
Using Distributed Cognition Theory to Analyze
Collaborative Computer Science Learning

Elise Deitrick♥, R. Benjamin Shapiro†♥, Matthew P. Ahrens♥,
Rebecca Fiebrink♣, Paul D. Lehrman♥, & Saad Farooq♥

♥ Tufts University ♣ Goldsmiths, University of London
† r@benshapi.ro

ABSTRACT

Research on students’ learning in computing typically inves-
tigates how to enable individuals to develop concepts and
skills, yet many forms of computing education, from peer
instruction to robotics competitions, involve group work in
which understanding may not be entirely locatable within
individuals’ minds. We need theories and methods that al-
low us to understand learning in cognitive systems: cultur-
ally and historically situated groups of students, teachers,
and tools. Accordingly, we draw on Hutchins’ Distributed
Cognition [16] theory to present a qualitative case study
analysis of interaction and learning within a small group of
middle school students programming computer music. Our
analysis shows how a system of students, teachers, and tools,
working in a music classroom, is able to accomplish con-
ceptually demanding computer music programming. We
show how the system does this by 1) collectively drawing
on individuals’ knowledge, 2) using the physical and virtual
affordances of different tools to organize work, externalize
knowledge, and create new demands for problem solving,
and 3) reconfiguring relationships between individuals and
tools over time as the focus of problem solving changes. We
discuss the implications of this perspective for research on
teaching, learning and assessment in computing.

Keywords

Learning, Research Methods, Music

1. INTRODUCTION
Nearly thirty years ago, Pea, Soloway, and Spohrer [24] ar-

gued that becoming a programmer requires developing new
kinds of knowledge. They wrote: “For programming, as in
other domains from mathematics to the physical and engi-
neering sciences, students are engaged through their learning
activities in actively building a knowledge system of con-
cepts and procedural skills.” This perspective suggests a
need to develop “characterization[s] of a student’s current
understanding in terms of the knowledge he or she is utilizing

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

ICER ’15 August 9 - 13,2015 Omaha, NE, USA

Copyright is held by the authors. Publication rights licensed to ACM.

ACM 978-1-4503-3630-7/15/08 ...$15.00.

http://dx.doi.org/10.1145/2787622.2787715.

to make sense of the problem solving activities in computer
programming” (ibid.). But all of these years later, we still
know relatively little about how learners develop knowledge
in computing, especially in group work.

Researchers have developed numerous approaches to study-
ing computer science learning. One overarching approach
has been to mine student code, including logs of changes
in students’ code over time. Such work includes charting
changes in students’ use of language constructs and prac-
tices of recycling code from their own or others’ projects [7].
Others have used students’ code to investigate how students
transfer program design patterns from game programming
to making science simulations [3]. And still others have used
time-series records of students’ code to find “sink states”
where students seem to be stuck [5]. Analysis of massive
amounts of BlueJ data permitted researchers to identify mis-
matches between teachers’ perceptions of common student
needs and students’ actual needs [9].

But investigators have not limited themselves to analyses
of code alone, applying interview and think-aloud methods
wherein students explain their code to researchers or to peers
as they author, debug, use, or retrospectively discuss it [20,
10, 19]. Analysts of students’ computational thinking have
looked at discourse in small groups and within whole class-
room conversations [30]. In most of this work, the unit of
analysis has been the individual student or the individual
student’s idea: how a student’s utterances (verbal or tex-
tual) represent particular disciplinary (e.g., computational,
biological, or physical) ideas.

But shifts in how CS is learned make this individual frame
problematic. Computer science education is increasingly
collaborative, employing approaches like pair programming
[22], peer teaching [25], and decomposition of projects into
pieces to be done by individuals and then stitched together
[13]. These structures mirror those found in industrial soft-
ware development, and they can be quite effective at im-
proving learning and retention [26]. However, there is lit-
tle published work describing how these small groups solve
problems and the processes through which participants de-
velop computational thinking and programming skills over
time. Moreover, assessing what students can do individu-
ally does not necessarily predict all that a team made up
of those same individuals can accomplish, or what they can
learn from one another. Teams may be able to accomplish
more than the sum of their individual members’ skills would
suggest, but they may also get bogged down in group dy-
namics that hamper their capabilities. Further, we should
not take for granted that groups of youth learning together

will all emerge from their groupwork with identical under-
standings [28]; different group members may participate in
projects in different ways, work on different pieces of overall
problems, and have different goals for their own skill devel-
opment. As we as a field continue to adopt collaborative
learning, we need theories and methods that the richness of
what happens in student groups. Specifically: We need re-
search on the ways in which groups work together so that
we can get to the process of learning: the micro-genesis of
students’ computer science thinking, at both the individual
and the collective levels.

2. DEVELOPING AND APPLYING RELE-

VANT THEORY
Much Computing Education Research (CER) links ped-

agogies (or pedagogical interventions) to outcomes, but does
not sufficiently explain why— i.e., through what mechanisms,
and with what potential limitation—those outcomes are
achieved. Why questions raise all manner of theoretical
and methodological questions for CER researchers, who cur-
rently operate from a wide variety of perspectives [21, 32].

Studying group interactions in CS learning environments
is a potent opportunity to adapt, apply, and refine theo-
ries of learning from the other fields into CER. There are
many possible ways to do this: Some theoretical perspec-
tives on group work give primacy to questions about cog-
nition, such as about how disciplinary ideas are conceptu-
alized. For example, discourse analysis of student group
talk can reveal subtle discursive (e.g., metaphorical) pro-
cesses through which members of groups can converge on
shared understandings [28]. But conceptual development is
not the only possible focus for research. Questioning power
and equity within groups orients us to look at which group
members hold disproportionate sway over joint activity, and
the mechanisms through which this power is constructed,
wielded, and perpetuated. For example, one inquiry into the
distribution, content, and positioning of talk within groups
of elementary students learning computer science found that
even when a group looked equitable in terms of how much
different group members were talking, they were quite in-
equitable at the level of peer perceptions of computing com-
petence [29]. These dynamics can replicate existing societal
inequalities [1] and may be difficult to intervene in, even
given explicit role assignments [34]. Finally, social network
analyses, drawing on the evolution of code similarity across
the classroom, can enable insights into how social dynamics
enable knowledge flow and co-construction in collaboration
and competition [4].

