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We present a method for examining mortality as it is seen to run in
families, and lifestyle factors that are also seen to run in families, in
a subpopulation of the Beaver Dam Eye Study. We observe that
pairwise distance between death age in related persons is on
average less than pairwise distance in death age between random
pairs of unrelated persons. Our goal is to examine the hypothesis
that pairwise differences in lifestyle factors correlate with the
observed pairwise differences in death age that run in families.
Szekely and Rizzo [Szekely GJ, Rizzo ML (2009) Ann Appl Stat 3(4):
1236–1265] have recently developed a method called distance cor-
relation, which is suitable for this task with some enhancements.
We build a Smoothing Spline ANOVA (SS-ANOVA) model for pre-
dicting death age based on four major lifestyle factors generally
known to be related to mortality and four major diseases contrib-
uting to mortality, to develop a lifestyle mortality risk vector and
a disease mortality risk vector. We then examine to what extent
pairwise differences in these scores correlate with pairwise differ-
ences in mortality as they occur between family members and be-
tween unrelated persons. We find significant distance correlations
between death ages, lifestyle factors, and family relationships. Con-
sidering only sib pairs compared with unrelated persons, distance
correlation between siblings and mortality is, not surprisingly,
stronger than that between more distantly related family mem-
bers and mortality. The methodological approach here adapts to
exploring relationships betweenmultiple clusters of variables with
observable (real-valued) attributes, and other factors for which
only possibly nonmetric pairwise dissimilarities are observed.
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Multiple studies have reported that, collectively, lifestyle
factors, including smoking, low or high body mass index

(bmi), low educational attainment, and low socioeconomic status,
are associated with earlier mortality. Diseases, such as diabetes,
cardiovascular disease, cancer, and chronic kidney diseases, are
leading causes of death. Longevity is generally believed to run in
families. Furthermore, there is evidence showing that the lifestyle
factors all tend to run in families. The goal of this paper is to
capture the association of familial relationships, lifestyle factors,
diseases, and mortality. It is possible that some of the lifestyle
variables may be or turn out to be related to genetic factors.
Current research interest involves searches for “longevity genes,”
but this work is not related to that quest. We are not assessing to
what extent genetics is involved in longevity.
The Beaver Dam Eye Study (BDES) (1) is an ongoing pop-

ulation-based study of age-related ocular disorders. Subjects at
baseline, examined between 1988 and 1990, were a group of
4,926 people aged 43–86 years who lived in Beaver Dam, Wis-
consin. Many group members have relatives in the study, and
pedigree information was collected. Mortality information was
updated to March 2011. BDES provides an excellent opportunity
to attempt to examine and quantify the above associations.
A pair of landmark papers (2, 3) proposed the distance cor-

relation as a measurement of multivariate independence, and
others have recently built upon it (4–7). The method is extremely

general in that it is applicable to random vectors of arbitrary and
not necessarily equal dimension and only involves Euclidean
pairwise distance. If the two variables are sampled from a bi-
variate normal distribution, the distance correlation behaves very
much like Pearson’s correlation coefficient. Because only Eu-
clidean pairwise distances enter, the method may be applied to
inherently unobservable variables with only Euclidean pairwise
distances observable. The “genetic distances” defined on pairs of
persons representing their familial relationships are generally not
Euclidean. However, it is shown that the use of genetic dissimi-
larity in the distance correlation is still validated because the ge-
netic dissimilarity can be well approximated by Euclidean pairwise
distances obtained by embedding the subjects into Euclidean
spaces through regularized kernel estimation (RKE) (8, 9).
Smoothing Spline ANOVA (SS-ANOVA) models have a suc-

cessful history for modeling various aspects of BDES data; two
examples are refs. 10 and 11. In this study, we focus on modeling
the mortality (death ages) of the following form:

death agei = g0ðbaseline agei; genderiÞ
+ g1ðlifestyle factoriÞ + g2ðdiseaseiÞ;

where g0 is a term that involves fixed characteristics, baseline age
and gender, for the individuals, g1 is a term that includes only
lifestyle factors, and g2 is a term containing only disease varia-
bles, namely diabetes, cancer, cardiovascular disease, and
chronic kidney disease. In the paper, the fitted values of g1 and g2
are treated as scores for the individuals and to be used to assess
the association with familial relationships.

