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1.0 INTRODUCTION

The 2010 - 2012 Canterbury earthquake sequencedatdespread damage. Much of the damage to regilen
buildings and infrastructure in and around Christch city was caused by permanent ground damageding
liquefaction.

Remote sensing imagery provides information aceospatially widespread area to assess damagebdi&ini
following natural disasters. Satellite images (frtme RapidEye and GeoEye-1 sensors) and aerialeipag
captured shortly after the February 2011 earthqusthewed liquefaction damage occurred over largasaof
the Canterbury region.

This paper’s main objective is to use differentaetince correction algorithms and test which gtesithe best
results for classifying liquefaction. The study quares two reflectance correction models; the cosinbe solar
zenith angle (COST) model (Chavez, 1996) and timeogpheric and terrain correction (ATCOR2) model
(Richter, 1996) which calculates ground reflectafarea flat surface. The ATCOR2 model uses MODTRAN
(moderate resolution atmospheric transmission)ata@i transfer code (Berk et al. 1998) to calcukateroad
range of predefined atmospheric correction funstistored as look-up tables (Richter, 1997). Thi®liswed

by a comparison of the results computed from supedv classification of images that were derivedmfro
different reflectance correction methods on Rapal&yd GeoEye-1 imageries.

Atmospheric correction is an important processitep ghat removes time- and scene-dependent efiiexts
remotely sensed data (Mahiny & Turner, 2007) artdaets quantitative information accuratelyigng, 2001)
Many studies (Gebreslasie et al., 2009; Mahiny &nen, 2007; Wu et al.,, 2005) have made comparisons
between different atmospheric correction methods demonstrate the significance of atmosphericection for
improved vegetation classification and change dietedrom remotely sensed data. Remote sensingembgve
been widely used to detect Earthquake damagesniigbal. (2002), Oommen et al. (2010), Ramakrishea

al. (2006) and Yusuf et al. (2001) have worked etedting liquefaction using medium resolution degiad
satellite images; however, the effect of atmosghedrrection to improve liquefaction detection ist mvell
established.



2.0 MATERIALS AND STUDY AREA

Images from RapidEye and GeoEye-1 satellites an & digital camera were taken shortly after thier&rary
earthquake. The RapidEye image, which was takehe@g4th of February 2011, has a 5 meter spasalugon
in 5 spectral bands. The GeoEye-1 image was takehen27th of February 2011 and has a spatial ugsol of
1.65 meters in 4 spectral bands. The colour inff§€aR) aerial image was taken on the 24th of Faty2011
and has a spatial resolution of 0.5 meters in &tsplebands. All three images cover a large arear dhe
Canterbury region, from 43° 29’ 46.83” S and 172°£80.07” E in the north to 43° 31’ 38.51” S and2? B9’
41.62” E in the south. The study area is locatethénAvonside-Richmond area in 1-2 km north of €fchiurch
city (see Figure 1).

The earthquake happened on the 22th of February &&iching a magnitude of 6.2 on the Richter sdaléhe
Avonside-Richmond area, liquefaction was widespre@sdmeadow areas as well as on streets and padtsg
(see Figure 1). The three different images shove#ime area in three different spatial resolutions.
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dEye (5 m resolution), (b) te@our GeoEye-1 (1.65 m resolution),
(c) true colour aerial photo (0.5 m resolution)

3.0 DATA PROCESSING

The data processing shown in figure 2 has beerneabph these images.
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Figure 2: Flow chart of the data processing

3.1 Pre-Processing

On both satellite images, two different reflectacoerection models were applied. The COST modeledad
image pixels first into the Top-of-Atmosphere (Tordiance and from there into the ToA reflectansig
information from the metadata of these images. x&divalue of 1% of ToA radiance was used as thh pat
radiance to remove the haze from these images §2hd®88). The ATCOR method used a radiative tesinsf
calculation based on the MODTRAN 5 code.



Figure 3 and 4 show examples of the spectral regpshowing the average of 15 random pixels in dygidEye
and GeoEye-1 image using the COST and ATCOR mefhioe.(a) profiles show that the spectral profiles a
similar for vegetation but in the (b) profiles, thgectral profiles for liquefaction show the COS&thod values
to be higher than the ATCOR values.

After the conversion to reflectance, the NormaliZzifference Vegetation Index (NDVI) and the Norraeli
Difference Water Index (NDWI) were calculated toneve potentially non-liquefaction pixels from thatal.
After masking out vegetation and water pixels, etéiht band ratios were applied to remove as maxsipas
possible to achieve an image which contains pikeling a spectral profile similar to the spectredfife of
liquefaction as shown in figures 3 (b) and 4 (b).
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Figure 3: RapidEye mean spectral profiles of (a) vegetasiod of (b) liquefaction.

Figure 4 shows examples of the results in the GedEynage using COST and ATCOR methods.
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Figure 4: GeoEye-1 mean spectral profile of (a) vegetatiod ah(b) liquefaction

3.2 Classification of RapidEye, GeoEye-1 and Aeli®ata

The classification of liquefaction is done by usithg Minimum Distance supervised classificationoatym.