2.1 Theories of Cognition
Most research on cognition in computing (and STEM gen-

erally), even research that attends to social dynamics in
learning, ultimately focuses on how individuals develop com-
putational ideas. As we shall now explain, this stance is
deeply problematic, and new theories that adopt distributed,
social, and material definitions for cognition are necessary
to account for the richness of how learning actually happens.
The current ubiquity of mentalist (i.e., focused on individual
minds) approaches to understanding learning is unsurpris-
ing, as thinking and learning have historically been under-
stood as things that individuals do. But social [33], situ-
ated [2, 12, 18], and cultural [11, 27] understandings of cog-

nition and learning challenge this tradition. They suggest
that human activities can best be understood as culturally-
and historically-situated, technologically-mediated, socially-
enacted processes. Knowledge development, in this view, is
intrinsically linked to social context, and research on learn-
ing that strips away the contextuality of activity is incom-
patible with socio-cultural theories of learning [8]. This is
not merely a theoretical concern: a century of research on
learning has shown that it is extremely difficult for learners
to transfer knowledge from one context to another [23, 6].

One reason for this is that different conditions (settings,
problems, partnerships) can activate different knowledge in
learners’ minds; learners frequently develop and demonstrate
different, even contradictory, ideas about the world, and
which ideas are operational at any moment is highly con-
text dependent [31]. Attempts to generalize from data borne
from collaborative interaction to claims about students’ de-
contextualized and individualized knowledge are, therefore,
neither valid nor practical. Instead, the CER community
must adapt and develop theories and methods for studying
students’ groupwork as activities within which functional
roles and conceptual development may be distributed across
the group, and in which we may not be able to locate know-
ing in individuals alone, but in the group (and its setting)
as a whole system.

The term cognition traditionally refers to the brain’s mech-
anisms for information processing, error correction, memory,
perception, and communication. However, research on situ-
ated, embodied, and social cognition challenges this model,
highlighting ways in which real-world cognition cannot be
easily located solely within the skull. Consider Lave’s clas-
sic example of The Cottage Cheese Problem [18]: “Dieters
were asked to prepare their lunch to meet specifications laid
out by the observer. In this case, they were to fix a serving
of cottage cheese, supposing that the amount allotted for the
meal was three-quarters of the two-thirds cup the program
allowed. The problem solver began the task muttering that
he had taken a calculus course in college. Then after a pause
he suddenly announced that he had ‘got it!’ He filled a mea-
suring cup two-thirds full of cottage cheese, dumped it out
on a cutting board, patted it into a circle, marked a cross
on it, scooped away one quadrant, and served the rest.”

An alternative method to solving this problem is to mul-
tiply 2/3 by 3/4 to find that the answer is 1/2, and then
to locate a suitable measuring cup. Were the dieter doing
this work in a mathematics classroom where there is no cot-
tage cheese, measuring cup, or cutting board, this would
likely have been the preferred problem solving approach.
But the physicality of the materials makes another solu-
tion approach ready-to-hand [14], one in which the cognition
happens in the interaction between the dieter and the phys-
ical materials. The mathematical result is the same but the
means—distributed across dieter, cheese, cup, and board,
and no longer purely symbolic— is quite different. Theories
of embodied and social cognition provide a framework within
which we can analyze the multi-facetedness of the dieter’s
actual work. It isn’t mental work alone, and any definition
of cognition that ignores the situated, material, embodied
character of the work is, therefore, necessarily ill-fitting to
actual everyday cognition. Instead, to better “carve nature
at its joints,” (as Plato put it) we must bring setting, body,
tools, and culture into our definition—and our empirical
study—of cognition, treating all of these constituents of ac-

tivity as just as crucial to cognitive accomplishment as what
happens inside the head.
Distributed Cognition [16] (DCOG) theory generalizes
this perspective on real-world cognition, arguing that all of
the cognitive functions (e.g., memory) that have historically
been analytically located in the head can also be seen in
the emergent properties of interactions between people and
tools in culturally- and historically-produced settings. In
proposing a framework for studying“Cognition in the Wild,”
Distributed Cognition theorists highlight several key aspects
of cognitive systems that researchers should attend to [15]:

• The distribution of cognitive processes across social
groups, including ongoing redistribution of activity to
balance cognitive load.

• That culture intimately shapes cognition by offering
tools, settings, and social norms through which to work
or through which work can break down.

• Effortful coordination between internal (to the head)
and external (tools and environment) structure, in-
cluding through the use of the body of the problem-
solver.

• The event-driven path dependence of cognition, where
“the products of earlier events can transform the na-
ture of later events.”

DCOG has many strengths over traditional approaches to
understanding cognition. Perhaps most powerful is its abil-
ity to account how a diversity of tools and representations
are key elements in socio-technical systems of problem-solving;
specifically, that external tools and representations are not
just objects used by people, but can do cognitive or social
work, such as transforming one kind of information into an-
other or prompting a group to talk about their knowledge in
particular ways. DCOG challenges researchers to take care-
ful account of how individuals interact with one another,
tools, and setting, and to observe the ways in which those
interactions produce the cognitive functions of information
processing, memory, sensing, error correction, etc.