Pedigrees and Pedigree Dissimilarity
The genetic relationships between pedigree members can be
described by Malecot’s (12) kinship coefficient φ, which defines
a pedigree dissimilarity measure. The kinship coefficient φ be-
tween individuals i and j in the pedigree is defined as the prob-
ability that a randomly selected pair of alleles, one from each
individual, is identical by descent, that is, they are derived from
a common ancestor. For a parent–offspring pair, φij = 0.25 be-
cause there is a 50% chance that the allele inherited from the
parent is chosen at random for the offspring, and a 50% chance
that the same allele is chosen at random for the parent.

Pedigree Dissimilarity. The pedigree dissimilarity between indi-
viduals i and j is defined for this study as dij = 1 − 2φij, where φ is
the kinship coefficient. Thus, for i ≠ j, the pedigree dissimilarity
here falls in the interval

�
1
2; 1

�
. Note that Corrada Bravo et al. (9)
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define pedigree dissimilarity for that study as −log2(2φ), which
ranges from 1 to ∞ for i ≠ j, which is not appropriate for the way
we will be using pedigree dissimilarity.
In BDES, not all family members are included in the study and

not all of the subjects have pedigree records.

SS-ANOVA Models
SS-ANOVA models (13–15) estimate the responses yi, i = 1, . . .,
n to be a function of the covariates f(xi), by assuming that f
is a function in a reproducing kernel Hilbert space (RKHS)
of the form H = H0 ⊕ H1. H0 is a finite dimensional space
spanned by a set of functions {ϕ1, . . ., ϕm}, and H1 is an RKHS
induced by a given kernel function k(·, ·) with the property that
hkðxi; · Þ; kðxj; · ÞiH1

= kðxi; xjÞ. Thus, the function f has a semi-
parametric form of the following:

f ðxÞ=
Xm
j=1

djϕjðxÞ+ gðxÞ;

for some coefficients dj, where the functions ϕj’s are of para-
metric linear form and g ∈ H1. H1 is further decomposed by
assuming that it is the direct sum of multiple RKHSs. Hence, g ∈
H1 is defined to be the following:

gðxÞ=
X
α

gαðxαÞ+
X
α<β

gαβ
�
xα; xβ

�
+⋯;

where {gα} and {gαβ} satisfy side conditions that generalize the
standard ANOVA side conditions. Functions gα are the “main
effects” and gαβ are the “second-order interactions,” and so on. The
RKHS Hα is associated with each component in the above sum,
along with its corresponding kernel function kα. In this case, the
reproducing kernel function forH1 is defined to be the following:

kð · ; · Þ=
X
α

θαkαð · ; · Þ+
X
α<β

θαβkαβð · ; · Þ+⋯;

where the coefficients θ’s are tuning parameters that weigh the
relative importance of each term in the decomposition.
The SS-ANOVA estimates f given data {(xi, yi), i = 1, . . ., n} by

the solution of a penalized likelihood problem of the following
form:

min
f∈H

1
n

Xn
i=1

lðyi; f ðxiÞÞ+ Jλ;θð f Þ; [1]

where l(yi, f(xi)) = (yi − f(xi))
2 and

Jλ;θð f Þ= λ

"X
α

θ−1α kPα fk2Hα
+

X
α<β

θ−1αβ
��Pαβf

��2
Hαβ

+⋯

#
;

with Pα f the projection of f into RKHS Hα and λ a nonnegative
regularization parameter. The penalty Jλ,θ ( f) is a seminorm in
RKHS H and penalizes the complexity of f using the norm of
RKHS H1 to avoid overfitting f to the training data.
According to Kimeldorf and Wahba (16), the minimizer of the

problem in Eq. 1 has a finite representation taking the form of
the following:

f ð · Þ=
Xm
j=1

djϕjð · Þ+
Xn
i=1

cikðxi; · Þ;

where kP1fk2H1
= cTKc for kernel matrix K with Kij = k(xi, xj).

