parts of the code, Team Tracks limits the

code overviews to the most frequently visited items (favourite classes view). To help

a newcomer find code related to the module currently being worked upon Team

Tracks recommends parts of the code visited just before or after that module (related

items view). A controlled laboratory study has shown that Team Tracks significantly

improves a developer’s ability to perform updates to unfamiliar code.

2.4.5. Obtaining context by combining developer interactions and relational

properties with the notion of time and its expiration

This notion of context formation can be seen in the modelling of Mylyn (Kersten

2007) as a task-focused interface for Eclipse. The main objective of Mylyn is to

reduce information overload and make multi-tasking easier. Mylyn monitors a

developer’s work activity to identify code artefacts relevant to the task in-hand; it

then uses the task context to focus the Eclipse user interface on relevant artefacts.

As the interaction history is captured from a developer’s activity, a degree of

interest (DOI) function assigns real number weightings of artefacts to tasks. The

weighting is based on the frequency of access to the artefact and a decay factor

that corresponds to the total number of interaction events captured. Accessing an

519USING DEVELOPER ACTIVITY DATA TO ENHANCE AWARENESS

artefact in the context of a task increases its weight, while accessing other

artefacts decays the weight of infrequently accessed artefacts.

The weight associated with an accessed artefact, or decrease in weight of other

artefacts, is determined by the interaction events monitored by Mylyn as shown

in Table 2. Mylyn also considers events that do not directly affect the state of a

code artefact. For instance, a command event, such as a preference setting or a

save button press, increases the relevance of an active artefact to the current task.

An artefact is active if it is open within the tooling environment while the

command event is being executed. Propagation and prediction events cause

artefacts that have not yet been interacted with directly to be associated with a

task context. For example, a selection event may trigger a propagation event for

structurally related elements such as sub classes and the package containing the

class. Value ranges in the DOI specify which artefacts are relevant to a task.

Relevant artefacts are those with a positive DOI value. Empirical evaluation of

Mylyn, in which professional programmers used the tool for their daily work on

enterprise-scale Java systems, showed developers spending more time working

on code than navigating it (as opposed to the other way round).

2.5. Recommender systems for general task awareness

There is a body of related research, outside the specific domain of software

engineering that uses computer interaction data to automatically identify

resources that are relevant to tasks. Typical of this work is that of Dragunov et

al. (2005) on TaskTracer and Kaptelinin (2003) on UMEA.

These systems aim to identify the resources that are relevant to user defined

tasks. Typically, they operate in Microsoft Windows environments using COM

extensions to monitor and capture events associated with a range of tools e.g.

word processing, spreadsheets, databases, web browsers and email clients. The

goal of these systems is to be able to automatically identify the resources (and

processes) that are relevant to tasks such as writing a report, so that if a user is

interrupted, temporarily switches task, or comes back to a similar project at later

date, these tools can quickly recover the resources that are relevant to that task.

Table 2. Interaction events monitored by Mylyn (Kersten 2007).

Event kind Interaction Description

Selection Direct Editor and view selection via mouse or keyboard

Edit Textual and graphical edits

Command Operations such as saving, building, preference setting

and interest manipulation

Propagation Indirect Interaction propagates to structurally related elements

Prediction Capture of potential future interaction events

520 INAH OMORONYIA ET AL.

These general task recommender systems and approaches have some

similarities to the model, and its implementation, described in this paper. They

are based on the monitoring of computer interaction data. They face the common,

major challenges of identifying the task that a user is working on, and detecting

when the user switches task. Typically the onus is on the user to identify both of

these, and they have to deal with noisy data. Often users will temporally change

the focus of their work without switching task.

However, there are also major differences between the goals of these more

general systems and a more specific distributed, collaborative software

engineering model. Both the TaskTracer and UMEA systems appear only to

present resource context from the perspective of an individual user and individual

tasks—these recommender systems identify the resources that are relevant to a

specific user addressing a specific task. In collaborative software engineering the

aim is to provide awareness across multiple, collaborating users (developers),

tasks and resources (software artefacts) from multiple perspectives. Therefore, as

well as discovering what artefacts are relevant to a specific individual performing

a particular task, the model should support discovering what tasks and developers

are relevant to identified artefacts, what developers have contributed to a task etc.

To address the general problem of noise, caused by temporary changes of context

(e.g. answering an email) or mistaken interaction (e.g. opening the wrong file)

there is a need for an underlying weighting system, or relevance model, that

disregards spurious interactions and rewards repetitive interactions, thereby

offering the potential to rank entities in terms of their relevance.

2.6. Research motivation

This review has centred on contextual awareness and dissemination mechanisms

in the form of tools that can be used to enhance contextual awareness during

distributed, collaborative software development. The initial insight obtained from

this review is that awareness information needs, and the mechanisms for

dissemination in software development teams, are more easily obtained in

collocated than distributed scenarios. While distributed teams also have potential

advantages, to fully achieve these requires that more research is carried out on the

modelling and dissemination of contextual awareness.

Table 3 is a general classification of the reviewed systems based on the

identified elements of workspace awareness initially described by Gutwin et al.

(1996) and shown in Table 1. The classification demonstrates that the majority of

systems enable collaborators to identity who is participating in an activity, the

changes they have made, and the objects used. Identifying the current location,

current actions, activity levels, extents, abilities, sphere of influence and

expectations of collaborators within the workspace are less supported. Tools that

are characterised by support for intention are mostly tag based, and rely on

developers to explicitly state their intention within the work space.

521USING DEVELOPER ACTIVITY DATA TO ENHANCE AWARENESS

T
a
b
le

3
.
C
la
ss
ifi
ca
ti
o
n
o
f
sy
st
em

s
b
as
ed

o
n
G
u
tw
in

et
al
.’
s
(1
9
9
6
)
el
em

en
ts
o
f
w
o
rk
sp
ac
e
aw

ar
en
es
s.

E
le
m
en
t

T
ag
S
E
A

Ja
zz

E
x
p
er
ti
se

B
ro
w
se
r

S
y
si
p
h
u
s

H
ip
ik
at

P
al
an
tí
r

F
A
S
T
D
as
h

T
ea
m

T
ra
ck
s

C
A
S
S

A
u
g
u
r

A
ri
ad
n
e

M
y
ly
n

Id
en
ti
ty

×
×

×
×

×
×

×
×

×
×

L
o
ca
ti
o
n

×
×

×
×

A
ct
iv
it
y
le
v
el

×
×

×

A
ct
io
n
s

×
×

In
te
n
ti
o
n
s

×
×

×
×

×

C
h
an
g
es

×
×

×
×

×
×

×
×

×

O
b
je
ct
s

×
×

×
×

×
×

×

E
x
te
n
ts

×
×

A
b
il
it
ie
s

×
×

S
p
h
er
e
o
f
In
fl
u
en
ce

×
×

×

E
x
p
ec
ta
ti
o
n
s

×
×

×

522 INAH OMORONYIA ET AL.

The approach of systems such as TagSEA, CASS, Augur and some aspects of

Jazz depend on social tagging of different aspects of a software system by

developers. Such systems are not based on the physical manipulation of code and

are thus subject to a level of potential misrepresentation of context. Also, tag

based systems can become outdated over time, especially when developers fail to

update tags as aspects of the system change.

An alternative approach is adopted in systems like Sysiphus, Ariadne, Hipikat

and Rational Team Concert which obtain context by mining relational properties

among software project entities. These have recorded a number of successes in

generating and representing contextual awareness information, but challenges

may arise as the relational dependencies amongst entities become increasingly

complex. Furthermore, when abstract models such as use cases or bug definitions

are used as the basis of task definition, these systems only focus on concrete

artefacts and do not consider the relationships between the more abstract models

and concrete artefacts. Similar limitations exist in systems such as Palantír which

is based on monitoring the activity captured by configuration management

systems during check-in and check-out. In addition, FASTDash appears to be

intended for developers working in relatively close proximity and not separated

in time. Expertise Browser addresses some of the key goals by automatically

generating rankings of developer expertise related to code artefacts by monitoring

version control systems, but this approach omits potentially relevant activity such

as when a developer views an artefact and also includes no notion of task

awareness.

Team Tracks derives contextual awareness by articulating entity dependencies

and weighting the severity of developer interaction on an underlying relation.

Team Tracks is limited in the nature and amount of dependencies it represents

and because the weighted severity of dependencies is based only on view

interaction events (rather than edits etc.). In contrast, Mylyn’s relative strength of

dependency is determined by a degree of interest function based on frequency of

access to entities and the nature of interaction being performed by a developer.

However, Mylyn does not currently focus on distributed software development.

Its notion of task context for collaborative software development is analogous to

passing tokens of context generated by one developer to another to continue

building upon. While it is useful and interesting to obtain awareness of the impact

of a selected task on the state of a code artefact (as demonstrated in Mylyn), it is

potentially more useful for enhanced coordination to obtain awareness of the

relative impact of every task and all associated developers that have affected the

state of the artefact.

Central to this paper is the observation that relevance relations amongst entities

in a collaboration space are asymmetric. For example, assuming a task instance

Tx is achieved using artefacts A1, A2...An, it cannot be assumed that the relevance

of An to Tx is the same as the relevance of Tx to An. This is because relevance is

context sensitive—the relative relevance of an artefact to a task depends on the

523USING DEVELOPER ACTIVITY DATA TO ENHANCE AWARENESS

other artefacts associated with that task, whereas the relative relevance of a task

to an artefact depends on the other tasks to which the artefact is relevant.