In this view, learning is no longer just change in indi-
viduals’ conceptual models (a constructivist take on what
learning is) or behavior (a behaviorist take), but also in-
cludes changes in the relationships between individuals and
in their individual and joint relations to tools and settings,
which can also be modified over time. For example, in-
troducing a new tool (say, a slide rule or a computer) to
an engineering team that previously had been required to
do mental or paper-based calculations is a form of learn-
ing: the team becomes able to do existing work faster and
possibly also becomes able to take on newer, harder prob-
lems. The group has learned, but that learning cannot be
fully located in any of the individuals alone, nor in the in-
dividuals without their tools (who possibly might only be
able demonstrate knowledge through the use of the tools).
Rather, the learning consists in how their emergent system
of interaction reconfigures itself to solve problems in new
ways, such as by re-distributing cognitive load onto tools.
Using DCOG in the analysis of learning can offer insights
into how activity (including learning) happens that are not
possible within the traditional cognition-is-inside-the-head
paradigm. To study learning through the paradigm of clas-
sical cognition is necessarily to devalue the many nuanced
ways in which real-world knowledge and real-world learning
is intimately bound to social and material context. Instead,

DCOG offers access to the social, material, cultural, embod-
ied, and mental richness of activity and learning.

3. CASE STUDY
In order to illustrate the affordances of DCOG for analyz-

ing collaborative CS learning, we now present a qualitative
case study analysis of one group of youth programming a
computer music system. As we shall show, DCOG theory
enables us to richly analyze how that group works and learns,
including understanding the specific student knowledge and
tool design weaknesses that cause a breakdown within the
group work to occur, and to carefully understand the influ-
ence of a teacher’s intervention when the breakdown occurs.

3.1 Context
The example presented here is a few brief minutes of stu-

dent group work that occurred within a computer music
summer camp that we conducted in Summer 2014. We chose
this example because of its richness as a case of students’
prior knowledge and tool design decisions shaping learning,
though many other comparably rich examples exist within
our data set (described below). We present it here not so
much as a characterization of what all students’ participa-
tion in the summer camp was like, but, rather, to show how
DCOG offers a framework to understand learning in collab-
orative CS group work.

The summer camp was a research vehicle for us to inves-
tigate how computer music can be a productive medium for
engaging under-represented populations of students in par-
allel and distributed computing through designing, building,
programming, and performing with tangible computer mu-
sic instruments. We hosted the camp at a community center
in a lower/mixed socio-economic area of a large Northeast
U.S. city. The camp was two weeks (9 days) long, and met
for 3 hours in the morning each day. Fourteen rising sixth-
and seventh-grade students participated, of whom 3 were
girls. Only 12 youth consented to participate in data col-
lection. All students were African-American and/or Latino.
All camp activities occurred in the music room of the com-
munity center, which was well-appointed with musical in-
struments (a piano, guitars, drums, and DJ equipment).
At least four members of our research team were always
present in the room and available to students for help on
their projects.

Students in the camp used a prototype computer music
tool called BlockyTalky. BlockyTalky runs on small physi-
cal computing devices, called BlockyTalky Units or BTUs.
BTUs can be hooked up to various sensors, and they have
holes to mate with LEGO bricks. This enables users to
create their own prototype tangible computer music input
devices. Each BTU runs a web server that hosts a graphical
blocks-based programming interface for musical program-
ming. The BlockyTalky language has music-specific blocks,
such as a block to create rhythmic phrases and another to
define melodic phrases. Melodic phrases are specified by
stringing together blocks that take two parameters each: the
first parameter is how long a note should play (e.g., a quarter
note) and the second is what the pitch should be, specified
as a note letter and the octave to play it in. For example,
C4 is the note middle-C, while C5 is the C one octave above.

3.2 Data set
All camp sessions were recorded using video cameras placed

across the space, creating about 215 hours of video data; to
maximize audio quality every participant wore a wireless
microphone. The cameras were positioned to capture maxi-
mum group activity around the table the group was working
on. However, students sometimes knocked these cameras out
of alignment. The audio/video data presented in this paper
were collected early in the second day of the camp.

3.3 Prelude
Our camp curriculum dedicated the first week of the camp

to enabling youth to learn their way around BlockyTalky by
modifying and creating instruments. This was intended to
prepare students for the second week’s goal: musical perfor-
mances using instruments of the students’ own making.

During Day 1 of the camp, students clapped out and
drew their own representations of rhythms before inputting
their patterns into a web-based drum machine. The data
we present here were collected early in Day 2 and revolve
around a pair of participants.

Due to the novelty of our system and the students’ limited
computational and musical backgrounds, we began Day 2 by
offering students an assortment of pre-made BlockyTalky
instruments to play with and then modify. We expected
students to begin creating their own instruments on Day 3,
though some students had modified the pre-built projects
beyond recognition by the end of Day 2! On Day 2 in par-
ticular, we hoped to see students begin to understand the
idea of sequencing [17] as it cut across music and compu-
tation. In music, sequencing refers to defining a pattern of
specific sounds to occur at specific times (e.g., defining a
sequence of notes to create a melody). Computationally, we
can understand this as a program that executes an ordered
sequence of instructions, each separated by a specific length
of time. In BlockyTalky, these two ideas of sequencing are
complementary and both are needed to program a melody
or rhythm.

Chris and Nathan began Day 2 by programming and play-
ing music on a pre-built drum instrument for about 30 min-
utes before switching to a different pre-built unit that used
a light sensor’s detection of changing color values to trigger
a melody. Soon after, the boys shifted focus to building a
device to play a melody of their own choosing. The process
through which they worked toward this goal is the focus of
our case study. As we will show, the boys worked together
with each other, BlockyTalky, a guitar, and a teacher’s help
as part of a continually adapting distributed cognition sys-
tem.

3.4 Phase 1: Choosing what to program
In the first phase of the episode, a pair of students, Nathan

and Chris, are the central actors in a distributed cognition
system which makes a collective decision about what song to
program. The system not only includes the pair of students,
but also elements of the setting (guitars within easy reach),
and a shared history of the boys’ prior participation in a
music camp at the community center together (including a
repertoire of songs both boys know how to play on guitar).
At the end of this phase, the system will have reached a
decision about what to program.

This episode starts with Jake, an undergraduate facilita-
tor from Tufts University, encouraging Chris and Nathan to
modify the pre-built project. Jake then explains briefly how
the existing code works.