Therefore, for a given value of the regularization parameter λ,

the minimizer fλ can be estimated by solving the following convex
optimization problem:

min
c∈Rn ;d∈Rm

Xn
i=1

ðyi − f ðxiÞÞ2 + nλcTKc; [2]

where f = [ f(x1), . . ., f(xn)]
T = Td + Kc with Tij = ϕj(xi). The

hyperparameters, λ and θ’s, are to be chosen by the generalized
cross validation (GCV) (17, 18) method.

Distance Correlation
For a random sample (X, Y) = {(Xk, Yk): k = 1, . . ., n} of n in-
dependent and identically distributed random vectors (X, Y)
from the joint distribution of random vectors X in Rp and Y in
Rq, the Euclidean distance matrices (aij) = (jXi − Xjjp) and (bij) =
(jYi − Yjjq) are computed. Define the double centering distance
matrices as follows:

Aij = aij − ai:− a:j + a::; i; j= 1; . . . ; n;

where

ai: =
1
n

Xn
j=1

aij; a:j =
1
n

Xn
i=1

aij; a:: =
1
n2

Xn
i; j=1

aij;

similarly for Bij = bij − bi:− b:j + b::;  i; j= 1; . . . ; n:

Sample Distance Covariance. The sample distance covariance
Vn(X, Y) is defined by the following:

V2
nðX ;Y Þ= 1

n2
Xn
i; j=1

Aij Bij:

Sample Distance Correlation. The sample distance correlation
Rn(X, Y) is defined by the following:

R2
nðX ;Y Þ=

8>>><
>>>:

V2
nðX ;Y Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V2
nðXÞV2

nðY Þ
q ; V2

nðXÞV2
nðY Þ> 0;

0; V2
nðXÞV2

nðY Þ= 0

;

where the sample distance variance is defined by the following:

V2
n

�
X
�
=V2

n

�
X ;X

�
=

1
n2

Xn
i; j=1

A2
ij:

The nonnegativity of V2
n andR2

n is guaranteed (see ref. 3). The
theory in ref. 3 is based on dissimilarities being actual distances
between objects embedded in a Euclidean space, although it is
mentioned in the rejoinder to the discussion there that the
results hold in certain other metric spaces (see also ref. 7). The
pedigree dissimilarity (dij) cannot be considered as coming from
some metric space, however, because, at least in our study, it
does not satisfy the triangle inequality. However, we could still
treat the pedigree dissimilarity as though it were a distance,
because we will see that it can be well approximated by a Eu-
clidean distance obtained by RKE, which we discuss in the
next section.

Regularized Kernel Estimation
The RKE framework was introduced in ref. 8 as a robust method
for estimating dissimilarity measures between objects from noisy,
incomplete, inconsistent, and repetitious dissimilarity data. RKE
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is useful in settings where object classification or clustering is
desired but objects do not easily admit description by fixed-
length feature vectors, but instead, there is access to a source of
noisy and incomplete dissimilarity information between objects.
It estimates a symmetric positive semidefinite kernel matrix K,
which induces a real squared distance admitting of an inner
product d2ij =Kii +Kjj − 2Kij.
Assume dissimilarity information is given for a subset Ω of the� n
2

	
possible pairs occurring in a training set of n objects, with the

dissimilarity between objects i and j denoted as dij ∈ Ω. RKE
estimates an n × n symmetric positive semidefinite kernel matrix K
of size n such that the fitted squared distance between objects in-
duced by K, d̂