The main novelty of the approach proposed in this paper compared to the previous

work described above is a model that provides a perception of the relevance and

impact of tasks, developers and artefacts associated with a distributed software

project in a selected work context. For a selected task instance, awareness is provided

of the relative impact of project developers and code artefacts. For a selected code

artefact, awareness is provided of the relative impact of project tasks and developers

on the state of the code artefact. Similarly, for a selected developer, awareness is

provided of the relative impact of tasks and code artefacts on the work context of the

developer. The provision of such awareness is independent of configuration

management systems or the need for tagging, and is from a collaborative perspective

rather than that of an individual developer. Furthermore, the provision of this

contextual awareness is not limited by time or space and continually changes to keep

pace with software project dynamics.

3. Example software development scenario

The following is an example used to motivate the research and, later in the paper,

explain the functionality in the proposed model and its implementation.

Bill, Amy and Ruben are members of a team collaborating to develop an online

cinema ticketing system called TickX. There are two front-end use cases required to

accomplish TickX: Purchase Tickets and Browse Movies. (Here use cases are

viewed as a structure for the definition and assignment of tasks. In addition, there will

be some use cases for system administrators which are not included here.) A number

of code artefacts are being developed to realise TickX and include Ticket.java,

Customer.java, Account.java, Booking.java, Movie.java, MovieCatalog.java and

Cinema.java. A class diagram for TickX is as shown in Figure 1.

While Amy and Bill have been collaborating to implement the Purchase Tickets

tasks/use cases, Ruben has been responsible for Browse Movies. The following

interaction trails take place as these collaborators go about their allocated tasks:

– While Amy was working on Purchase Tickets she created and updated the

Account.java and Customer.java code artefacts. She viewed and updated

Booking.java a number of times. She also viewed MovieCatalog.java and

Cinema.java.

– In the initial phase of Bill’s collaboration on Purchase Tickets, he viewed the

Account.java and MovieCatalog.java code artefacts. This was subsequently

followed by his creation and update of the Ticket.java and Booking.java code

artefacts.

– Ruben’s execution of Browse Movies involved creation and further updating

of the MovieCatalog.java, Cinema.java and Movie.java code artefacts. Ruben

also viewed Ticket.java a number of times.

524 INAH OMORONYIA ET AL.

In this scenario, the Purchase Tickets task is associated with Bill and Amy, and a

number of code artefacts. Also, MovieCatalog.java is associated with all three

collaborators as well as the two tasks. Some typical context awareness questions that

can now arise include:Who is the appropriate developer to seek for help on Purchase

Tickets? Which artefact has most impacted the state of Purchase Tickets? Which of

the code artefacts or tasks has Amy contributed most to? Which of the tasks or

developers has most affected the state of MovieCatalog.java?

The model proposed here helps to address such questions.

4. The continuum of relevance (CRI) model

This research proposes that context awareness in distributed, collaboration spaces

can be achieved by capturing development events that occur within these spaces.

These events may then be used to identify the current actions, activity levels,

extent and sphere of influence of the different entities that exist in a collaboration

space. Such cues are built up as developers go about their daily tasks, leaving

historical traces behind. The basis of the CRI model is the monitoring of core

interactions with system artefacts (program files) such as views, updates, creates

and deletes. The model is used to provide relevance rankings that depend on the

context of work being carried out by a developer. Rankings are then provided of

tasks, developers and artefacts in that context. The nature of a shared

collaboration space means that a developer can be identified as being highly

relevant to the current state of a particular task or artefact instance, but not in any

way relevant to the state of another task or artefact instance, though all such

instances exist in the same shared collaboration space.

The entities considered in the model are defined as follows:

– A project is an endeavour embarked on to create a software product or service

and serves to bound the collaboration space.

Figure 1. Class diagram for TickX.

525USING DEVELOPER ACTIVITY DATA TO ENHANCE AWARENESS

– A task is viewed as an activity that is required to be accomplished in order to

achieve a software project. Tasks can be use cases, user stories in agile

processes, bug reports, etc.

– Developers are the team members that work within a project context.

– Artefacts are project components such as software modules and documents

that are manipulated by developers.

This collection of entities is strongly inter-related. Projects are realised by

developers working on artefacts within the context of a task. There exist many-

many relationships amongst developers, tasks and artefacts, although no direct

relations are currently supported for entity instances of the same type.

Relationships between entities are established by interactions events—the

operations that a developer can carry out upon an artefact within the context of a

task. Rather than monitor the entire space of possible interactions that can occur,

the CRI model focuses on a core set of four interaction types that influence the

changing state of a software project—create, update, view and delete. The

following assertions are made about these core interaction events:

– A create event is responsible for the manifestation of a tangible artefact within

a collaboration space.

– An update event affects the state of an entity instance directly. Associated

with an update is the update delta—the absolute difference in the number of

characters associated with the artefact before and after the event (Mockus and

Herbsleb 2002).

– A view event indirectly affects the state of entity instances—viewing an

artefact instance can enhance understanding in order to update the same

artefact or other artefact instances.

– A delete is responsible for transforming an entity to an intangible state, where

it is unable to receive any further events. (Deleted entities are retained in the

historical perspective).

During collaborative software development project, different work contexts

(associations between task, developer and artefact entities) are formed that

characterise the relationships amongst entities in a collaboration space. These

work contexts are constantly changing in response to events, and entities may

participate in one or many work contexts.

From the example scenario described in Section 3 it is possible to create work

contexts (represented as graphs) for each entity to capture the relational properties

between them. Each interaction event related to an entity can contribute a node to

the context graph (if an interaction event refers to an entity instance not yet

represented in the graph, a node for the instance is added to the graph). For

example, the context graph of Amy will consist of every task participated in (just

one—Purchase Tickets) and code artefacts that she has created, updated or

viewed (there are five of them). Similarly, the context graph of the Purchase

526 INAH OMORONYIA ET AL.

Tickets task will consist of every code artefact that was created, updated or

viewed and the developers that carried out the interaction events while actively

working on the task. Finally, the context graph of each artefact (consider

MovieCatalog.java, for example) will consist of every task and developer

associated with the views, updates and create carried out on that artefact.

Figure 2a, b and c illustrate these work context graphs. Similar graphs are created

by CRI for all other developers, tasks and code artefacts.

To further investigate the properties of interaction events, and their weighted

influence on the relevance of entities in a collaboration space, a study of CVS

records associated with real development projects was performed. These records

were derived from a group project software engineering class at the University of

Strathclyde and open source Eclipse IDE technology and tools projects. CVS

repositories of 200 artefacts from a combination of the Eclipse Communication

Framework (ECF),2 Dash,3 Mylar,4 Equinox,5 and Eclipse Modelling Framework

(EMF)6 open source projects were analysed. Only artefact check-ins with version

repositories associated with more than one developer were considered.

The results showed that developers associated with the first check-in of an

artefact were also associated with 49.6% of subsequent checked in versions. It is

therefore asserted that the create event is particularly important relative to other

interaction types. Furthermore, while it is expected that view events can enhance

understanding of project entities, studies conducted by Zou and Godfrey (2006)

suggested that random view events, which are irrelevant to on-going development

work, can also occur. In weighting the influence of view events on the relevance

of entities in a collaboration space, it is therefore important that the effects of such

irregularities are inhibited.

Based on the insight obtained from these interaction types, the weightings

shown in Table 4 are assigned to each interaction event type. A view interaction

event is equivalent to 10 units of absolute update delta,7 while a create interaction

Figure 2. Work context graphs for Amy, Purchase Tickets and MovieCatalog.java.

527USING DEVELOPER ACTIVITY DATA TO ENHANCE AWARENESS

is equivalent to 100 units of absolute update delta. Related work by Fritz et al.

(2007) has also suggested the importance of create events and of identifying the

authors of code artefacts (Kersten 2007). A similar approach in associating

weights to interaction events has been used in the development of the Mylyn

degree of interest model, where the selection event in Mylyn corresponds to a

view in CRI, and edit in Mylyn corresponding to updates in CRI. In Mylyn, a

scaling factor of 1 was assigned to selection, propagation and prediction events.

Similarly, factors of 0.7 and 0.017 were assigned to edit and decay events

respectively (see Table 2). These values were determined based on usage statistics

during the programming of Mylyn itself and validated based on feedback from

other developers’ usage of the tool (Kersten 2007).

A fundamental assumption in CRI is that the size of an entity’s work context or the

number of other entities that an entity exacts its presence on, is proportional to the

relative influence such an entity exacts on the collaboration space. For example, a

task that has existed for a long time in a collaboration space and has several

developers implementing the task using a number of artefacts is considered to hold

more information about the state of the project compared to a task that is newly

introduced into the collaboration space and has a small number of associated

developers and artefacts. A similar analogy holds for artefacts and developers. This

size dimension is captured by the concept of sphere of influence (SOI).

SOI is a general concept used to capture both geographic and semantic groupings,

and provides a well-defined boundary for interactions. For example, Gutwin et al.

(1996), in their work onworkspace awareness for groupware systems, refer to SOI as

where collaborators canmake changes within a shared artefact. SOI in CRI refers to a

region over which an entity exacts some kind of relevance (which is in turn

determined by the interaction events) and is defined by its work context (and is

directly proportional to the number of entities that constitute a work context).

The SOI ratio is used to represent the relative influence an entity exacts on the

collaboration space. The SOI ratio of an entity is defined as the ratio of the total

number of unique entity instances directly associated with an entity (the size of its

work context) compared to the total number of unique entity instances in the whole

collaboration space (excluding same-type associations—developer-developer etc.).

Based on the example scenario described in Section 3, it is possible to calculate

the SOI of each entity represented in the collaboration space. Figure 3 is a sphere

of influence representation of developers for the TickX project scenario. Similar

representations can be created for tasks and artefacts. As shown in Figure 3, the

Table 4. Interaction type weightings.

Interaction type View Update Create

Weighting factor 0.001 0.0001*∆ 0.01

∆—Absolute update delta (magnitude of the update)

528 INAH OMORONYIA ET AL.

sphere of influence of Amy is defined as 6/9 (entities within Amy’s work context/

total number of entities—2 tasks and 7 classes). Similarly SOI ratios are

calculated for other developers (e.g. Bill’s is 5/9) and also for artefacts and tasks.

