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Using Domain-Knowledge to Assist Lead
Discovery in Early-Stage Drug Design
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2 TCS Research, New Delhi, India
3 TCS Innovation Labs (Life Sciences Division), Hyderabad, India

Abstract. We are interested in generating new small molecules which
could act as inhibitors of a biological target, when there is limited prior
information on target-specific inhibitors. This form of drug-design is as-
suming increasing importance with the advent of new disease threats for
which known chemicals only provide limited information about target
inhibition. In this paper, we propose the combined use of deep neural
networks and Inductive Logic Programming (ILP) that allows the use
of symbolic domain-knowledge (B) to explore the large space of possi-
ble molecules. Assuming molecules and their activities to be instances
of random variables X and Y, the problem is to draw instances from
the conditional distribution of X, given Y, B (Dx|y,5). We decompose
this into the constituent parts of obtaining the distributions Dx p and
Dy \x,p, and describe the design and implementation of models to ap-
proximate the distributions. The design consists of generators (to approx-
imate Dx|p and Dx|y,g) and a discriminator (to approximate Dy |x,g)-
We investigate our approach using the well-studied problem of inhibitors
for the Janus kinase (JAK) class of proteins. We assume first that if
no data on inhibitors are available for a target protein (JAK2), but a
small numbers of inhibitors are known for homologous proteins (JAK1,
JAK3 and TYK2). We show that the inclusion of relational domain-
knowledge results in a potentially more effective generator of inhibitors
than simple random sampling from the space of molecules or a gener-
ator without access to symbolic relations. The results suggest a way of
combining symbolic domain-knowledge and deep generative models to
constrain the exploration of the chemical space of molecules, when there
is limited information on target-inhibitors. We also show how samples
from the conditional generator can be used to identify potentially novel
target inhibitors.

Keywords: Drug Design - Neural-Symbolic Learning - Lead Discovery

1 Introduction

Co-opting Hobbes, the development of a new drug is difficult, wasteful, costly,
uncertain, and long. AI techniques have been trying to change this [1], espe-
cially in the early stages culminating in “lead discovery”. Figure 1 shows the
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2 T. Dash et al.

steps involved in this stage of drug-design. In the figure, library screening can
be either done by actual laboratory experiments (high-throughput screening) or
computationally (virtual screening). This usually results in many false-positives.
Hit Confirmation refers to additional assays designed to reduce false-positives.
QSAR (quantitative- or qualitative structure-activity relations) consists of mod-
els for predicting biological activity using physico-chemical properties of hits.
The results of prediction can result in additional confirmatory assays for hits,
and finally in one or more “lead” compounds that are taken forward for pre-
clinical testing. This paper focuses on the problem of lead discovery that goes
beyond the efficient identification of chemicals within the almost unlimited space
of potential molecules. This space has been approximately estimated at about
10% molecules. A very small fraction of these have been synthesised in research
laboratories and by pharmaceutical companies. An even smaller number are
available publicly: the well-known ChEMBL database [2] of drug-like chemicals
consists of about 10° molecules. Any early-stage drug-discovery pipeline that
restricts itself to in-house chemicals will clearly be self-limiting. This is espe-
cially the case if the leads sought are for targets in new diseases, for which very
few “hits” may result from existing chemical libraries. While a complete (but
not exhaustive) exploration of the space of 10°° molecules may continue to be
elusive, we would nevertheless like to develop an effective way of sampling from
this space.

Srandardized Synthetic
Binlogy Assays
—_—

o™
'\{ahm paurd/.-'

Ass.ay - Library Hit — QSAR »
Dresign soreen confirmatior®

Fig. 1. Early-stage drug-design (adapted from [3]).

We would like to implement the QSAR module as a generator of new molecules,
conditioned on the information provided by the hit assays, and on domain-
knowledge. Our position is that inclusion of domain-knowledge allows the de-
velopment of more effective conditional distributions than is possible using just
the hit assays. Figure 2 is a diagrammatic representation of an ideal conditional
generator of the kind we require. The difficulty of course is that none of the
underlying distributions are known. In this paper, we describe a neural-symbolic
implementation to construct approximations for the distributions.