2
ij =Kii +Kjj − 2Kij, is as close as possible to the square

of the observed dissimilarities dij ∈ Ω. RKE solves the following
optimization problem with semidefinite constraints as follows:

min
k≽0

X
dij∈Ω

wij




d2ij − d̂
2
ij




+ λrketraceðKÞ: [3]

The parameter λrke ≥ 0 is a regularization parameter that
trades off fit of the dissimilarity data, as given by absolute de-
viation, and a penalty, trace(K), on the complexity of K. The trace
may be seen as a proxy for the rank of K. Thus, RKE is regu-
larized by penalizing high dimensionality of the space spanned
by K. RKE requires that Ω satisfies a connectivity constraint that
the undirected graph consisting of objects as nodes and edges
between them, such that an edge between nodes i and j is in-
cluded if dij ∈ Ω is connected. Additionally, optional weights wij
may be associated with each dij ∈ Ω. A method for choosing the
regularization parameter λrke is required. In this work, λrke is fixed
at 1. Unlike in many regularization models, results in the RKE
tend to be remarkably insensitive to λrke over a wide range of
values, as can be seen in Fig. 1 of ref. 8.
The solution to the RKE problem is a symmetric positive

semidefinite matrix K from which an embedding Z ∈ Rn×r in
r-dimensional Euclidean space is obtained by decomposing K
as K = ZZT with Z=ΓrΛ

1
2
r , where the n × r matrix Γr and the r × r

diagonal matrix Λr contains the r leading eigenvectors and ei-
genvalues of K, respectively. The ith row of Z is regarded as the
vector of “pseudo” coordinates z(i) for subject i. A method for
choosing r is required.
The fact that RKE operates on inconsistent dissimilarity data,

rather than distances, fits into pedigree studies significantly
where the distance correlation depends on Euclidean distances.
The pedigree dissimilarity defined above does not satisfy the
triangle inequality for general pedigrees and thus is not Euclid-
ean distance. The Euclidean distances induced by the embedding
resulting from RKE provides an approximation of the pedigree
dissimilarities in our case. This allows us to validate our result of
involving the nonmetric pedigree dissimilarity in distance cor-
relation by comparing with that obtained by using the embedded
Euclidean distances.

Beaver Dam Eye Study
The BDES is an ongoing population-based study of age-related
ocular disorders. Subjects at baseline, examined between 1988
and 1990, were a group of 4,926 people aged 43–86 years. Pedi-
gree information was available for 2,356 of the subjects. Although
we will use data only from the baseline study for our experiments,
5-, 10-, 15-, and 20-year follow-ups were also obtained. Familial
relationships of participants were ascertained and pedigrees of
different sizes were constructed for the subset of 1,004 subjects
who were dead before March 2011 with death ages ranging from
46 to 101 years.

Our goal is to use the data to study the association of familial
relationships, lifestyle factors, diseases, and mortality. The
strategy is to first estimate the effects of lifestyle factors and
diseases on mortality, i.e., death ages, based on the 1,004 subjects
using an SS-ANOVA model. The distance correlation is then
applied to capture the associations with the estimated effects for
a subgroup of 843 people coming from pedigrees containing 2 or
more members. This results in 222 pedigrees in the data set, with
sizes ranging from 2 to 23 subjects. Note that it is possible for two
persons in one pedigree to be genetically unrelated. They be-
come relatives because of their relationships with other members
in the pedigree. The pedigree dissimilarity for such a pair is 1 as
previously defined.
It is necessary to notice that the covariates can be continuous,

binary, and of different magnitude. In addition, the effects of the
variables may not be linear in mortality, in which case a large
pairwise distance of the covariates values may not result in a large
pairwise distance of the death ages. bmi is such an example in
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Fig. 1. f3(bmi) (flipped y axis) (Upper) and f2(edu) + f12(baseage, edu)
(Lower) are the fitted effects for bmi and education.
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that both underweight and obesity are unhealthy and risky to
longevity. In this case, the distance of bmi for two individuals, one
with low value and the other with high value, is quite large;
however, their death age distance may be small. Thus, instead of
the original covariates, the estimated effects are preferred in the
calculation of distance correlation because the fitted values are
naturally assigned with weights and transformations.
For the above purpose, we fit an SS-ANOVA model of the