Entities that compose a defined sphere of influence can be characterised with

overlapping properties. For instance as shown in Figure 3, Customer.java only

falls within the sphere of influence of Amy, while MovieCatalog.java falls within

the sphere of influence of each of Amy, Bill and Ruben.

The maximum sphere of influence that an entity can achieve is 1. This is for a

case where an entity is associated with every other entity that is not its type in the

collaboration space. This is typical for scenarios where the collaboration space

consists of a single artefact, task or developer. A minimum value of 0 is achieved

if the work context is empty; this is typical for scenarios where, for example, a

developer has not interacted with any task or artefact. In general, as the number

of entities in a work context increases relative to the number of entities in

collaboration space, the sphere of influence ratio also increases.

The concepts of work context, interaction events associated with an entity, and

the variation of its SOI ratio, forms the basis of the CRI model. This model is

intended to provide an accurate, real-time perception of the overall work effort of

individual developers as well as their recent work; an indication of which tasks

and artefacts have consumed most effort over all developers; and hence an

indirect indication of the relevance of entities to a project. CRI is a linear model

that cumulatively builds the relevance values of entity instances as they are

associated with interaction events and as their SOI ratios vary. These cumulative

relevance values are derived for two modes: history and recent.

Figure 3. Sphere of influence representation for developer entities in the TickX collaboration

project.

529USING DEVELOPER ACTIVITY DATA TO ENHANCE AWARENESS

4.1. CRI history mode

The history mode aims to provide awareness of the overall dissipation of work

effort across entities that constitute a selected task, developer and artefact work

context respectively. This is computed by linearly combining the relevance value

associated with an entity in a selected work context before an interaction event

with the relevance gained as a result of the interaction event. The relevance

gained as a result of an interaction event is dependent on the type of interaction

event and the SOI ratio of the selected entity work context. More formally, the

cumulative relevance gained by an entity instance e in response to an interaction

is represented by Eq. (1). The type of interaction is represented by t and the

different values it can assume are shown in Table 4. The SOI ratio is represented

by s, n is the total number of interactions to date associated with entity e.

X nð Þe ¼ X n�1ð Þe þ t nð Þe*S nð Þe ð1Þ

In other words, the relevance value for entity e after n interactions is based

upon its previous value plus the value of the interaction multiplied by the SOI

ratio of the entity.

4.2. CRI recent mode

The recent mode aims to provide real-time awareness of the current dissipation of

work effort across entities that constitute a selected task, developer and artefact work

context. The core difference between history and recent mode is how the relevance

values of inactive entities—those untouched by an interaction event—are computed.

In the history mode relevance values of inactive entities remain unaffected, while in

the recent mode relevance values of inactive entities in a work context decay for

every interaction event that impacts that work context. Thus, the longer the duration

of inactivity associated with an entity within a selected work context, the more the

relevance of the inactive entity decays. This process of decay in relevance is

represented using the notion of periodic decay and is dynamically determined by the

SOI ratio of the selected entity work context and the interaction event type. (Periodic

decay was influenced by a similar notion in Mylyn (Kersten 2007)). Relevance lost

due to periodic decay represents the negation of the relevance gained by the active

entities defined in an event that impacts a selected work context. The effect of

periodic decay is implemented by decreasing the relevance values of inactive entities

e′ when an interaction takes place and is defined in Eq. (2).

X nð Þe0 ¼ X n�1ð Þe0 � t nð Þe*S nð Þe ð2Þ

So the impact of period decay is to subtract the additional relevance computed

for the active entity away from all inactive entities in that work context. Both

these equations are applied after every interaction takes place.

530 INAH OMORONYIA ET AL.

The outcome generated by both history and recent mode calculations is the

association of numeric values to the relevance of entities that constitute a selected

work context. From this a ranking can be created from which collaborating

developers can then obtain awareness of overall and recent work effort that has

impacted the different work contexts of distributed entities bound by a software

project in a collaboration space. As well as entity rankings, coloured labels of

varying intensity are provided to indicate the relative strength of relevance.

4.3. Illustration

To illustrate how the CRI model can be used to obtain a perception of the

relevance of an entity instance to a selected work context it is assumed that the

interaction trails shown in Figure 4 were the events used to achieve the earlier

TickX project. Any selected time on the timeline corresponds to at least one event

associated with a developer, a task and an artefact. For instance, the project

started with the creation of the Account.java code artefact by Amy while

contributing to the Purchase Tickets task on timeline 1. Timeline 7 corresponds to

two events occurring at the same time: Ruben updated Cinema.java (update delta

50) as he worked on Browse Movies, while Bill viewed Account.java as he

worked on Purchase Tickets (indicated by the three ‘✚’s in timeline 7).

Figure 5 represents the history and recent mode relevance list outcomes for the

entities that constitute the work context of the Purchase Tickets task. Entity

instances with greater relevance values are positioned at the top of the relevance

list. Also the relative differences in cumulative relevance values are proportional

to the relative distance between instances in the list. Each list consists of entity

instances of the same type that constitute a selected work context.

Figure 4. Monitored interaction trails used to achieve TickX across 25 timelines.

531USING DEVELOPER ACTIVITY DATA TO ENHANCE AWARENESS

The relative positions of entity instances on history and recent mode relevance

lists can be used to obtain insight into overall and recent work effort. Figure 5

shows that within the Purchase Tickets task work context Account.java has had

greater overall influence on the state of the task, while, in recent mode, Booking.

java is associated with most coding effort. Also, the figure shows that Amy is

attributed with most overall and recent coding effort in achieving the task. Similar

relevance lists are created for every other task, developer, and artefact.

5. Model implementation

A client-server architecture was chosen to implement the CRI model where each

developer’s Eclipse IDE is a client and the model processing logic and storage of

interaction sequence data is performed on the server. The client monitors

sequences of view, update, create and delete interaction events executed within

Eclipse. Eclipse was chosen because of its open, plug-in architecture. When a

network connection exists, this event data is offloaded to the server and

synchronised with that of other developers. While there is no connection (or a

slow connection) the client can temporarily store event data locally and perform

local model processing logic to give the developer a partial view of current

relevance—offline mode. The CRI implementation architecture is as shown in

Figure 6. The architecture is distributed across client and server ends, and

consists of four core layers: the model, event, messaging and Rich Client

Platform (RCP). The client end of each layer is plugged into the Eclipse platform

while the server end resides on an Apache Tomcat web application server.

Projects are defined within Eclipse itself and the current collaboration project is

identified via a unique project identifier which is then associated with any code

History mode Recent mode

a Artefacts relevance list b Developers relevance list c Artefacts relevance list d Developers relevance list

Figure 5. History and recent mode artefact and developer relevance lists for the purchase

tickets work context.

532 INAH OMORONYIA ET AL.

artefact being monitored by CRI. Each time a code file is opened in Eclipse it is

registered as a view event by the registrar.event component in the event layer.

Similarly, each time a new file is created it is registered as a create event. The

update delta is determined by comparing the absolute difference in the number of

characters in a file before and after a save action is triggered in the editor. When

artefacts are deleted the work context graph of the deleted node freezes. The

history of interaction events associated with the deleted node is, however,

retained in the log of event trails and can always be viewed in history mode to

obtain the relevance of the entity instance prior to its deletion.

The model layer is the main event processing unit in the architecture. This

layer is responsible for the formation of entity work contexts and their related

SOI ratios. The event layer is responsible for capturing and archiving interaction

event sequences generated within a collaboration space. The log.event component

is the clearing centre and data warehouse of all events generated by collaborators.

The messaging layer carries out asynchronous processing of request/response

messages from the server. The offline.emulator component emulates the server

end functions of the model and event layers while a developer is generating

interaction events in the offline mode. Finally, the RCP layer resides only on the

client end, and provides the minimal set of components required to build a rich

client application in Eclipse.

Figure 7 is a snapshot of an Eclipse view of the visualisation.rpc component

(which takes up a small area of the Eclipse real estate). System developers can

open, activate and deactivate their tasks (use cases) of interest by using the popup

menu labelled 3 in Figure 7. All interaction events carried out by a developer

Figure 6. Core layers of the CRI implementation architecture.

533USING DEVELOPER ACTIVITY DATA TO ENHANCE AWARENESS

are traced to the work context of an activated use case. The RCP layer is also

responsible for generating relevance based ordering and social graph

visualisations.

The visualisation of entities involved in a selected work context is structured

such that entity instances with greater relevance values are positioned at the top

of the relevance list. The relative difference in the relevance values of entities is

depicted using varying colour intensity. Entities at the top of the relevance list are

represented with greater colour intensity. Closely related entities show the same

relative colour intensity. Label 2 in Figure 7 highlights a relevance-based, ordered

visualisation of code artefacts that constitute the work context for the Purchase

Tickets (Browse Movies is to the right of this). It can be seen in the figure that

although MovieCatalog.java has been used to achieve both tasks, its relative

impact on the state of Browse Movies is greater than on the state of Purchase

Tickets. Similar hierarchies are also provided for the relative impact of developers

on the executable state of the two tasks.

Figure 7. Relevance based ordered visualisation of artefacts associated with TickX tasks/use

cases.

534 INAH OMORONYIA ET AL.

The CRI implementation also includes the capability to replay the evolving

state of each context. As an example, a playback of the evolution of the code

artefacts and their relative relevance associated with Purchase Tickets can be

obtained by sliding through the slider bar labelled 1 in Figure 7. The generation

of the social graph visualisation—see Section 6.2.1 and Figure 15—is triggered

by the button labelled 4 in Figure 7 (this uses the JUNG8 (Java Universal

Network/Graph) framework).

