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1.0 INTRODUCTION 

The 2010 - 2012 Canterbury earthquake sequence caused widespread damage. Much of the damage to residential 
buildings and infrastructure in and around Christchurch city was caused by permanent ground damage including 
liquefaction. 

Remote sensing imagery provides information across a spatially widespread area to assess damage distribution 
following natural disasters. Satellite images (from the RapidEye and GeoEye-1 sensors) and aerial imagery, 
captured shortly after the February 2011 earthquake, showed liquefaction damage occurred over large areas of 
the Canterbury region. 

This paper’s main objective is to use different reflectance correction algorithms and test which provides the best 
results for classifying liquefaction. The study compares two reflectance correction models; the cosine of the solar 
zenith angle (COST) model (Chavez, 1996) and the atmospheric and terrain correction (ATCOR2) model 
(Richter, 1996) which calculates ground reflectance for a flat surface. The ATCOR2 model uses MODTRAN 
(moderate resolution atmospheric transmission) radiative transfer code (Berk et al. 1998) to calculate a broad 
range of predefined atmospheric correction functions stored as look-up tables (Richter, 1997). This is followed 
by a comparison of the results computed from supervised classification of images that were derived from 
different reflectance correction methods on RapidEye and GeoEye-1 imageries. 

Atmospheric correction is an important processing step that removes time- and scene-dependent effects from 
remotely sensed data (Mahiny & Turner, 2007) and extracts quantitative information accurately (Liang, 2001). 
Many studies (Gebreslasie et al., 2009; Mahiny & Turner, 2007; Wu et al., 2005) have made comparisons 
between different atmospheric correction methods that demonstrate the significance of atmospheric correction for 
improved vegetation classification and change detection from remotely sensed data. Remote sensing images have 
been widely used to detect Earthquake damages. Mitomi et al. (2002), Oommen et al. (2010), Ramakrishnan et 
al. (2006) and Yusuf et al. (2001) have worked on detecting liquefaction using medium resolution aerial and 
satellite images; however, the effect of atmospheric correction to improve liquefaction detection is not well 
established. 



2.0  MATERIALS AND STUDY AREA 

Images from RapidEye and GeoEye-1 satellites and from a digital camera were taken shortly after the February 
earthquake. The RapidEye image, which was taken on the 24th of February 2011, has a 5 meter spatial resolution 
in 5 spectral bands. The GeoEye-1 image was taken on the 27th of February 2011 and has a spatial resolution of 
1.65 meters in 4 spectral bands. The colour infrared (CIR) aerial image was taken on the 24th of February 2011 
and has a spatial resolution of 0.5 meters in 4 spectral bands. All three images cover a large area over the 
Canterbury region, from 43° 29’ 46.83” S and 172° 39’ 40.07” E in the north to 43° 31’ 38.51” S and 172° 39’ 
41.62” E in the south. The study area is located in the Avonside-Richmond area in 1-2 km north of Christchurch 
city (see Figure 1). 

The earthquake happened on the 22th of February 2011 reaching a magnitude of 6.2 on the Richter scale. In the 
Avonside-Richmond area, liquefaction was widespread, on meadow areas as well as on streets and parking lots 
(see Figure 1). The three different images show the same area in three different spatial resolutions. 

(a)  (b)  (c)  
Figure 1: (a) true colour RapidEye (5 m resolution), (b) true colour GeoEye-1 (1.65 m resolution), 

(c) true colour aerial photo (0.5 m resolution) 

3.0  DATA PROCESSING 

The data processing shown in figure 2 has been applied on these images. 

 

Figure 2: Flow chart of the data processing 

3.1 Pre-Processing 

On both satellite images, two different reflectance correction models were applied. The COST model converted 
image pixels first into the Top-of-Atmosphere (ToA) radiance and from there into the ToA reflectance using 
information from the metadata of these images. A fixed value of 1% of ToA radiance was used as the path 
radiance to remove the haze from these images (Chavez, 1988). The ATCOR method used a radiative transfer 
calculation based on the MODTRAN 5 code. 



Figure 3 and 4 show examples of the spectral response showing the average of 15 random pixels in the RapidEye 
and GeoEye-1 image using the COST and ATCOR method. The (a) profiles show that the spectral profiles are 
similar for vegetation but in the (b) profiles, the spectral profiles for liquefaction show the COST method values 
to be higher than the ATCOR values. 

After the conversion to reflectance, the Normalized Difference Vegetation Index (NDVI) and the Normalized 
Difference Water Index (NDWI) were calculated to remove potentially non-liquefaction pixels from the data. 
After masking out vegetation and water pixels, different band ratios were applied to remove as many pixels as 
possible to achieve an image which contains pixels having a spectral profile similar to the spectral profile of 
liquefaction as shown in figures 3 (b) and 4 (b). 

(a) (b)  

Figure 3: RapidEye mean spectral profiles of (a) vegetation and of (b) liquefaction.  

 

Figure 4 shows examples of the results in the GeoEye-1 image using COST and ATCOR methods. 