following form:

deathage = μ + f1ðbaseageÞ + βgenderIfgender=Fg 
o
fixed

+ f2ðeduÞ + f12ðbaseage : eduÞ + f3ðbmiÞ
+ βsmokeIfsmoke=nog + βincIfinc>20Tg

�
lifestyle

+ βdiabetesIfdiabetes=nog + βcancerIfcancer=nog
+ βheartIfheart=nog + βkidneyIfkidney=nog

�
disease

with variables being described in Table 1 based on 1,004 people.
The terms in lines 1, 2 and 3, and 4 and 5 of the above equation
are the fixed characteristics, lifestyle factors, and disease varia-
bles, respectively. Functions f1, f2, and f3 are cubic splines, and f12
uses the tensor product construction. The remaining covariates
are unpenalized and modeled as linear terms with I{·} as indicator
functions. The fitted effects for edu and bmi are shown in Fig. 1.
The fitted effects of the linear terms are listed in Table 2.
Distance correlation, relying on pairwise distances, is the tool

for measuring the association among the lifestyle factors, disease
variables, mortality, and pedigree. The cohort was restricted to
the subgroup of 843 people coming from pedigrees with 2 or
more members. Up to now, the pedigree dissimilarities and Eu-
clidean pairwise death age distances are ready for the calculation
of the distance correlation. Lifestyle factors and disease variables
get involved as the form of lifestyle factor scores and disease
scores. The lifestyle factor score for an individual is the vector
of the fitted effects for smoke, bmi, edu, and inc. Similarly, the
disease score is defined to be the vector of the fitted effects for
the four disease variables. The Euclidean pairwise distances of
the lifestyle factor scores and disease scores are constructed
as the input information for lifestyle factors and disease varia-
bles in the distance correlation. Permutation tests are imple-
mented to obtain the p-values of the distance correlations. The
network in Fig. 2 summarizes the results. Both mortality and life-
style factors are associated with familial relationships significantly.
Heart disease and some cancers are known to run in families.
However, the relationship between pedigree and disease variables
in this part of the study is not significant at level 0.05. Included here
are some pairs of relatives as distant as second cousins, which may
be the cause of the weak signal. However, lifestyle factors, disease
variables, and mortality are closely associated with each other.

The theory of distance correlation is based on Euclidean
pairwise distance. However, three of the above six distance cor-
relations involve the non-Euclidean pedigree dissimilarity. The
strategy is to validate the results by showing that the pedigree
dissimilarity can be well approximated by Euclidean distances
through embedding the subjects in Euclidean spaces by RKE. It is
possible to establish the embedding effectively in the RKE
framework for a moderate sample size of subjects. However, it is
too time consuming to solve the RKE semidefinite problem with
the full dissimilarity information for 843 people in our case.
Alternatively, we break down the embedding into two steps.

The first step only takes care of the within-pedigree dissimilarity.
That is, we feed the familywise pedigree dissimilarities to RKE
family by family so that it embeds the subjects into Euclidean
spaces pedigree by pedigree. The kernel matrices obtained from
RKE are then truncated to those leading eigenvalues that ac-
count for 95% of the matrix trace to create the “pseudo”-attri-
bute embedding. The resulting familywise coordinates are put
together in a way that each pedigree is assigned its own subspace
that is orthogonal to the others. This ends up with a coordinate
matrix being a horizontal concatenation of the familywise coor-
dinates. The second step is to take into account of the out-
pedigree dissimilarity, which requires pedigree specific variables.