6. Evaluation of the CRI model

To evaluate the model the following research question was investigated in an

empirical study:

Can a model based on real-time monitoring of IDE interactions, such as

creates, edits and views, enhance contextual awareness during distributed,

collaborative software development?

6.1. Methodology

The study involved ten advanced software engineering students in the third year of

their Integrated Masters/Honours programme in Computer Science at the University

of Strathclyde, UK, all of whom volunteered to participate. All participants had at

least 2.5 years of object-oriented development experience using Java. They were all

participating in the group project class developing ‘Gizmoball’9—an editor and

simulator for a pinball table first proposed by MIT—and working in groups of three.

Of the ten participants two groups of three were the best two performing groups in

the class (‘G1’ and ‘G2’), another group of three participants came from a relatively

strong group (‘G3’), and a single student came from a group that was of average

performance (‘G4’). The groups had been designed to consist of individuals of

similar academic ability so as to encourage equal participation.

Participants were not restricted to time or place of work. Groups were required

to have at least one face-to-face meeting every week; during this time they also

discussed their progress with the teaching assistant (TA) coordinating the group.

Feedback from participants suggested that, besides the mandatory meeting, they

also held occasional collocated meetings. All the groups used a version control

system. Feedback from group G1 suggests occasional pair programming practice,

while group G2 also used a wiki system.

CRI data was gathered over a 6 week development period—2 weeks of

prototype development and 4 weeks of full-scale development. The model was

used during development (rather than maintenance) and was used in both a

distributed and collocated setting—all participants recorded instances of working

from home and within the university campus, the gathered data suggested that

participants spent more time working at different times or places than they spent

535USING DEVELOPER ACTIVITY DATA TO ENHANCE AWARENESS

working together. At the end of the 6 weeks, structured interviews were conducted

with eight of the participants—the two who did not wish to be interviewed had used

CRI the least (‘Blair’ and ‘Greg’—see Table 5). The interviews were personalised to

include CRI relevance views and other project information specific to the participant

being interviewed. It also had a mix of open and closed questions to allow the

interviewer (the first author) to follow up interesting responses with more detailed

questioning. All data was anonymised for analysis and presentation.

An audio record of all the interview sessions was carried out with the permission

of the participants. These audio records were then transcribed and analysed. Each

participant was interviewed separately. Apparent agreements and disagreements in

feedback were addressed after the interview sessions by comparing each recorded

feedback snippet with a replay of actual interaction event trails captured by CRI for

the work context that matched the feedback described by the participant. The

outcome of this analysis showed no apparent contradiction in statements made by

different members of each group that was interviewed.

6.2. Results

During the study 7166 CRI interactions over 16 tasks were recorded—see

Table 5. Of this total 0.11% were delete interactions, 1.98% creates, 45.72%

updates, and 52.20% views. 50% of the tasks involved two or more collaborating

developers. On average, 448 CRI interactions were registered per task with a

minimum of 3 and a maximum of 2,479. An average of 717 CRI interactions was

registered per participant with a minimum of 4 and a maximum of 1,157. 142

artefacts were created and monitored by CRI, 18% of the artefacts were

associated with two or more collaborators. 62.4% of the total update delta was

associated with artefact creators.

Table 5. Total interactions associated with each participant in the detailed study.

Group Collaborator Updates Deletes Creates Views Total interaction events

per collaborator

G1 Alex 550 1 23 740 1,314

G1 Tony 567 1 18 937 1,523

G1 Luke 232 1 11 210 454

G2 James 1,016 1 54 1,157 2,228

G2 Paul 42 0 9 222 273

G2 Tracy 778 1 8 223 1,010

G3 Blair 12 0 5 43 60

G3 Greg 0 1 0 3 4

G3 Boris 57 2 12 134 205

G4 Smith 22 0 2 71 95

Total 3,276 8 142 3,740 7,166

536 INAH OMORONYIA ET AL.

As part of the initial evaluation tests were carried out to ensure that the

implementation of the model behaved according to its design when used in practice.

This was firstly achieved by carrying out a controlled injection of real project updates

starting from a known state. The changes in relevance rankings were then tracked

and verified to ensure artefacts progressively moved up and down the rankings as

expected both in recent and in history mode, with changes occurring more rapidly in

recent mode due to the effect of periodic decay. Also, the impact of each of the CRI

components was investigated individually. SOI was shown to increase the relevance

ranking of entities associated with high SOI e.g. when an artefact was worked upon

by a developer who was also associated with many other artefacts. Similarly for each

interaction type: create interactions were important to identify the developer and the

task that were responsible for artefact creation—though view and update interactions

dominate over the lifetime of a project; there were examples where developers were

persistently viewing artefacts but not editing them but it was clear that reading the

code was important to their current task; and, update interactions indirectly captured

edit activity by developers working in the context of a task. Finally, the effect of

periodic decay was shown to have the desired impact of dampening relevance of

inactive entities in recent mode (as opposed to history mode).

In investigating themain research question, three contributions to increased awareness

during collaborative development as a result of the use of CRI were identified.

6.2.1. Results related to accuracy of CRI compared to participant opinion

Firstly, the study uncovered examples where it appeared that CRI provided a

more accurate record of relevance than that of individual developers themselves.

A set of questions in the structured interview explored the perception of relevance

held by participants compared to the CRI relevance rankings. Before the

commencement of each interview session, a separate paper list (in random order)

was made for each set of artefacts and tasks that the participant had worked on.

Before the participant had a view of any ranking information from CRI, they

were asked to rank the top four artefacts and tasks in descending order based on a

number of criteria, including overall coding effort and recent coding effort.

Analysis of these results showed that 62.5% of the time a participant’s top

selection, in terms of overall work effort, matched that of CRI; for recent work

effort the match was 37.5%. 87.5% of the time the participant’s top selection was

in CRI’s top 5 for overall work effort, and 62.5% of the time for recent effort. So

there was quite a mismatch between the CRI ranking and the estimates provided

by individual developers, particularly with respect to recent work.

One possible reason for this is the uncontrolled factors that may have impacted

on CRI results. In the interviews each participant was asked to state how

frequently they remembered to log into CRI, answered on a scale of 0–100%. To

understand if CRI impacted upon the normal working practices of participants they

were also asked: how frequently a new task was created or activated as the

537USING DEVELOPER ACTIVITY DATA TO ENHANCE AWARENESS

participant’s work context changed, how difficult it was to work within the context of

an identified task, how difficult it was to create a new task, and how difficult it was to

activate an existing task in CRI (all answered on a Likert scale of 1–7). Interview data

suggested that CRI may have only captured 60–90% of the total work effort of

developers—see Figure 8, and that developers only changed task within CRI 25–

50% of the time they actually switched task in practice—see Figure 9a–d. CRI results

are therefore likely to be subject to an element of inaccuracy.

To investigate these results further, participants were shown the actual CRI

relevance rankings for both history and recent modes, after they had given their

initial responses, and asked for any insights into possible discrepancies. This led

to the identification of possible reasons for the mismatches between CRI rankings

and those of the participants.

One potential reason is that participants formed a perception of effort based on

a related cluster of code artefacts. This snippet from participant ‘Paul’:

“I am not sure of Wall.java, I don’t think I put as much coding effort into Wall.

java as I put into the flipper related classes…”

Analysis of the interactions associated with Paul showed that the CRI ranking

was ‘correct’—the total effort of Paul on the flipper classes, as measured by CRI,

was greater than Wall but none of them individually exceeded Wall (for Wall 12

views and a total update delta of 1,400 characters were recorded, for Flipper it

was 8 and 214, for LeftFlipper 7 and 778, and for RightFlipper 19 and 25).

Another reason that may have influenced the mismatch was the size of the

artefact—one participant discounted a code artefact because it was only a small

driver module, but then acknowledged that it was modified each time the user

interface was tested; another was the perceived difficulty associated with an

artefact—one participant ranked an artefact lower down as it was perceived as

“straightforward” with many edits that were “not hard to implement”; and lastly a

participant discounted an artefact because all the effort had been in terms of “…

simply copied and pasted from an online source”.

The other main reason uncovered for mismatches appears to have been due to

flawed recollection and estimates by participants—which is to be expected. For

example participant ‘Boris’:

“Yes I understand why OuterWall.java should be there, I was recently working

on it…I don’t know why BouncingBall.java will be higher than Flipper.java…I

know why! …”

Figure 8. Dot plot showing percentage frequency participants remembered to log into CRI.

538 INAH OMORONYIA ET AL.

Participant ‘Alex’:

“I am a bit surprised that CollidableCircle.java is positioned that high; I

thought it would have been a bit lower… Yeah, thinking more about it, the

ranking looks about right, just that sometimes I depend on my recent coding

experience…”

While the factors identified as possible reasons for potential mismatch

between CRI rankings and those of the participants do not necessarily

suggest CRI is ‘correct’, these examples suggest that an automated awareness

system such as CRI has the potential to maintain more accurate rankings than

might be possible by human developers who can be influenced by recent

effort or overwhelmed by the amount of work done or scale of a project.

However, the goal of CRI is to be more useful than that—it aims to enhance

the awareness of developers—providing them with information that would be

otherwise difficult to obtain in an environment that is both distributed in

space and time.

6.2.2. Results related to deeper collaboration insights provided by CRI

The second, and main, contribution of CRI is in enhancing awareness of the

complex dependencies that can exist in different work contexts within a

distributed, collaborative project. These dependencies include the fact that a

code artefact may be associated with a number of developers and used to achieve

a variety of project tasks including system use cases and maintenance changes.