(a) (b)  
Figure 4: GeoEye-1 mean spectral profile of (a) vegetation and of (b) liquefaction 

3.2  Classification of RapidEye, GeoEye-1 and Aerial Data 

The classification of liquefaction is done by using the Minimum Distance supervised classification algorithm. 
The collected endmember spectra (consisting of about 15 pixels or more) such as different types of liquefaction 
as well as different urban types which are still left in the image were digitised directly from the image by hand 
digitising. These spectra were used as input for the classification. The resulting classes were manipulated using 
ENVI’s n-D Visualizer tool. 

4.0  RESULTS 

The Minimum Distance classification method was tested on the COST and ATCOR reflectance RapidEye 
images, the ATCOR reflectance GeoEye-1 image and the aerial image. Classification has not applied on the 
COST reflectance GeoEye-1 image for this study; this is because a fixed value used to correct the atmospheric 
scattered path radiance (haze) from each band of this particular image (due to the presence of cloud) showed 
inconsistent spectral signatures for the liquefaction profile when compared with the ATCOR data (see Figure 4 
(b)). The classification results from all images were then compared for accuracy. 

The supervised classification accuracies are presented in table 1. Field data recently collected for the liquefaction 
mapping were available to test the accuracy of image classification (Brackley, 2012). Comparison of the overall 
accuracy of the three images, computed from RapidEye and GeoEye-1 reflectance images as well as from the 



aerial image, show that the ATCOR model applied on the RapidEye image shows the best Overall Accuracy with 
72.47 %. 

Table 1: Comparative data of supervised classification accuracies for all three images 

Classified Images 
RapidEye GeoEye-1 CIR Aerial 

Image ATCOR COST ATCOR 

Producer's Accuracy (%) 

Liquefaction 82.02 72.50 61.84 33.00 

No Liquefaction 62.92 52.50 55.26 66.00 

User's Accuracy (%) 

Liquefaction 68.87 60.42 58.02 49.25 

No Liquefaction 77.78 65.63 59.15 59.62 

Overall Accuracy (%) 72.47 62.50 58.55 49.50 

There were similar reflectance signatures between liquefaction areas and some roofs and concrete surfaces. As a 
result there was partial success in eliminating non-liquefaction pixels from the data. Higher overall classification 
accuracies of RapidEye data were due to its higher spectral resolution, whereas higher spatial resolution images 
(GeoEye-1 and aerial) show lower classification success as there are more pixels having similar reflectance 
between liquefaction areas and roof/concrete surfaces. The figures 5-7 show the classification results of the same 
area at different spatial resolutions. 

In figure 5, the classification on the ATCOR reflectance image shows the area of liquefaction more accurately 
than the classification on the COST reflectance image, as there is a better distinction between liquefaction and 
non-liquefaction areas. 

 (a) (b) (c)  
Figure 5: (a) true colour RapidEye image, liquefaction is shown by the grey colour in the centre right of the 

image, (b) Minimum Distance classification after ATCOR reflectance correction, (c) Minimum Distance 
classification after COST reflectance correction (yellow: liquefaction, red: roof/concrete surfaces) 

 

The classification on GeoEye-1 ATCOR reflectance image in figure 6 (b) shows the liquefaction class less 
accurate compared to the RapidEye image. It is due to its low spectral resolution which leads to difficulties in 
classifying liquefaction and non-liquefaction pixels. 

 (a)  (b)  
Figure 6: (a) true colour GeoEye-1 image, (b) Minimum Distance classification after ATCOR reflectance 

correction (yellow: liquefaction, red: street, buildings).  



The classification of the CIR aerial image in figure 7 resolves liquefaction areas with more details compared to 
satellite images; this is because during the pre-processing fewer pixels were masked out thus leave behind many 
materials (such as roofs and roads) classified as liquefaction. This causes the low Overall Accuracy of 49.5 % 
(see Table 1) for the classification applied on the aerial image. 

 (a)  (b)  
Figure 7: (a) true colour CIR aerial image, (b) Minimum Distance classification 

(yellow: liquefaction, magenta: concrete, sea green: embankment, blue: grey roof) 
 

The classification applied on the COST reflectance corrected image shows lower overall accuracy than the 
classification applied on the ATCOR reflectance corrected images. This is because the COST method selected 
the lowest pixel values of each band automatically to remove the atmospheric haze from the data. The ATCOR 
method uses specific atmospheric and sensor geometry parameters to achieve a better reflectance conversion 
compared to the COST method. 

5.0 CONCLUSIONS 

The study used two different reflectance algorithms applied on data with different spatial and spectral resolution 
to detect and classify liquefaction. 

The Minimum Distance classification applied on the RapidEye ATCOR reflectance corrected image shows the 
highest Overall Accuracy with 72.47 %. The ATCOR method results proved more accurate than the COST 
method. 

The results show that it is difficult to get a precise classification of liquefaction in urban areas. The classification 
fails to distinguish in many places between liquefaction, roofs and concrete surfaces. As compared to previous 
studies (Oommen et al. and Ramakrishnan et al.), a low spectral resolution (i.e. lack of shortwave infrared band) 
of these images is also a limiting factor in detecting soil moisture/liquefaction. 

A possibility to improve the results would be to use LIDAR data to eliminate building structures. Further 
processing using object-based classification is another option to improve classification accuracy. 
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