Table 1. Variable description in the SS-ANOVA model

Variable Units Description

deathage years Death age
baseage years Age at baseline
gender F/M Gender
edu years Highest year school/college completed
bmi kg/m2 Body mass index
smoke Yes/no History of smoking
inc Yes/no Household personal income > 20T
diabetes Yes/no History of diabetes
cancer Yes/no History of cancer
heart Yes/no History of cardiovascular disease
kidney Yes/no History of chronic kidney disease

Table 2. Fitted effects of linear terms in the
SS-ANOVA model

Linear term Fitted effect

Fixed characteristic
gender = F 1.141

Lifestyle Factors
smoke = no 1.349
inc > 20T 0.546

Diseases
diabetes = no 2.000
cancer = no 0.888
heart = no 1.131
kidney = no 1.303

T, Thousand.

Fig. 2. The network of lifestyle factors, disease variables, mortality, and
pedigree with distance correlations. The p-values obtained from permuta-
tion tests with 1,000 replicates are presented in parentheses. The significance
level is distinguished by color: blue for p-value < 0.001, purple for p-value in
(0.001, 0.05), and red for p-value > 0.05.
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We assign one extra dimension to the coordinate matrix for each
pedigree. The entries of this extra dimension are the pedigree-
specific variable for the family members and 0 for the rest of the
subjects. This leads to a coordinate matrix being a function of the
pedigree-specific variables. Thus, the augmented coordinate
matrix for the rth member in the pth pedigree takes the form of
(0, . . ., 0, vp, xpr1; . . . ; x

p
rq, 0, . . ., 0), where vp is the pedigree-spe-

cific variable for the pth pedigree and q is the dimension of the
subspace for the pth pedigree. The way to choose the pedigree-
specific variables is to maximize Pearson’s correlation between
the vector form of the double-centered pedigree dissimilarities
and the vector form of the Euclidean pairwise distances resulting
from the above coordinate matrix. The optimal value of Pear-
son’s correlation is 0.9907. Fig. 3 shows a comparison of the
embedded Euclidean pairwise distances and the pedigree dis-
similarities for a subset of 100 subjects. It turns out that the non-
Euclidean pedigree dissimilarities are well approximated by the
embedded Euclidean distances.
We could establish the distance correlations among the life-

style factors, disease variables, mortality, and pedigree based on
the embedded Euclidean pairwise distances. The results are

presented in Fig. 4, where the p-values are also obtained through
permutation tests with 1,000 replicates. Both the values of the
distance correlation and the p-values are similar to those from
the pedigree dissimilarity in Fig. 2. The embedded results are
slightly weaker than the original ones due to the shrinkage of
RKE by penalizing high dimensionality of the space spanned by
the kernel.
In addition to the study of all relatives, the analysis focusing on

the full siblings shows that the signal of running in families gets
stronger as the familial relationships become closer. The cohort
are further restricted to 462 subjects who had at least one full
sibling in the group of 843 people. To simplify the procedure, we
change the pedigree dissimilarity for the full-sibling pairs, which
is shown to be Euclidean. The pedigree dissimilarity is assigned to
be 0 for two full siblings and 1 for two unrelated persons. Suppose
the subjects who are full siblings to each other are collected to
different clusters and there are in total m such clusters. The
members in the ith full-sibling cluster are assigned the coordi-
nates of length m,

�
0; . . . ; 0; 1ffiffi

2
p ; 0; . . . ; 0

�
, where the ith element

is 1ffiffi
2

p and the rest are 0. The corresponding Euclidean pairwise
distances are unchanged with the above pedigree dissimilarity
being defined for full siblings. The distance correlations and p-
values are summarized in Fig. 5 for the full-siblings study. The
three distance correlation values and related p-values involving
familial relationships are strengthened compared with the all-
relatives study, indicating that the signal of running in families is
getting stronger as the subjects are closer. The other three
associations are weaker due to the shrinkage of the sample size.
For the full-siblings study, the pairwise distances for mortality