[0:16] Jake Do you guys want to make your own song to
play?

[0:19] Nathan Yeah
[0:19] Jake Alright, so have you guys played with these blocks

at all yet?
[0:22] Nathan Not yet
[0:24] Jake Alright, let’s stop. So basically what this does is

ummm it basically just plays all these notes in order
[0:38] Nathan In order, okay
[0:40] Jake And then this block says on the next beat start

looping so basically it just plays this string of notes over
and over and over and you can choose

Jake then explains that every note in BlockyTalky needs a
pitch and a duration. This will become relevant later when
the system’s demands for this information lead the boys to
recognize a gap between their own knowledge and the sys-
tem’s requirements.

[0:54] Jake But basically you choose the length of how long
you want the note to play here

[1:08] Nathan Ok
[1:08] Jake And then you choose the note itself right here

With this information in mind, the boys discuss how they
want to modify the pre-built unit.

[1:24] Nathan Ok. I have an idea. Maybe if we look up
the—

[1:28] Chris I know what we can do!
[1:29] Nathan We could look up the notes for a song
[1:31] Jake Right
[1:32] Nathan Yeah, let’s look up the notes for a song
[1:32] Chris No no no we could do one of the songs we

learned on guitar
[1:37] Nathan Smoke on the Water, yeah!
[1:44] Nathan *typing* smoke
[1:49] Chris We already know the notes for that
[1:52] Nathan We don’t know how long to play them for

Nathan initially proposes ([1:24] and [1:29]) to look up the
notes for a song. Chris makes a counter proposal— that they
program a song they already know on the guitar ([1:32]).
These seem like two mutually exclusive proposals but the
boys do not see them that way. Nathan proposes a song
that fits Chris’s criteria of a song they know how to play on
the guitar, Smoke on the Water, but then immediately pro-
ceeds to search for the notes on the computer. Chris protests
this action by stating that they already know the notes for
the song. Nathan follows up with the fact that they know
the pitches of the notes, but they don’t know the durations,
essential details of programming notes in BlockyTalky that
Jake mentioned earlier ([0:54]). This nuance reflects a dif-
ference in the kind of information that can be produced and
processed by the different kinds of actors in the distributed
cognition system at work here. While a beginning musi-
cian can know how to play a song in a rough sense (first
put your fingers here, then put your fingers there...), these
kinds of performances tend to get the sequence of pitches
right but not the timing. It takes more guitar practice than
these boys have had to be able to fluidly move between fin-
ger and hand positions at the proper tempo. In contrast,
BlockyTalky demands more precise information, both pitch
and timing. The boys have a way to produce the pitches

but do not know the timing. As we see next, Nathan seems
to view the mismatch between what they know and what
BlockyTalky requires as problematic, while Chris does not.
A negotiation now ensues about whether they need to know
note durations or not. As this begins, Nathan retrieves a
second computer to look up sheet music.

[3:23] Chris Nathan, we don’t know how ... we don’t have
to know how long to play to—play it for

[3:28] Nathan I know, that’s why we have to look it up
though

[3:29] Chris No, we already know how long to play it
[3:35] NathanWe don’t know exactly one sixth or one fourth

of a note. Like, do you know that? Do you know how
long— like do you see right here? how long to play it for.
Like one sixteenth note of note C5, we don’t know how
long to play it for. We know the notes, yeah

[3:50] Chris We just play one note. We don’t have to play
part of the note. We can play the whole thing.

Chris still disbelieves that they need to know how long to
play each note, but Nathan insists that they do. We inter-
pret Chris’s remark at [3:50] as a proposal that they not
worry about duration of the notes and that they should just
set them all to whole notes. Nathan does not acknowledge
this proposal and continues searching on the computer for
sheet music with Jake’s help. He finds guitar tablature.

[4:24] Jake Alright, so that’s a tab. That’s for guitar. Do
you want to play Smoke on the Water?

[4:33] Nathan Yeah
[4:35] Jake Umm, this one probably isn’t going to help you

much because it’s like— it’s guitar music so it doesn’t
really— this one is probably your best bet. So, it looks
like— so they’re chords

[4:51] Nathan This is— this is supposed to start at zero
[4:53] Jake What?
[4:55] Nathan It’s supposed to start at zero. That’s how

you play it. I know how you play it on guitar but this is
not how you play it.

[5:02] Jake Interesting
[5:03] Nathan You’re supposed to start at zero.
[5:08] Jake It might just be in a different key.
[5:10] Nathan Like this one would help us. Oh, this is a

trumpet’s. This one would help us the most. Yeah, this
one, 0033553.

[5:24] Jake So looks like it’s going to be a D and an F and
a G. Is this actually Smoke on the Water?

[5:37] Nathan Yeah. I can play it for you on the guitar.
[5:40] Jake But I mean— the rhythm of it
[5:43] Nathan Do you want me to play it for you?

This exchange began with Jake pointing out that what Nathan
found is tablature, which specifies sequences of chords and
so will not help much with the boys’ quest for timing infor-
mation. In response Nathan provides a piece of knowledge
from his experience playing the song on the guitar, that it’s
supposed to start at zero (an open string), as a proposed cri-
terion for judging their search results. When Nathan seems
to find a result he is happy with, he points it out, saying
and repeating “this one would help us.” To make his point
that it fits his criterion, he says a string of numbers starting
with zero. Jake looks at the pitches indicated by the actual
notes and wonders out loud if these notes actually corre-
spond to the song they are trying to play. Nathan makes his

first ([5:37]) and second ([5:43]) offer to play Smoke on the
Water for Jake on one of the acoustic guitars in the music
room. Jake seems skeptical this sheet music is accurate as
he continues analyzing it, this time noting that the rhythm
seems wrong. Jake then gets pulled away from this problem
by a question from Chris.

[5:44] Chris Like, when it’s putting the numbers next to the
letter on the program, does that mean that it’s putting
the like what the note it would be on and the position it
would be on?