Similarly, a project task can be associated with a number of collaborating

developers and a range of code artefacts. Finally, a developer will be working on

a number of project tasks and using a wide range of code artefacts to achieve each

c

a: P

o

c: D

Perc

or cr

Diff

c

cent

reat

ficul

crea

tage

ted

lty e

ating

e fre

task

exp

g a n

eque

ks a

perie

new

enc

as w

ence

w ta

cy p

work

ed b

ask u

arti

k co

by p

usin

icipa

onte

part

ng C

ants

ext c

ticip

CRI

s ac

chan

pant

I too

ctiva

nge

ts w

ol

ated

ed

when

d

n

b

a

d:

b: D

alw

 Di

act

Diff

ways

iffic

tiva

ficu

s wo

culty

ating

ulty

orki

y ex

g an

exp

ing

xper

n ex

perie

with

rien

xisti

enc

hin

nced

ing

ed b

the

d by

task

by p

e co

y pa

k us

part

ntex

artic

sing

ticip

xt o

cipa

g CR

pant

of a

ants

RI t

ts in

task

wh

tool

n

k

hen

Figure 9. Experience feedback from participants.

539USING DEVELOPER ACTIVITY DATA TO ENHANCE AWARENESS

task (Gutwin et al. 2004; Mockus et al. 2002). The aim of CRI is to be able to

extract relevant awareness information for particular work contexts from this

network of entities and their interdependencies.

A snippet of feedback from Luke from group G1 on insights he obtained while

sliding through the history of entities constituting their collaboration space is

shown below:

“…I had a slide through the relevance positions of developers and java classes

for the File Demo task… I noticed that it has only been ‘Tony’ working on that

task. TriangleBumper.java and MainProgram.java were the original classes I

noticed he started with, and it was so for quite a while…

Currently there are a number of other classes he has used for that task…

If a maintenance task is to be carried out on my system, such information will

really be useful too… Since I can see the relative change of relevance that an

artefact or a developer would have had in association with a task used to

realise the system…”

The feedback snippet from Luke suggests that he did not need any formal or

informal collocated meeting with other members of his group to obtain awareness

of the state of the File Demo task. Through his use of CRI, he was able to

understand that it had only been Tony that had been working on File Demo; from

this, he also obtained insight into the relative significance of the artefacts Tony

was using to accomplish the task.

Analysis of developer interaction data captured during the study enabled the

detailed investigation of these snippets. In particular it was possible to recreate

development paths and investigate the validity and details of comments made by

participants during the interviews.

The analysis of File Demo in Table 6 shows the percentage of interaction

events Tony was associated with for each artefact he used in achieving the File

Demo task. A total of 13 code artefacts were used, he interacted significantly with

TriangleBumper (32.03%), LeftFlipper (23.60%) and MainProgram (17.55%).

Figure 10 shows an activity-time plot of File Demo and snapshots of the related

artefacts relevance list at different intervals over the history of File Demo. The

artefact relevance lists in Figure 10 labelled 1–6 show that the initial phase of

Tony’s work on File Demo actually involved TriangleBumper and MainProgram

and later progressed to a number of other code artefacts. The positions of

TriangleBumper and MainProgram have also been consistently high on the

relevance list over the history of File Demo as demonstrated by the artefacts

labelled a and b on the artefact relevance lists. This analysis confirms the

awareness obtained from CRI by Luke on File Demo.

Obtaining such awareness would be difficult in a distributed setting without the

use of a relevance model such as CRI. In particular CRI captured the fact that

540 INAH OMORONYIA ET AL.

Tony had a wide range of interactions with a variety of artefacts, so for example

Ball had little significance since Tony had minimal interaction with it and

Triangle had much more significance due to the increased interaction with that

artefact.

Another snippet of feedback from ‘Tracy’ in group G2 provides an insight he

obtained while sliding through the history of entities constituting the G2

collaboration space:

“…Sliding through the history of a task or artefact gives you a feel of how

things have moved on, especially after sliding through a history of the

artefacts I have been associated with…

Having a slide through a task view I can gauge how important an artefact has

been to the task over time, I did notice that MainScreen.java has retained high

relevance over a long duration now; recently KeyConnectFrame.java has

turned out to be high also…

… This gave me the clue that these classes are quite important to the User

Interface task…

I got particularly interested in MainScreen.java when I noticed ‘James’ and

‘Paul’ have also used this class… I have been the only one working on

KeyConnectFrame.java

I believe this information will again be very important to me when carrying

out a maintenance task on a system I am not really familiar with…”

Table 6. Percentage of developer and artefact interaction events associated with File Demo task.

Views Updates Absolute update delta % of standardised

interactions

Artefacts

GameModel.java 3 5 184 2.23

MainProgram.java 21 21 1,475 17.55

TriangleBumper.java 24 21 2,836 32.03

GameObject.java 4 1 32 0.75

RightFlipper.java 9 5 859 9.88

LeftFlipper.java 10 4 2,166 23.60

Ball.java 2 1 2 0.23

GizmoHandler.java 7 2 563 6.59

CircleBumper.java 3 2 12 0.44

ApplicationWindow.java 2 3 67 0.91

Absorber.java 3 2 6 0.37

FileHandler.java 6 3 144 2.12

GameWindow.java 3 9 286 3.29

Developers

Tony 97 79 8,632 100.00

541USING DEVELOPER ACTIVITY DATA TO ENHANCE AWARENESS

F
ig
u
re

1
0
.
A
ct
iv
it
y
-t
im

e
p
lo
t
a
n
d
sn
a
p
sh
o
ts

o
f
re
la
te
d
a
rt
ef
a
ct
s
re
le
v
a
n
ce

li
st

o
v
er

th
e
h
is
to
ry

o
f
F
il
e
D
em

o
.

542 INAH OMORONYIA ET AL.

Tracy’s particular interest had been to be aware of other developers that have been

collaborating on the same task he was working on and the code artefacts being used

to achieve the task. The feedback from Tracy also supports the capability of CRI to

enhance contextual awareness of distributed software project processes. Tracy

became aware of the impact of theMainScreen and KeyConnectFrame code artefacts

on the User Interface task which he was collaborating on with ‘James’ and ‘Paul’.

While he had worked primarily on KeyConnectFrame, he had not at any time

interacted with MainScreen while performing the User Interface task. Irrespective of

not working with MainScreen, using CRI he was aware of the relative impact of the

artefact on the task he was working on. Again, he obtained this awareness without

having to meet formally or informally with James or Paul.

Figure 11 shows the context graph of User Interface demonstrating that it was

accomplished by the three collaborating developers and the use of 71 code artefacts.

Useful awareness insights into the state of User Interface would have been more

difficult to achieve without the use of a relevance model such as CRI given the

number of developers and artefacts involved. Each of the developers and artefacts

Figure 11. The context graph of the G1 User Interface task showing the 71 code artefacts

and 3 developers involved in achieving the task.

543USING DEVELOPER ACTIVITY DATA TO ENHANCE AWARENESS

F
ig
u
re

1
2
.
S
n
a
p
sh
o
ts

o
f
d
ev
el
o
p
er

a
n
d
a
rt
ef
a
ct

re
le
v
a
n
ce

li
st
s
th
ro
u
g
h
o
u
t
th
e
h
is
to
ry

o
f
th
e
U
se
r
In
te
rf
a
ce

ta
sk
.

544 INAH OMORONYIA ET AL.

had different levels of influence on the state of User Interface. Figure 12 shows six

sequential snapshots of developer and artefact relevance lists at different intervals

over the history of the User Interface task. The labelled entities are the artefacts and

developers that Tracy was interested in during his collaboration on User Interface.

The screenshots show the relatively high positioning of MainScreen over the history

of User Interface and the higher positioning of KeyConnectFrame at the later phases

of the task. The developer relevance lists also show that the early phase of

development work on User Interface consisted only of Tracy while James and Paul

became associated with the task as it progressed. The positions of James and Tracy

switched on the relevance list at different periods of User Interface development.

Figure 12 confirms the awareness obtained by Tracy using CRI during the

development of User Interface.

Finally, a snippet of feedback from ‘Alex’ in group G1 on insight he obtained

using the CRI history mode relevance list is shown below:

“…If there is an artefact that has remained high on the ranking over a

considerable time line, it tells me where the main focus or problems have been

in the project…

I have been watching the PlayWindow.java and BuildWindow.java classes

recently on the Build Mode task…

Although I have not worked much on them, I know they have been important in

achieving Build Mode …

I also noticed that classes are high on ‘Luke’s’ relevance ranking…

He is probably doing a lot of work on it…”

The feedback from Alex implies that using CRI he was able to build awareness of

the relevance of PlayWindow and BuildWindow to the BuildMode task. These were

the top two artefacts on the Build Mode task artefacts relevance list. Furthermore, he

was able to obtain awareness that Luke was more relevant to the state of these two

artefacts compared to other developers within the collaboration space. Again, it

would have been difficult for Alex to achieve this awareness without a relevance

model such as CRI since Build Mode was dependent on all three developers in the

group and 70 code artefacts—see Figure 13. Again, each of the developers and code

artefacts had different levels of influence on the state of Build Mode.

Figure 14 shows snapshots of entity relevance lists for the final work context

state of Build Mode (labels 1a and b), Luke (label 2), PlayWindow (labels 4a and b)

and BuildWindow (labels 3a and b). Label 1a demonstrates the high relevance

positions of PlayWindow and BuildWindow on the Build Mode artefact relevance

list and label 1b shows the high relevance position of Luke compared to the other

developers on the state of Build Mode. The artefact relevance list for Luke shown

in label 2 further demonstrates the relative relevance of PlayWindow and

545USING DEVELOPER ACTIVITY DATA TO ENHANCE AWARENESS

BuildWindow to Luke’s work context. The developer and task relevance lists for

PlayWindow and BuildWindow work context shown in labels 3a, b and 4a, b also

confirms the awareness stated by Alex in his feedback.