could be separated into two groups, group 0 collecting all of the
pairwise death age distances of full-sibling pairs and group 1 for
the unrelated pairs. This allows us to compare the difference be-
tween the mean of group 1 and the mean of group 0 and construct
95% bootstrap percentile confidence interval (CI) for the test
statistic with 10,000 replicates. In the case of mortality, the average
death age distance of full-sibling pairs is 1.571 years less compared
with that of two unrelated persons in the cohort. The corre-
sponding 95% bootstrap percentile CI for the difference between
the mean of group 1 and the mean of group 0 is (0.919, 2.211). We
could establish the analysis for the pairwise distances of lifestyle
factors and disease variables in the same fashion. The observed
test statistics and corresponding CIs are summarized in Table 3.

Fig. 3. The comparison of the Euclidean pairwise distances by embedding
and the pedigree dissimilarity for a subset of 100 subjects.

Fig. 4. The network of lifestyle factors, disease variables, mortality, and
pedigree with distance correlations using the embedded Euclidean dis-
tances. The p-values obtained from permutation tests with 1,000 replicates
are presented in parentheses.
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All of the threemean differences between group 1 and group 0 are
positive and the CIs do not overlap 0, which means that the full
siblings are significantly closer than unrelated people in terms of
death age distances, lifestyle factor scores, and disease scores.

Discussion
TheBDES, which began collecting data from a population aged 43
and older in 1988, and continues to the present, provides an ideal
opportunity to apply some emerging statistical tools to examine
questions regarding relationships between various kinds of in-
formation collected at the start of the study andmortality. Because
the study contains a large number of people with relatives in the
study, this provided an ideal opportunity to examine the correla-
tions between familial relationships, lifestyle factors, disease, and
mortality. The methodological approach we have proposed here is
easily adaptable to other studies for exploring relationships be-
tween attributes of subjects with multiple clusters of observable
attributes, simultaneously with other factors for which pairwise
dissimilarities are observed. Some caveats with respect to the
mortality data here are worth mentioning. The mortality data are
censored at both ends, that is, we do not see cohorts of the oldest
subjects who have died before the study began, and, at the other
end, we have access to death ages only to those in the study who
have died by March 2011. The left censoring is, to some extent,

accounted for in the presence of baseage in the SS-ANOVAmodel
for deathage—note that there is an interaction term for baseage
and edu because it was observed that the oldest cohort in the study
clearly had fewer years of formal education than younger mem-
bers. This study does not use the subjects who would otherwise be
included who do not have a recorded death age before March
2011. This is, of course, a possible source of bias in the con-
clusions, and we hope to continue following this group as time
goes on. Further research concerning residual lifetimes is ongo-
ing, and the results may be able to use in addition the partial
information contributed by subjects that are known to be alive
past a particular time. Other information that is not used here
includes attributes collected in the follow-up examinations. We
cannot in this study exclude possible genetic effects behind the
lifestyle factors—we only observe that our lifestyle factors sig-
nificantly run in families; exactly why is beyond the scope of this
project. We have shown that pairwise differences in lifestyle
factors that run in families correlate well with pairwise differ-
ences in death age that also run in families, partially accounting
for the familial death age effect. This leads to new questions to be
asked about the complex relationships between genetics, family
structure, lifestyle factors, and other variables. We provide here
an overall methodological approach that shows promise to help
in answering these questions.

Materials and Methods
The package gss in R (www.r-project.org) by Chong Gu (Purdue University,
West Lafayette, IN) was used for the SS-ANOVA calculations. The R package
energy by Gabor Szekely (National Science Foundation, Arlington, VA) was
used for the dcor calculations. Further information regarding RKE calcu-
lations can be found in ref. 8, and MATLAB code found in Appendix B of the
thesis (19).