[5:56] Nathan I could actually show you
[5:57] Jake What do you mean? Looking at this?
[5:59] Chris Yeah
[6:01] Jake Okay, so what was your question again?
[6:05] Chris so if—when it has the note and the number

together
[6:13] Jake yes
[6:10] Chris Is that like the umm the note and the position

it’s going to be played in?
[6:17] Jake So it’s going to be— it plays a it plays a
[6:26] Nathan I can actually play it if you want me to
[6:26] Jake Alright, one sec, I need to answer this question

first
[6:28] Nathan Want to play Chris?
[6:31] Jake Umm, it plays the note B4 one sixteenth of a

beat. And it’s the first note that’s played. And the next
note that’s played is a B flat 4 for one sixteenth of a beat.
Does that make sense?

[6:57] Nathan [inaudible]
[6:58] Chris Yeah

Jake clarifies for Chris that one enters notes into Blocky-
Talky by specifying a pitch (denoted by a letter between
A and G) and octave. Jake also reiterates his earlier de-
scription of the system’s execution of musical programs as
“it basically just plays all these notes in order” by walking
through the example of a couple of notes in the pre-made
code. Right after Chris says“Yeah”at the end of the episode
([6:58]), Nathan plays the intro to Smoke on the Water on
the guitar he has retrieved from the wall.

Notably, from this point forward, the question of whether
the boys need to know precise timings is dropped. Blocky-
Talky supplies default timing of a 1/4 note. However, be-
cause each note has two formal parameters (timing and
pitch), Nathan may have felt a premature need (relative to
guitar-learning) to supply this information. This in turn led
to a back and forth exchange between the boys and a search
for information online. Ultimately, this formal, but optional,
parameter does not impact the rest of the boys’ interactions
in the episode. This is probably because the exchange just
described ends with a guitar in Nathan’s hands and Chris in
control of the laptop. Chris, who earlier ([3:50]) suggested
assigning a uniform note duration to all notes, is in a posi-
tion to use the system’s default uniform timing while Nathan
produces a sequence of pitches on the guitar.

3.5 Phase 2: Representational Transformation
Our narrative continues with Jake asking if Nathan knows

the notes he just played, referring to the standard musi-
cal notation they need to input the notes into BlockyTalky.
This event triggers a shift in cognitive system’s function from
memory recall to information transformation. The transfor-
mation process will eventually map each note of Smoke on

the Water from Nathan’s knowledge of how to play the song
to a symbolic, formal representation that BlockyTalky can
execute.

Crucially, Nathan’s knowledge of the notes in the song is
only externally visible in the moments that he is putting
his fingers into position on the fretboard and plucking the
strings. Outside of those moments, the knowledge is internal
to him, but it is an embodied understanding that he might
have a very hard time mentally reasoning about without use
of his body and an instrument. So the moments that it is
most accessible to him are also the moments that it is most
accessible to others. That is, he does not know the names for
these fingers positions and can only communicate his partial
and non-symbolic knowledge of the notes by playing them
with his hands around a guitar. In contrast, BlockyTalky
requires a symbolic (note letter) description of what notes
to play (e.g., C4); its interface does not allow input in the
form of finger positions (i.e. there is no virtual instrument
or way to hook in a real guitar as input into the program).
Thus, as we shall see, there is a breakdown between the
representation of knowledge that the boys can produce with
a guitar and the representation that BlockyTalky needs; the
boys and tools alone cannot create mappings between these
two representational systems (see Figure 1).

[7:36] Jake Alright so, do you know what notes those are?
[7:45] Nathan [unclear] This is an E
[7:47] Jake An E? So this would be what—a D#?
[7:56] Nathan I don’t know. I know—
[7:59] Jake This is an E and that’s an F and that’s an F#

and that’s a G. So it’s an E, then a G and then an A.
[8:13] Nathan I don’t know. Do you know someone that

knows guitar?
[8:14] Jake I mean I— so each of these is a half note. So

this would be— the lowest string is an E so then this
would be a G so then this would be an A.

[8:27] Nathan Awesome. Okay.
[8:32] Jake So, we’re going to want to do—

As we see above, even though Nathan can play the song and
has an embodied knowledge of the notes of Smoke on the
Water, and even though Chris knows how to put notes into
the BlockyTalky system, they cannot proceed. Jake steps
in to fill the gap between these two representational forms.
This is a notable shift in the structure (see Figure 2) of
the system; it was only directly preceding this phase of the
episode that Chris started interacting with Jake at all (first
interaction at [5:44]). Prior to this, Nathan had been talking
to any adults that addressed the group, and no adults had
been a part of the boys’ problem solving.

As we now show, this new distributed cognition structure
(see Figure 3) allows the system to accomplish its function of
information transformation in the following way: Each note
of the song is retrieved from Nathan’s memory, and is ex-
ternalized using a finger position on the guitar that Nathan
holds. Jake then employs his musical knowledge to trans-
form the finger position supplied by Nathan (expressed using
his body and the guitar) into a letter note. Jake also fills in a
duration and octave he deems an appropriate approximation
of the song based on his musical background. Chris hears
Jake say these details aloud, then enters 3 pieces of informa-
tion for each note—duration, letter and octave—as formal
parameters in his program code. This emergent distribution
is due to the individuals’ background knowledge (from prior

Figure 1: Representational Breakdown

Figure 2: System Reconfiguration

to our camp), as well as the requirements of the BlockyTalky
language. Of the three, only Nathan and Chris know how to
play the song on the guitar, meaning that the students sup-
plied the starting representation. The instructor, Jake, then
had the task of helping them transform this representation
to a more standard one, because of the three he was the only
one with enough musical background to figure out the letter
notes, octaves and approximate note duration. The new ar-
rangement enables the distributed cognition work of recall
from memory, information processing (transformation), and
memory storage (as program code) for later playback by the
program that Chris and Nathan are writing.