The collected endmember spectra (consisting of abdixels or more) such as different types ofidifaction
as well as different urban types which are still e the image were digitised directly from theage by hand
digitising. These spectra were used as input ferclassification. The resulting classes were mdaipd using
ENVI's n-D Visualizer tool.

4.0 RESULTS

The Minimum Distance classification method was @dsbn the COST and ATCOR reflectance RapidEye
images, the ATCOR reflectance GeoEye-1 image aadad#rial image. Classification has not applied foen t
COST reflectance GeoEye-1 image for this study ihibecause a fixed value used to correct the sthaic
scattered path radiance (haze) from each bandioptrticular image (due to the presence of claitjywed
inconsistent spectral signatures for the liquefacprofile when compared with the ATCOR data (sipife 4
(b)). The classification results from all imagesethen compared for accuracy.

The supervised classification accuracies are pteden table 1. Field data recently collected far liquefaction
mapping were available to test the accuracy of enagssification (Brackley, 2012). Comparison @& tverall
accuracy of the three images, computed from Ramdiyd GeoEye-1 reflectance images as well as fhem t



aerial image, show that the ATCOR model appliedhenRapidEye image shows the best Overall Accunatty
72.47 %.

Table 1: Comparative data of supervised classification aacies for all three images

3 RapidEye GeoEye-1 CIR Aerial
Classified Images

ATCOR COST ATCOR Image
Producer's Accuracy (%)
Liquefaction 82.02 72.50 61.84 33.00
No Liquefaction 62.92 52.50 55.26 66.00
User's Accuracy (%)
Liquefaction 68.87 60.42 58.02 49.25
No Liquefaction 77.78 65.63 59.15 59.62
Overall Accuracy (%) 72.47 62.50 58.55 49.50

There were similar reflectance signatures betwieprefaction areas and some roofs and concretecasfé\s a
result there was partial success in eliminating-liqurefaction pixels from the data. Higher overa#ssification
accuracies of RapidEye data were due to its highectral resolution, whereas higher spatial resolimages
(GeoEye-1 and aerial) show lower classificationcsss as there are more pixels having similar reffee
between liquefaction areas and roof/concrete sesfathe figures 5-7 show the classification rexflthe same
area at different spatial resolutions.

In figure 5, the classification on the ATCOR reflatce image shows the area of liquefaction morerately
than the classification on the COST reflectancegenas there is a better distinction between lagtédn and
non-liquefaction areas.
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Figure5: (a) true colour RapidEye image, liquefaction igwh by the grey colour in the centre right of the
image, (b) Minimum Distance classification after@0R reflectance correction, (c) Minimum Distance
classification after COST reflectance correctioeligw: liquefaction, red: roof/concrete surfaces)

The classification on GeoEye-1 ATCOR reflectancage in figure 6 (b) shows the liquefaction classsle
accurate compared to the RapidEye image. It istduts low spectral resolution which leads to diffities in
classifying liguefaction and non-liquefaction pel
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Figure6: (a) true colour GeoEye-1 image, (b) Minimum Distactassification after ATCOR reflectance
correction (yellow: liquefaction, red: street, bdiihgs).



The classification of the CIR aerial image in figuf resolves liquefaction areas with more detaitmpared to
satellite images; this is because during the poegssing fewer pixels were masked out thus leakiedenany
materials (such as roofs and roads) classifiedqagfaction. This causes the low Overall Accuraty®.5 %
(see Table 1) for the classification applied onabgal image.
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Figure 7: (a) true colour CIR aerial image, (b) Minimum Qiste classification
(yellow: liquefaction, magenta: concrete, sea gresmbankment, blue: grey roof)

The classification applied on the COST reflectanoerected image shows lower overall accuracy then t
classification applied on the ATCOR reflectancerected images. This is because the COST methodteele
the lowest pixel values of each band automatidallyemove the atmospheric haze from the data. TRé@R
method uses specific atmospheric and sensor gepmatameters to achieve a better reflectance csiorer
compared to the COST method.

5.0 CONCLUSIONS

The study used two different reflectance algorittapplied on data with different spatial and spécgsaolution
to detect and classify liquefaction.

The Minimum Distance classification applied on RepidEye ATCOR reflectance corrected image shoes th
highest Overall Accuracy with 72.47 %. The ATCORtimoel results proved more accurate than the COST
method.

The results show that it is difficult to get a geecclassification of liquefaction in urban are@ise classification
fails to distinguish in many places between liga&ém, roofs and concrete surfaces. As compargaréuious
studies (Oommen et al. and Ramakrishnan et dloyapectral resolution (i.e. lack of shortwaveraméd band)
of these images is also a limiting factor in detersoil moisture/liquefaction.

A possibility to improve the results would be toeusIDAR data to eliminate building structures. Mt
processing using object-based classification istermption to improve classification accuracy.
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