Firstly, the Build Mode task has had significant impact on the state of

PlayWindow and BuildWindow given that they are positioned top on the task

relevance list for each of the two code artefacts (labels 3b and 4b). Secondly,

while Alex had minimal impact on the state of BuildWindow (label 3a—bottom

in the developer relevance list) Luke has had significant impact on the state of

this artefact (label 3a—being top in the developer relevance list). Tony also

impacted on the state of BuildWindow but not as much as Luke. Furthermore,

Alex had not at any time worked on PlayWindow while Luke was the most

relevant then Tony (label 4a). Amid the numerous artefacts and three developers

that had collaborated on Build Mode (see Figure 13), Alex did not need to

formally or informally meet with Luke or Tony to become aware of their

relevance or to discover the most important artefacts in this task.

The snippet of feedback for ‘Tony’ shown below again demonstrates the

usefulness of CRI for distributed software development. His aim in sliding

Figure 13. The context graph for the Build Mode task showing 70 code artifacts and the 3

developers involved in achieving the task.

546 INAH OMORONYIA ET AL.

F
ig
u
re

1
4
.
E
n
ti
ty

re
le
v
a
n
ce

li
st
s
u
se
d
b
y
A
le
x
to

o
b
ta
in

aw
ar
en
es
s
o
f
g
ro
u
p
G
1
d
ev
el
o
p
m
en
t
w
o
rk
.

547USING DEVELOPER ACTIVITY DATA TO ENHANCE AWARENESS

through the history of entities constituting his collaboration space was to monitor

the real-time progress of work on tasks and code artefacts:

“… It is always good to see over time, how much you have worked on certain

code or tasks…

After our group meeting, I will watch to see if there is a certain growth in the

task we discussed during the meeting…

I noticed some time delay in processing as the timeline gets longer.

This feature will be more intuitive if timeline definitions are more specifically

defined…”

Tony’s feedback also suggests that sliding through histories of entities could suffer

from network latency as the lifetime of the project increases. Also, the usability of the

history slicing feature in CRI could be improved by adding more intuitive timeline

definitions such as the particular date or hour an interaction was carried out.

6.2.3. Results related to the social graph view of CRI

Finally, another contribution to enhanced awareness by CRI is at the abstract level

provided by the social graph view. CRI social graphs are constructed by merging all

the context graphs for each group. The relevance position of an entity, relative to all

the work contexts it has been associated with can be interpreted as an estimate of its

global importance or ‘centrality’ compared to all other entities in the graph. All

edges (representing interactions) are between entities in different subsets and no

entities in the same subset are adjacent. The size of an entity in the graph reflects its

importance, and is proportional to its Markov centrality in the network (Latora and

Marchiori 2007), arcs between entities reflect dependencies i.e. artefact-developer,

artefact-task, and task-developer. Figure 15 shows the social graph for group G1 in

this study.

The potential benefit of social graphs is that they present a high level view of a

collaboration space which can help identify key entities in terms of their size and

relationships. Ideally, they can be used to visualise the potential impact of making a

change to a project e.g. removing a developer or an artefact, updating a task; or they

may help identify potential bottlenecks in a project. Again the potential benefits of

the social graph view were highlighted, with, for example, ‘Alex’ saying:

“...It’s the fastest way to get all the information from CRI… I always use the

graph to get a general state view of the project… I do check it every few days

just to give me a grasp of what is going on with developers in the group and

which tasks have had a considerable change recently…”

Another quote from ‘Tony’ reflects on the accuracy of the social graph view,

highlighting the main task and artefact that have been the focus for his group’s

548 INAH OMORONYIA ET AL.

efforts, and also pointing out the limitation of scaling associated with the social

graph view:

“…Will say that is spot on…

It’s easy to see where the biggest problems are… For instance, I can see that

Build Mode task and BuildWindow.java have really been a problem spot…

We have spent some few days really trying to figure some buggy stuff there…

The number of artefacts has made it cluttered and complex…”

Figure 16 shows a summary of participant responses to an interview question

on their opinion of the accuracy of the social graph view.

Evidence captured from the empirical study suggests that the social graph can

present a useful high level view of the state of a collaboration space including

work that isn’t being done because an entity is not present or is relatively small—

see the following comment from ‘Boris’:

“…If we have done ‘JUnit Test’ how come it only (shows) Gizmo.java, Square.

java and GizmoModel.java…?

Figure 15. Group G1’s social graph.

549USING DEVELOPER ACTIVITY DATA TO ENHANCE AWARENESS

Because I know that it should be looking at virtually all of the code…

There is something wrong…

This tells that there is more work to be done (on) ‘JUnit Tests…”

On the other hand, a couple of participants identified the potential disadvantage

that social graphs can quickly become overwhelming as the size of a

collaboration space grows.

6.2.4. Results summary

The evaluation has demonstrated a number of findings. Firstly, it has shown that it is

possible to build and implement a model, based on the identification of developers,

tasks and the capture of interaction events (create, update and view) on code

artefacts, that can provide contextual awareness in a distributed, collaborative

environment. It has been shown that the proposed model worked in practice, during

this study, in keeping with its theoretical design. It was shown that often the CRI

model appeared to have a more accurate record of relevance than individual

developers—this is not really surprising since individuals are missing key

information regarding the work efforts of their colleagues, particularly during

distributed development. It was shown that the social graph view can provide a

useful high level summary of the state of a collaborative project. The main finding is

that a model such as CRI can enhance developers’ awareness of the state of a

collaborative project in a range of ways: what developers, tasks and artefacts are

most relevant in particular work contexts, both from an overall effort perspective and

from a most recent work perspective. Finally, the capability to ‘slide through’ the

history of a project enabled developers to get a quick and effective overview of how

the project has developed from a range of perspectives over time.

7. Discussion

The main aim of this work has been to propose and evaluate a model that provides a

perception of the relevance and impact of tasks, developers and artefacts associated

with a distributed, collaborative software project in a selected work context. The

Figure 16. Participants level of acceptance of the social graph views during the Gizmoball

study.

550 INAH OMORONYIA ET AL.

evaluation study has demonstrated that the features of CRI appear to address many of

Gutwin et al.’s elements of workspace awareness—see Table 1, including some of

the elements that are not well addressed in other tools. It is argued that the identity,

activity level, actions, objects, extent, abilities, and sphere of influence can all, to a

significant extent, be inferred from the position of tasks and artefacts on the relevance

hierarchy of recent and overall work effort in the CRI work contexts of developers.

Similar arguments can be made about task and artefact work context perspectives.

The outstanding Gutwin elements that are not addressed are those concerned with the

future (intentions and expectations), those to do with changes (which are well

addressed by existing configuration management tools) and location.

While the research focuses on a distributed context, the outcome of the

evaluation arguably suggests that CRI can be useful in a range of cooperative

contexts—local or distributed. For instance, CRI was used by participants in

different scenarios within the time/space matrix. This included working at

different times within the university campus (different time/same place) or from

their homes (different times/different place), as well as working at the same time

within the university campus (same time/same place).

The proposed CRI model appears to extend awareness support provided by

previous work in a number of respects. CRI provides a more holistic approach

to awareness by integrating information relating to developers, artefacts and

associated tasks. While awareness information in Ariadne and Hipikat is

centred only on developer and code artefacts respectively, Team Tracks,

FASTDash and Expertise Browser are centred on relational properties between

developers and code artefacts. Furthermore, Mylyn is centred on relational

properties between tasks and code artefacts. The evaluation study does suggest

that additional awareness information, specific to different work contexts, can

be provided by integrating relational properties amongst these three entities

types. Secondly, CRI provides collaborative awareness information based on

both recent and overall work effort. While recent work effort can be deduced

in Mylyn, its implemented degree of interest model does not extend to a

collaborative context. Thus, while it is useful to provide awareness of the

impact of a task on the state of an artefact, as done in Mylyn, it is arguably

more useful for developers to obtain awareness of the relative impact that all

tasks have had on the state of code artefacts over the project history. Finally,

as demonstrated in the study, CRI’s relevance based ordering view of entity

relevance in the history mode provides the opportunity to replay the evolving

relevance of entities over the lifecycle of a software project.

There have been a number of lessons learned from the modelling, implementation

and subsequent evaluation of CRI. One of the important lessons learned from the

modelling of CRI is that the SOI ratio can be central in revealing a number of latent

properties of a collaborative software development process. For instance, a high SOI

ratio for a developer may suggest that they are working with many parts of the

system and hence central to the development process. Furthermore, if most

551USING DEVELOPER ACTIVITY DATA TO ENHANCE AWARENESS

developers tend to be associated with a high SOI ratio, then it might imply a shared

code ownership development model such as extreme programming. If a task has a

high SOI ratio then this can indicate its importance to the development process. On

the other hand it might indicate poor task definition and allocation practice—for

instance, the task has not been broken down enough or that the development process

has not been well segmented. The use of SOI as the basis of a forensic analysis of the

design and its development has rich potential for future work.

CRI specifically excluded relations between same type entities e.g. artefact to

artefact. It is believed that such awareness information could also be relevant and

useful within a cooperative setting. Such relations would provide awareness of

the relevance of developers to each other depending on their context of work or

the relative interdependence between task or artefact instances. Developer-

developer relations have been studied in Ariadne. The outcome suggested that

such relations can be used to identify developers who are more likely to be

communicating (de Souza et al. 2007).

The study also reveals the need for a more scalable visualisation of the social

graph (e.g. fisheye), particularly if it were to be used in real-world applications

with potentially thousands of entities and inter-relations.

Finally, CRI does not measure the time developers spend viewing code

artefacts. Developers may spend more time on entities which are more important

(though there are obvious dangers here such as being interrupted while viewing).

It is anticipated that measuring viewing time (within certain limits) and

potentially the size of a view event, based on scrolling and mouse movement,

may help increase the accuracy of CRI. Another possibility is to distinguish

between local updates that that are never committed and updates that are actually

made visible to others. The granularity at which interactions are currently

recorded is the file level; there may be benefits in focussing on lower level

granularity, such as the method level, to identify artefact relevance in more detail.