Figure 3: Representational Bridge

[8:43] Nathan It’s E, it starts out with an E. Chris do you
want to start writing it down? It starts out with an E as
a - and these are half notes, right?

[9:07] Jake Yeah
[9:07] Nathan Half notes.

[9:07] Jake They’re probably half notes.
[9:10] Nathan And it starts out with an E
[9:11] Jake So do an E4. And then we’re going to have

another half note.
[9:19] Nathan Oh, I could ask him, he probably knows. Oh-

okay okay okay.
[10:00] Chris So what would ummm, this one be? Would it

be G#?
[10:13] Jake So that’s going to be A#
[10:14] Chris A#
[10:17] Jake B flat
[10:21] Jake Yeah, the important thing to remember on a

guitar is that every fret is a half note.
[10:27] Nathan Okay
[10:29] Jake So if you know that the bottom string you can

just count up

Nathan, despite his prior claims that they should know the
duration of each note ([3:35]), proposes that they set all the
notes to have the duration of a half note ([8:43]). Chris starts
trying to figure out how the transformation works by ask-
ing for confirmation on the next note ([10:00]). In response,
Jake supplies the correct answer and a key piece of knowl-
edge he is using for the transformation process ([10:21]).
This could have been an opening for another reconfigura-
tion, Jake stepping out of the system and Chris taking over
his role. However, as we show, Chris does not attempt the
transformation process on his own. The conversation begins
to shift to Chris’s part of the process—programming the
notes into the BlockyTalky. Jake continues to help Nathan
transform notes from his embodied representation to a more
standard representation so Chris can program them, as well
as intermittently providing support when Chris asks for it.

[10:31] Chris Would it be A#4 or A#3?
[10:35] Jake A#4. So the numbers start on C so like CDE-

FGAB are all the same number then the number goes
up.

[11:07] Jake So right here *pointing to screen* what do you
want this to sound like? So do you want to play Smoke
on the Water for us again?

[11:13] Nathan Okay. Wait. Wait...
[11:22] Jake You’re missing one
[11:24] Nathan Oh yeah
[11:29] Jake So we go an E, we go a G. We go an E, we go

an G -
[11:38] Nathan Then we go up: zero, this one, this one and

then we go here. Yeah, 0, 3 5, 0, 3 6 5
[11:41] Jake E G A and then
[11:46] Jake Right, okay, so right now, there we go.
[11:53] Chris Ummm, where do you enter [inaudible]
[11:54] Jake Where do you- oh, so you want to add more

notes you have to drag new notes in there. So you drag
a note slot and you just drag it into the bottom there
and then that adds a new note slot. And if you want to
delete a note slot, you just go there and you pull it out.

[12:46] Chris What happened?
[13:10] Jake Alright, so where is our new thing?
[13:12] Chris I don’t know where the other ones went. I put

the notes in there but they disappeared.
[13:19] Jake What happened?
[13:19] Chris They disappeared
[13:23] Jake Hmmmm. So what were you.. Oh oh oh, so

okay. Were you trying to- are you trying to add more
these into those?

[13:35] Chris Yeah
[13:37] Jake Alright, so the easiest way to do it is to just -

you can just go into music and the thing is right here
[13:45] Chris Oh, okay
[13:48] Jake So it’s just right there in the music
[13:48] Chris Wait, umm, how do I take away one?
[13:51] Jake Take away one?
[13:53] Chris Can I just pull out one?
[13:54] Jake Yes but you have to pull out the correct one.

So you want to go down to the bottom and pull out the
last one.

[14:00] Nathan Oh, did you get it? Do you need help?
[15:57] Nathan We gotta stop, we gotta stop for a minute.

Wait wait. Put it on blue now
[16:06] Jake So you know that putting it on blue color will

make your new song play.
[16:24] Nathan Shouldn’t it go a little faster?
[16:24] Jake Alright, so we have the right notes but they

aren’t all the right lengths, you know.

The episode’s end is marked by the boys expressing their
next goal: fixing the timing. Nathan expresses dissatisfac-
tion ([16:24]) with the speed of the song overall, and then
Jake points out that the duration of the notes are not all
half notes so they need to be changed. It is important to
note at this point that the students’ familiarity with the
song gives them a resource for constructing a feedback loop
with BlockyTalky as they proceed to address this weakness.
When running the program or testing their code, the stu-
dents can hear whether the song sounds correct— in the
above case they are noting that the timing is not the same
in their code as compared to the actual song that they re-
member. This feedback loop enables students to critique
their own projects, enabling them to capture the sound of
the original song by iterating over their code.

4. DISCUSSION AND CONCLUSIONS
Nathan and Chris used their musical and computational

knowledge to customize a pre-built computer music project
to meet their own goals. Through a DCOG process of recall,
representation, and data transformation, they programmed
a melody with BlockyTalky. At the beginning of the episode,
it was clear that Nathan could play the song and had an
embodied, non-symbolic representation of it. Chris demon-
strated he was capable of putting standard music notation
into computer code. However, they were only successful be-
cause the group reconfigured social structure to include the
impromptu support provided by Jake and his extensive mu-
sical background. Despite the representation transformation
roadblock they encountered, the students successfully pro-
grammed a sequence of notes that played one after another
by programming a sequence of blocks that was based upon
a sequence of notes plucked on a guitar.