ACKNOWLEDGMENTS. G.W. acknowledges mathematical and editorial help
from David Callan. This work was partially supported by National Institutes
of Health (NIH) Grant EY09946 and National Science Foundation Grant DMS-
0906818 (to J.K. and G.W.), NIH Grant EY06594 (to R.K., K.E.L., and B.E.K.K.),
and Research to Prevent Blindness (New York) Senior Scientist–Investigator
Awards (to R.K. and B.E.K.K).

1. Klein R, Klein BEK, Linton KL, De Mets DL (1991) The Beaver Dam eye study: Visual
acuity. Ophthalmology 98(8):1310–1315.

2. Szekely G, Rizzo M, Bakirov N (2007) Measuring and testing independence by cor-
relation of distances. Ann Stat 35(6):2769–2794.

3. Szekely G, Rizzo M (2009) Brownian distance covariance. Ann Appl Stat 3(4):1236–1265.
4. Nott D, Tran M, Kohn R (2012) Simultaneous variable selection and component se-

lection for regression density estimation with mixtures of heteroscedastic experts.
Electron J Stat 6:1170–1199.

5. Li R, ZhongW, Zhu L (2012) Feature screening via distance correlation. J Am Stat Assoc
107(499):1129–1139.

6. Khoshgnauz E (2012) Learning markov network structure using brownian distance
covariance. arXiv:1206.6361v1.

7. Lyons R (2011) Distance covariance in metric spaces. arXiv:1106.5758v3.
8. Lu F, Keles S, Wright S, Wahba G (2005) A framework for kernel regularization with

application to protein clustering. Proc Natl Acad Sci USA 102(35):12332–12337.
9. Corrada Bravo H, et al. (2009) Examining the relative influence of familial, genetic and

environmental covariate information in flexible risk models. Proc Natl Acad Sci USA
106(20):8128–8133.

10. Wahba G, Wang Y, Gu C, Klein R, Klein B (1995) Smoothing spline ANOVA for ex-
ponential families, with application to the Wisconsin Epidemiological Study of Di-
abetic Retinopathy. Ann Stat 23(6):1865–1895.

11. Gao F, Wahba G, Klein R, Klein B (2001) Smoothing spline ANOVA for multivariate

Bernoulli observations, with applications to ophthalmology data, with discussion.

J Am Stat Assoc 96(453):127–160.
12. Malecot G (1948) Les Mathematiques de L’Heridite (Masson et Cie, Paris).
13. Wahba G (1990) Spline Models for Observational Data, CBMS-NSF Regional Confer-

ence Series in Applied Mathematics, (Society for Industrial and Applied Mathematics,

Philadelphia), Vol 59.
14. Gu C (2002) Smoothing Spline ANOVA Models (Springer, New York).
15. Wang Y (2011) Smoothing Splines: Methods and Applications, Monographs on Sta-

tistics and Applied Probability. (Chapman and Hall/CRC, Boca Raton, FL), Vol 121.
16. Kimeldorf G, Wahba G (1971) Some results on Tchebycheffian spline functions. J Math

Anal Appl 33(1):82–95.
17. Golub G, Heath M, Wahba G (1979) Generalized cross validation as a method for

choosing a good ridge parameter. Technometrics 21(2):215–224.
18. Craven P, Wahba G (1979) Smoothing noisy data with spline functions: Estimating the

correct degree of smoothing by the method of generalized cross-validation. Numer

Math 31:377–403.
19. Lu F (2006) Regularized nonparametric logistic regression and kernel regularization.

PhD thesis (Department of Statistics, Univ of Wisconsin, Madison, WI). Technical

Report 1124.

Table 3. Bootstrap percentile CIs for the mean differences in the
full-siblings study

Variable Mortality Lifestyle Disease

Group 0 mean 8.091 1.405 1.119
Group 1 mean 9.662 1.654 1.229
Difference 1.571 0.249 0.110
95% CI (0.919, 2.211) (0.167, 0.331) (0.020, 0.202)

Fig. 5. The distance correlations for full-siblings study. The p-values
obtained from permutation tests with 1,000 replicates are presented in pa-
rentheses.
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