8. Threats to validity

A standard criticism of this kind of university-based research project is the use of

students. The best that can be done is to use experienced students working on

realistic development projects. The project only lasted 10 weeks, and was only

monitored for 6 weeks. Therefore these findings must be treated with caution;

however it is still argued that they provide a reasonable indication of the potential

strengths and weaknesses of a CRI-like model in real world distributed,

collaborative development. A related threat is that the participants had previously

had very limited experience of collaborating in groups and this may have

impacted their working practices compared to more experienced participants.

Another threat is that CRI did not accurately capture all development data. It is

clear that participants did not record all tasks that they worked on and did not

552 INAH OMORONYIA ET AL.

always change task as they changed work context—this is a real challenge for a

task-based model such as CRI.

The studies were part of an assessed University course. Participation was

entirely voluntary and the lecturer associated with the course (the fourth author)

was not involved in any interviews or data analysis. He only saw anonymised

data.

The results may have been impacted by the lack of experience of participants

with CRI. Again, for pragmatic reasons, participants were only provided with a

CRI user guide and a 30 minute tutorial. Some participants may not have

developed a sufficient understanding to fully utilise CRI and develop deeper

insights into its strengths and weaknesses.

A real threat to CRI usage both in this study and in practice is that it is possible

for developers to forcibly increase their relevance in a collaborative space.

Developers can easily perform meaningless or routine views and updates that

boost their relevance. This is a real danger in any development environment

where CRI might be used as the basis of judging individuals, and is a strong

reason, along with privacy concerns, why this must not be done. In this study we

tried to stress that CRI outputs were not, and should not be, used as the basis to

judge the performance of individuals.

Finally, this study was carried out in the context of a forward engineering

project. It is believed that CRI offers significant potential benefits when used in

reverse engineering or maintenance contexts. Although a few participants hinted

at perceived benefits of CRI models in these contexts, little can be deduced about

this without further research.

9. Conclusions

This paper has presented and evaluated a model intended to enhance contextual

awareness in distributed, collaborative software engineering spaces where

developers are free to work at any time and in any location. Key results

demonstrate that it is possible to derive real time relevance rankings of project

entities that exist in collaborative space by monitoring developer interactions.

These interactions have been used to derive: an indication of the overall work

effort of individual developers in particular work contexts through the history

mode as well as their current work through the recent mode; an indication of

which tasks and artefacts have consumed most effort over all developers; a

history slicing capability that allows a developer in particular work contexts to

‘playback’ the development process; and, a social graph that provides an abstract

view, void of context, of the overall state of a project which can help determine

potential bottlenecks and the potential implications of deleting artefacts, updating

tasks or removing developers from a project.

Empirical evaluation using a small but realistic case study demonstrated that

the implementation of the model appeared to work in practice according to the

553USING DEVELOPER ACTIVITY DATA TO ENHANCE AWARENESS

design. In particular, both SOI—representing the importance of an entity in a

collaborative space—and periodic decay—reducing the importance of inactive

elements in recent mode—were shown to have a clear impact on the relevance

rankings in keeping with the CRI model design.

Investigation of whether the model can support awareness during collaborative

development highlighted three areas of strength: a number of examples were

identified where it appeared that CRI was maintaining more accurate relevant

rankings than individual developers; developers used the history slider to ‘replay’

project development to help enhance their understanding of who had contributed

what at each stage of development and what tasks and artefacts were most

relevant throughout the project lifecycle; and, the social graph view of CRI was

shown to provide an effective high level summary of a collaborative project—

showing what entities were important and also highlighting areas where

development may not have been as much as it should have been.

This research has focused on the development and evaluation of a model that can

enable collaborators achieve contextual awareness based on tasks, developers and

artefacts that are being used to achieve a distributed software project. For a selected

task instance, awareness of the relative impact of project developers and code

artefacts is provided. Similarly, for a selected code artefact, awareness is provided

of the relative impact of project tasks and developers on its current and historical

state. Finally, for a selected developer, awareness is provided of the relative impact

of tasks and code artefacts on their work context. The CRI relevance model is based

on a collaborative perspective rather than an individual one.

Further work should investigate the potential to track important software

development artefacts beyond code e.g. requirements, design, tests and

maintenance requests. The main reason for focussing on code alone in this initial

work was the ease with which code changes could be tracked in the Eclipse

architecture. Other areas that that should be explored include: measuring length

and extent of artefact viewing; examining improved techniques to capture task

creation and change; and, the potential for forensic analysis of the development

process based on SOI data. Finally, major ethical considerations exist in the real

world use of CRI since it could be abused as the basis of capability judgment and

reward structuring. This can be partially addressed by appropriate management

attitude and also mechanisms within CRI to allow developers to switch monitors

on and off at any stage.

Acknowledgements

The authors are extremely grateful to the anonymous students who spent a

significant amount of time using CRI in their project work and provided

insightful feedback during the evaluation of this work. We are also very grateful

to the reviewers for this special issue who provided really useful advice on how

to improve the original version of this paper.

554 INAH OMORONYIA ET AL.

Open Access This article is distributed under the terms of the Creative Commons

Attribution Noncommercial License which permits any noncommercial use,

distribution, and reproduction in any medium, provided the original author(s) and

source are credited.

Notes

1. http://www.jazz.net (Verified 04/2009)

2. http://www.eclipse.org/ecf (Verified 02/2007)

3. http://www.eclipse.org/dash (Verified 02/2007)

4. http://www.eclipse.org/mylar (Verified 02/2007)

5. http://www.eclipse.org/equinox (Verified 02/2007)

6. http://www.eclipse.org/emf (Verified 02/2007)

7. Absolute update delta is the positive or negative difference in the number of characters

associated with a code artefact before and after an update interaction event.

8. http://jung.sourceforge.net/ (Verified 04/2009)

9. http://www.mit.edu/~6.170/assignments/gizmoball/gizmoball.html (Verified 04/09)

References

Alexanderson, P. (2004). Peripheral awareness and smooth notification: The use of Natural sounds

in process control work. NordiCHI ‘04. Proceedings of the Third Nordic Conference on Human-

computer Interaction. ACM, pp. 281–284.

Biehl, J. T., Czerwinski, M., Smith, G., Robertson, G. G. (2007). Fastdash: A visual dashboard for

fostering awareness in software teams. CHI ‘07. Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems. ACM, pp. 1313–1322.

Bly, S. Harrison, S. & Irwin, S. (1993). Media spaces: bringing people together in a video, audio,

and computing environment. Communications ACM, 36(1), 28–46.

Boland, D., Fitzgerald, B. (2004). Transitioning from a co-located to a globally-distributed software

development team: A case study at Analog Devices Inc. Third International Workshop on Global

Software Development (GSD 2004), 26th International Conference on Software Engineering, pp. 4–7.

Bolchini, C. Curino, C. Quintarelli, E. Schreiber, F. & Tanca, L. (2007). A data-oriented survey of

context models. ACM SIGMOD Record, 36(4), 19–26.

Bruegge, B., Dutoit, A., Wolf, T. (2006). Sysiphus: Enabling informal collaboration in global

software development, International Conference on Global Software Engineering (ICGSE‘06),

pp. 139–148.

Busch, P., Richards, D. (2001). Graphically defining articulable tacit knowledge. Selected Papers

from the Pan-Sydney Workshop on Visualisation, Australian Computer Society, Inc., pp. 51–60.

Cadiz, J. J., Venolia, G., Jancke, G., Gupta, A. (2001). Sideshow: Providing peripheral awareness of

important information. Microsoft Research Technical Report MSR-TR-2001-83.

Cheng, L.-T. de Souza, C. Hupfer, S. Patterson, J. & Ross, S. (2004). Building collaboration into

IDEs. Queue, 1(9), 40–50.

Chisan, J., Damian, D. (2004). Towards a model of awareness support of software development in

GSD. Third International Workshop on Global Software Development (GSD 2004), 26th

International Conference on Software Engineering, pp. 28–33.

Cramton, C. (2001). The mutual knowledge problem and its consequences for dispersed

collaboration. Organization Science, 12(3), 346–371.

Cubranic, D. Gail, M. Singer, J. & Booth, K. (2005). Hipikat: a project memory for software

development. IEEE Transactions on Software Engineering, 31(6), 446–465.

555USING DEVELOPER ACTIVITY DATA TO ENHANCE AWARENESS

http://www.jazz.net
http://www.eclipse.org/ecf
http://www.eclipse.org/dash
http://www.eclipse.org/mylar
http://www.eclipse.org/equinox
http://www.eclipse.org/emf
http://jung.sourceforge.net/
http://www.mit.edu/~6.170/assignments/gizmoball/gizmoball.html

Curtis, B. Krasner, H. & Iscoe, N. (1988). A field study of the software design process for large

systems. Communications ACM, 31(11), 1268–1287.

Cutrell, E., Czerwinski, M., Horvitz, E. (2001). Notification, disruption, and memory: Effects of

messaging interruptions on memory and performance. Proceedings of Interact 2001, IFIP

Conference on Human-Computer Interaction, Tokyo, pp. 263–269.

de Freitas, G. Tait, T. & Huzita, E. (2008). A tool for supporting the communication in distributed

software development environment. Journal of Computer Science and Technology, 8(2), 118–124.

de Souza, C., Redmiles, D., Mark, G., Penix, J., Sierhuis, M. (2003). Management of Interdependencies

in collaborative software development. Proceedings of the 2003 International Symposium on

Empirical Software Engineering (ISESE ‘03), IEEE Computer Society, pp. 294–303.

de Souza, C., Quirk, S., Trainer, E., Redmiles, D. (2007). Supporting collaborative software

development through the visualization of socio-technical dependencies. Proceedings of the 2007

International ACM Conference on Supporting Groupwork (GROUP ‘07), pp. 147–156.