This episode illustrates how the DCOG offers insights into
how thinking and learning are happening that are not possi-
ble with a traditional theory of cognition. Cognition in this
episode was distributed across the group. Nathan retrieved
from his long-term memory a representation of what the
notes in the song were. The format of this representation
was not usable within the BlockyTalky software, which led
Nathan and Chris to detect that they were at an impasse and

then to initiate a reconfiguration of the group. They roped in
Jake, who assisted with crucial information processing work,
which Chris then encoded in the computer’s memory (in the
form of program code). The work was deeply shaped by cul-
tural resources: the students and Jake all knew what Smoke
on the Water should sound like because it is a mainstay of
classic rock. This provided a common ground in which to
problem solve, as well as motivation to the boys. The cul-
tural artifact of the guitar, available because of the setting
of the camp in a music room, was instrumental in Nathan’s
ability to articulate what the notes of the song should be; to-
gether with his body (his fingers, in particular) it became the
mechanism through which Nathan’s knowledge went from
an internal (to the head) resource to a shared resource for
problem solving. The event of Nathan’s retrieval of a gui-
tar sent the group down a particular problem solving path;
had they continued searching online they may have found
other ways to find the notes of the song, such as by find-
ing ways to transform guitar tablature to standard musical
note names or by simply finding a list of notes to directly
input into the computer. Finally, the events that took place
after the episode detailed here, tweaking the note durations
to comport with the boy’s memories of the song, reflects
the computer’s instrumentality to the boys’ cognition: they
are not skilled enough musicians to reverse-engineer timing
from their own intuitive senses of the song, and so the ar-
tifact of the computer becomes a cognitive resource that
enables problem solving through easy trial-end-error exper-
imentation with note lengths. With more musical practice
this system could be rebalanced to not need this technolog-
ical affordance, but until then, the computer is a vital part
of the boys’ musical cognition.

The DCOG analysis also enables us to ask nuanced ques-
tions about assessment: Was the boys’ dependence upon
help from Jake problematic? Was their getting stuck a re-
flection of difficulties with understanding programming, or
something else? They could not have achieved their goal
without Jake doing a key aspect of the representation trans-
formation with them, but the help he provided was not pri-
marily about computing. This suggests that if we want stu-
dents to be able to explore computer science and engineer-
ing through media like music, then our learning environment
designs (including tools, curriculum, and teaching) need to
allow students to succeed even if they do not yet possess
virtuosity in the media that they are computing with. To
wit: Music is a very powerful cultural resource, and one that
could be quite useful for supporting learning in computing.
But students should not need to know how to read some-
one else’s hands on a guitar in order to learn to program a
computer. This suggests a design problem: how should we
provide support for computer music that facilitates progress
without requiring such extensive music disciplinary knowl-
edge? For example, should we change our system to support
plugging a guitar into the computer so that simply play-
ing it creates a program? That would certainly circumvent
the need to know standard music notation, but it would
also obviate most of the project’s programming in the pro-
cess. In our current design, even with Jake’s help, Chris still
modified the existing program, first changing existing note
blocks and then adding new ones as the sequence of instruc-
tions lengthened to match Nathan’s guitar plucking. Going
directly from a guitar to program code would skip this pro-
gramming work, a prospect that we find undesirable. In fu-

ture work we will explore intermediate representations that
are within students’ zones of proximal development [33].

Jake’s preservation of students’ agency raises exciting ques-
tions for curriculum design: He was able to scaffold the ac-
tivity for the boys, becoming part of the system while letting
the boys do the computer programming entirely themselves.
Agency in the group remained with the students. In our ex-
periences, it is often the case that when a teacher assists a
group with a hard problem, agency over the group’s problem
solving shifts to the teacher. That was not so here. This may
mean that the interdisciplinary nature of the project, com-
bined with the teacher demonstrating authority in the musi-
cal content but not overtly so in the computer programming
aspects of the project, enabled a less agency-stripping en-
actment of the role of expert. This leads us to the question:
Can future media computation curricula deliberately include
productive participatory roles for teachers where they can
play an expert role in a non-computing domain (like music)
to afford them close observation of students’ emerging com-
putation without interfering with the computing agency and
skill that students are developing?

New programmers sometimes treat computers as if they
were intelligent partners, as machines that can ask for clar-
ification [24]. This conceptual bug is a source of errors in
learning. Yet computer interfaces, including programming
languages, frequently demand information from their users.
BlockyTalky’s prompting for note durations led the boys
to argue about the amount of information about each note
that they would need to know to be productive. This set of
discursive events was spurred by students’ differing interpre-
tations of what clarification the system needed in order to be
programmed. In a sense, the computer’s interface imbued
it with agency to guide the group’s discussion. Though the
timing discussion in this case was ultimately inconsequen-
tial, computing education researchers might investigate ways
that future tools could use this potential for agency to guide
group problem solving discussion.

We have shown how DCOG can be a powerful theoretical
framework for analyzing collaborative CS learning. But its
utility is not limited to studying multi-student groupings,
as most of the properties of cognitive systems that DCOG
highlights also inhere in single-student learning (which is
also culturally- and historically-situated, involves external
and internal representations, tools, etc.). A limitation of
this approach is that detailed discourse analysis of the sort
we performed here is time consuming and therefore difficult
to scale. However, as DCOG opens up possibilities for un-
derstanding student learning in CS that other perspectives
and methodologies lack, it could become a powerful tool for
improving research on computing education.

5. ACKNOWLEDGMENTS
We thank the National Science Foundation for funding this
work (Award 1418463), and especially appreciate Jeff Forbes’s
advocacy within NSF for this EAGER project. We also
thank Theresa Perry for her advice and assistance, and Nick
Benson, Ben Helm, Case Jemison, Michael Ferdico, & An-
thony Ambroso for their help in collecting these data.

6. REFERENCES

[1] D. Abrahamson and U. Wilensky. The stratified
learning zone: Examining collaborative-learning

design in demographically-diverse mathematics
classrooms. In Annual Meeting of the American
Educational Research Association, 2005.

[2] J. R. Anderson, L. M. Reder, and H. A. Simon.
Situated learning and education. Educational
Researcher, 25(4):5–11, 1996.

[3] A. Basawapatna, K. H. Koh, A. Repenning, D. C.
Webb, and K. S. Marshall. Recognizing computational
thinking patterns. In Proceedings of the 42nd ACM
Technical Symposium on Computer Science Education,
pages 245–250, 2011.

[4] M. Berland, C. Smith, and D. Davis. Visualizing live
collaboration in the classroom with AMOEBA. In
Proceedings of the Tenth International Conference on
Computer-Supported Collaborative Learning, 2013.

[5] P. Blikstein, M. Worsley, C. Piech, M. Sahami,
S. Cooper, and D. Koller. Programming pluralism:
Using learning analytics to detect patterns in the
learning of computer programming. Journal of the
Learning Sciences, 23(4):561–599, 2014.

[6] J. D. Bransford, A. L. Brown, and R. R. Cocking.
How people learn: Brain, mind, experience, and
school. National Academy Press, 1999.

[7] K. Brennan and M. Resnick. New frameworks for
studying and assessing the development of
computational thinking. In Proceedings of the 2012
Annual Meeting of the American Educational Research
Association, 2012.

[8] A. L. Brown. Design experiments: Theoretical and
methodological challenges in creating complex
interventions in classroom settings. The Journal of the
Learning Sciences, 2(2):141–178, 1992.

[9] N. C. Brown and A. Altadmri. Investigating novice
programming mistakes: Educator beliefs vs. student
data. In Proceedings of the Tenth Annual Conference
on International Computing Education Research,
pages 43–50, 2014.

[10] A. S. Bruckman. MOOSE Crossing: Construction,
community, and learning in a networked virtual world
for kids. PhD thesis, Massachusetts Institute of
Technology, 1997.

[11] M. Cole. Cultural psychology: A once and future
discipline. Harvard University Press, 1998.

[12] A. Collins, J. Brown, and S. Newinan. Cognitive
apprenticeship: Teaching the craft of reading, writing,
and mathematics. In Knowing, learning, and
instruction: Essays in honor of Robert Glaser, pages
453–494. Lawrence Erlbaum Associates, Inc., 1989.

[13] D. A. Fields, V. Vasudevan, and Y. B. Kafai. The
programmers’ collective: Connecting collaboration and
computation in a high school scratch mashup coding
workshop. In Learning and Becoming in Practice:
ICLS 2014 Conference Proceedings, 2014.

[14] M. Heidegger. Being and time: A translation of Sein
und Zeit. SUNY Press, 1996.

[15] J. Hollan, E. Hutchins, and D. Kirsh. Distributed
cognition: Toward a new foundation for
human-computer interaction research. ACM
Transactions on Computer-Human Interaction
(TOCHI), 7(2):174–196, 2000.

[16] E. Hutchins. Cognition in the Wild. MIT press, 1995.

[17] E. R. Kazakoff, A. Sullivan, and M. U. Bers. The
effect of a classroom-based intensive robotics and
programming workshop on sequencing ability in early
childhood. Early Childhood Education Journal,
41(4):245–255, 2013.

[18] J. Lave. Cognition in practice: Mind, mathematics and
culture in everyday life. Cambridge University Press,
1988.

[19] S. T. Levy and U. Wilensky. Inventing a “mid level” to
make ends meet: Reasoning between the levels of
complexity. Cognition and Instruction, 26(1):1–47,
2008.

[20] C. M. Lewis. Applications of Out-of-domain
Knowledge in Students’ Reasoning About Computer
Program State. PhD thesis, Berkeley, CA, USA, 2012.
AAI3555787.

[21] L. Malmi, J. Sheard, R. Bednarik, J. Helminen,
P. Kinnunen, A. Korhonen, N. Myller, J. Sorva,
A. Taherkhani, et al. Theoretical underpinnings of
computing education research: What is the evidence?
In Proceedings of the Tenth Annual Conference on
International Computing Education Research, pages
27–34, 2014.

[22] C. McDowell, L. Werner, H. E. Bullock, and
J. Fernald. Pair programming improves student
retention, confidence, and program quality.
Communications of the ACM, 49(8):90–95, 2006.

[23] M. Packer. The problem of transfer, and the
sociocultural critique of schooling. The Journal of the
Learning Sciences, 10(4):493–514, 2001.

[24] R. D. Pea, E. Soloway, and J. C. Spohrer. The buggy
path to the development of programming expertise.
Focus on Learning Problems in Mathematics, 9:5–30,
1987.

[25] L. Porter, C. Bailey Lee, and B. Simon. Halving fail
rates using peer instruction: A study of four computer
science courses. In Proceeding of the 44th ACM
Technical Symposium on Computer Science Education,
pages 177–182, 2013.

[26] L. Porter, C. Bailey Lee, B. Simon, and D. Zingaro.
Peer instruction: Do students really learn from peer
discussion in computing? In Proceedings of the
Seventh International Workshop on Computing
Education Research, pages 45–52, 2011.

[27] B. Rogoff. The cultural nature of human development.
Oxford University Press, 2003.

[28] J. Roschelle. Learning by collaborating: Convergent
conceptual change. The Journal of the Learning
Sciences, 2(3):235–276, 1992.

[29] N. Shah, C. M. Lewis, and R. Caires. Analyzing
equity in collaborative learning situations: A
comparative case study in elementary computer
science. In Proceedings of the 11th International
Conference of the Learning Sciences, 2014.

[30] B. Sherin, A. A. diSessa, and D. Hammer. Dynaturtle
revisited: Learning physics through collaborative
design of a computer model. Interactive Learning
Environments, 3(2):91–118, 1993.

[31] J. P. Smith III, A. A. Disessa, and J. Roschelle.
Misconceptions reconceived: A constructivist analysis
of knowledge in transition. The Journal of the
Learning Sciences, 3(2):115–163, 1994.

[32] J. Tenenberg and Y. B.-D. Kolikant. Computer
programs, dialogicality, and intentionality. In
Proceedings of the Tenth Annual Conference on
International Computing Education Research, pages
99–106. ACM, 2014.

[33] L. S. Vygotsky. Mind in society: The development of
higher psychological processes. Harvard University
Press, 1980.

[34] T. White. Code talk: Student discourse and
participation with networked handhelds. International
Journal of Computer-Supported Collaborative
Learning, 1(3):359–382, 2006.