Deline, R., Khella, A., Czerwinski, M., Robertson, G. (2005). Towards understanding programs

through wear-based filtering. In: Proceedings of ACM 2005 Symposium on Software

Visualization, ACM, pp. 183–192.

Dey, A. Abowd, G. & Daniel, S. (2001). A conceptual framework and a toolkit for supporting the

rapid prototyping of context-aware applications. Human-Computer Interaction, 16(2), 97–166.

Dix, A., Finlay, J., Abowd, G., Beale, R. (2004). Human-computer Interaction, 3rd ed. Prentice Hall.

Dourish, P., Bellott, V. (1992). Awareness and coordination in shared workspaces. Proceedings of the

1992 ACM Conference on Computer-supported Cooperative Work (CSCW ‘92), pp. 107–114.

Dragunov, A., Dietterich, T., Johnsrude, K., McLaughlin, M., Li, L., Herlocker, J. (2005). Task tracer: A

desktop environment to support multi-tasking knowledge workers. In: Proceedings of the 10th

International Conference on Intelligent User Interfaces (IUI ‘05), San Diego, ACM, pp. 75–82.

Farshchian, B. (2001). Integrating geographically distributed development teams through increased

product awareness. Information Systems, 26(3), 123–141.

Fritz, T., Murphy, G., Hill, E. (2007). Does a programmer’s activity indicate knowledge of code?

Proceedings of the 6th Joint Meeting of the European Software Engineering Conference and the ACM

SIGSOFT Symposium on the Foundations of Software Engineering (ESEC-FSE ‘07), pp. 341–350.

Froehlich, J., Dourish, P. (2004). Unifying artifacts and activities in a visual tool for distributed

software development teams. Proceedings of the 26th International Conference on Software

Engineering (ICSE ‘04), IEEE Computer Society, pp. 387–396.

Gross, T. Stary, C. & Totte, A. (2005). User-centered awareness in computer-supported cooperative

work-systems: structured embedding of findings from social sciences. International Journal of

Human-Computer Interaction, 18(3), 323–360.

Gutwin, C. (1997). Workspace awareness in real-time distributed groupware. PhD Thesis,

Department of Computer Science, University of Calgary.

Gutwin, C., Greenberg, S. (1998). Effects of awareness support on groupware usability. Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems (CHI ‘98), pp. 511–518.

Gutwin, C., Greenberg, S., Roseman, M. (1996). Workspace awareness in real-time distributed

groupware: Framework, widgets, and evaluation. Proceedings of HCI on People and Computers

XI (HCI ‘96), Springer-Verlag, pp. 281–298.

Gutwin, C., Penner, R., Schneider, K. (2004). Group awareness in distributed software

development. Proceedings of the 2004 ACM Conference on Computer Supported Cooperative

Work (CSCW ‘04), pp. 72–81.

Hadas, W., Frank, A. (2001). Tacit knowledge: The link between organizational and individual

knowledge. European CSCW Workshop Managing Tacit Knowledge.

Hargreaves, E., Damian, D. (2004). Can global software teams learn from military teamwork

models? Third International Workshop on Global Software Development (GSD 2004), 26th

International Conference on Software Engineering, pp. 21–23.

556 INAH OMORONYIA ET AL.

Heiner, J., Hudson, S., Tanaka, K. (1999). The information percolator: Ambient information display

in a decorative object. Proceedings of the 12th Annual ACM Symposium on User Interface

Software and Technology (UIST ‘99), pp. 141–148.

Herbsleb, J. (2007). Global software engineering: the future of socio-technical coordination. 2007

Future of Software Engineering (FOSE‘07). IEEE Computer Society, 188–198.

Horvitz, E., Jacobs, A., Hovel, D. (1999). Attention-sensitive alerting. Proceedings of the 15th

Annual Conference on Uncertainty in Artificial Intelligence (UAI-99), pp. 305–331.

Hupfer, S., Cheng, L.-T., Ross, S., Patterson, J. (2004). Introducing collaboration into an

application development environment. Proceedings of the 2004 ACM Conference on Computer

Supported Cooperative Work (CSCW ‘04), pp. 21–24.

Jazz. (2008). Jazz platform quick reference. Jazz Community Site, IBM Rational Software.

Kantor, M., Redmiles, D. (2001). Creating an infrastructure for ubiquitous awareness. Eight IFIP

TC 13 Conference on Human-Computer Interaction (INTERACT 2001), pp. 431–438.

Kaptelinin, V. (2003). UMEA: Translating interaction histories into project contexts. In:

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Ft.

Lauderdale, pp. 353–360.

Kersten, M. (2007). Focusing knowledge work with task context. PhD Thesis, University of British

Columbia.

Ko, A., DeLine, R., Venolia, G. (2007). Information needs in collocated software development

teams. Proceedings of the 29th International Conference on Software Engineering (ICSE ‘07).

IEEE Computer Society, 344–353.

Kommeren, R. & Parviainen, P. (2007). Philips experiences in global distributed software

development. Empirical Software Engineering, 12(6), 647–660.

Latora, V. & Marchiori, M. (2007). A measure of centrality based on network efficiency. New

Journal of Physics, 9, 188.

McDonald, D., Ackerman, M. (1998). Just talk to me: A field study of expertise location.

Proceedings of the 1998 ACM Conference on Computer Supported Cooperative Work (CSCW

‘98), pp. 315–324.

McFarlane, D. (1999). Coordinating the interruption of people in human-computer interaction.

Proceedings of the IFIP TC13 Conference on Human Computer Interaction, pp. 295–303.

Mockus, A., Herbsleb, J. (2002). Expertise browser: A quantitative approach to identifying expertise.

Proceedings of the 24th International Conference on Software Engineering, pp. 503–512.

Mockus, A. Fielding, R. & Herbsleb, J. (2002). Two case studies of open source software

development: apache and mozilla. ACM Transactions on Software Engineering Methodology, 11

(3), 309–346.

Pacey, M., MacGregor, C. (2001). Auditory cues for monitoring a background process: A

comparative evaluation. Proceedings of the IFIP TC13 Conference on Human Computer

Interaction (Interact 2001), pp. 174–181.

Pedersen, E. (1998). People presence or room activity supporting peripheral awareness over

distance. CHI 98 Conference Summary on Human Factors in Computing Systems, pp. 283–284.

Perry, D. Staudenmayer, N. & Votta, L. (1994). People, organizations, and process improvement.

IEEE Software, 11(4), 36–45.

Sarma, A., Hoek, A. (2002). Palantir: Increasing awareness in distributed software development.

International Workshop on Global Software Development (GSD 2002), 24th International

Conference on Software Engineering.

Sarma, A., Noroozi, Z., Hoek, A. (2003). Palantir: Raising awareness among configuration

management workspaces. Proceedings of the 25th International Conference on Software

Engineering (ICSE ‘03), IEEE Computer Society, pp. 444–454.

Schmidt, K. (2002). The problem with ‘awareness’: introductory remarks on ‘awareness in CSCW’.

Computer Supported Cooperative Work, 11(3–4), 285–298.

557USING DEVELOPER ACTIVITY DATA TO ENHANCE AWARENESS

Segal, L. (1995). Designing team workstations: The choreography of teamwork. In: Local

applications of the ecological approach to human-machine systems. Hillsdale: Erlbaum.

Sillito, J. Murphy, G. & De Volder, K. (2008). Asking and answering questions during a

programming change task. IEEE Transaction Software Engineering, 34(4), 434–451.

Singh, G. (1999). Guest editor’s introduction, media spaces. IEEE MultiMedia, 6(2), 18–19.

Storey, M.-A., Cheng, L.-T., Bull, I., Rigby, P. (2006). Shared waypoints and social tagging to

support collaboration in software development. Proceedings of the 2006 20th Anniversary

Conference on Computer Supported Cooperative Work (CSCW ‘06), pp. 195–198.

Teasley, S. Covi, L. Krishnan, M. & Olson, J. (2002). Rapid software development through team

collocation. IEEE Transactions on Software Engineering, 28(7), 671–683.

Webster. (2006). Unabridged dictionary. Springfield: Merriam-Webster.

Weiser, M., Brown, J. (1996). Designing calm technology. PowerGrid Journal, p. 1.

Yew, J., Gibson, F., Teasley, S. (2006). Learning by tagging: Group knowledge formation in a self-

organizing learning community. Proceedings of the 7th International Conference on Learning

Sciences (ICLS ‘06), pp. 1010–1011.

Zou, L., Godfrey, M. (2006). An industrial case study of program artifacts viewed during

maintenance tasks. Proceedings of the 13th Working Conference on Reverse Engineering, pp.

71–82.

558 INAH OMORONYIA ET AL.

	Using Developer Activity Data to Enhance Awareness during Collaborative Software Development
	Abstract
	Introduction
	Review of literature and problem formulation
	Awareness concepts within the framework of collaborative work
	Disseminating awareness information in computer mediated collaboration
	<?A3B2 twb .27w?><?A3B2 tlsb -.2pt?>Awareness information needs and dissemination in software development teams
	Enhancing context awareness in distributed software development environments
	Obtaining context by social tagging
	Obtaining context by mining relational properties among software project entities
	Obtaining context by monitoring developer interactions
	Obtaining context by combining developer interactions and relational properties
	Obtaining context by combining developer interactions and relational properties with the notion of time and its expiration

	Recommender systems for general task awareness
	Research motivation

	Example software development scenario
	The continuum of relevance (CRI) model
	CRI history mode
	CRI recent mode
	Illustration

	Model implementation
	Evaluation of the CRI model
	Methodology
	Results
	Results related to accuracy of CRI compared to participant opinion
	Results related to deeper collaboration insights provided by CRI
	Results related to the social graph view of CRI
	Results summary

	Discussion
	Threats to validity
	Conclusions
	References