2 System Design and Implementation

We implement an approximation to the ideal conditional generator using a
generator-discriminator combination (see Fig. 3). We have decomposed the domain-
knowledge B in Fig. 2 into constraints relevant just to the molecule-generator
B¢ and the knowledge relevant to the prediction of activity Bp (that is, B =
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XY, B~ Dypi

Conditional
Generator

X~Dyp ¥~ Dyxn

Fig. 2. An ideal conditional generator for instances of a random-variable denoting data
(X) given a value for a random-variable denoting labels (Y') and domain-knowledge (B).
Here, Z ~ D denotes a random variable Z is distributed according to the distribution
D. If the distributions shown are known, then a a value for X is obtainable through
the use of Bayes rule, either exactly or through some form approximate inference.

BgUBp and P(X|B) = P(X|Bg) and P(Y|X, B) = P(Y|X, Bp)). The discrim-
inator module approximates the conditional distribution Dy |x p, and the com-
bination of the unconditional generator and filter approximates the distribution
Dx . The conditional generator then constructs an approximation to Dy|y,p-
For the present, we assume the unconditional generator and discriminator are
pre-trained: details will be provided below. The discriminator is a BotGNN [4].
This is a form of graph-based neural network (GNN) that uses graph-encodings
of most-specific clauses (see [5]) constructed using symbolic domain-knowledge
Bp.

X~Dyyp
("Active” Molecules)

B —>| Conditional LYK B~ Dyixs
Y = active—1»| Generator [ (Molecule Labels)
1

Discriminator [&—B

1
I
1
_____ A_____ X T
Kl 1
X|B ~ Dye !
1
Acceptable :‘; Transducer
Molecules | _____ ey
1

Fig. 3. Training a conditional generator for generating “active” molecules. For the
present, we assume the generator (G1) and discriminator (D) have already been trained
(the G1 and D modules generate acceptable molecules and their labels respectively:
the D’s are approximations to the corresponding true distribution). The Transducer
converts the output of G1 into a form suitable for the discriminator. Actual implemen-
tations used in the paper will be described below.

The generator-discriminator combination in Fig. 3 constitutes the QSAR
module in Fig. 1. An initial set of hits is used to train the discriminator. The
conditional generator is trained using the initial set of hits and the filtered sam-
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ples from the unconditional generator and the labels from the discriminator.
Although out of the scope of this paper, any novel molecules generated could
then be synthesised, subject to hit confirmation, and the process repeated.

Generating Acceptable Molecules The intent of module G1 is to produce
an approximation to drawing samples (in our case, molecules) from Dx g, . We
describe the actual Bg used for experiments in Sec. 3.1: for the present it is
sufficient to assume that for any instance X = z, if B¢ A X = x | O then
Pr(z|Bg) = 0. Here, we implement this by a simple rejection-sampler that first
draws from some distribution over molecules and rejects the instances that are
inconsistent with Bg.

For drawing samples of molecules, we adopt the text generation model pro-
posed in [6]. Our model takes SMILES representations of molecules as input and
estimates a probability distribution over these SMILES representations. Samples
of molecules are then SMILES strings drawn from this distribution.

The SMILES generation module is shown in Fig. 4. The architecture for
distribution estimation is based on variational autoencoder (VAE) to sequence
of characters in a SMILES string using LSTM-based RNNs [7] for both the
encoder and the decoder. This forms a SMILES encoder with the Gaussian prior
acting as a regulariser on the latent representation. The decoder is a special
RNN model that is conditioned on the latent representation.

"Acceptable”
(from A) olecules

Bg

Fig.4. Training a generator for acceptable molecules. Training data consists of
molecules, represented as SMILES strings, drawn from a database A. The VAE is
a model constructed using the training data and generates molecules represented by
SMILES strings. Bg denotes domain-knowledge consisting of constraints on accept-
able molecules. The filter acts as a rejection-sampler: only molecules consistent with
B¢ pass through.

The block diagram of the VAE model architecture is shown in Fig. 5. The
SMILES encoding involves three primary modules: (a) embedding module: con-
structs an embedding for the input SMILE; (b) highway module: constructs a
gated information-flow module based on highway network [8]; (¢) LSTM module:
responsible for dealing with sequence. The modules (b) and (c) together form
the encoder module. The parameters of the Gaussian distribution is learnt via
two fully-connected networks one each for pu and o, which are standard sub-
structures involved in a VAE model. The decoder module (or, the generator)
consists of LSTM layers followed by a fully-connected (FC) layer. We defer de-
tails on architecture-specific hyperparameters to Sec. 3.2. The loss function used
for training our VAE model is a weighted version of the reconstruction loss and
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KL-divergence between VAE-constructed distribution and the Gaussian prior

N(0,1).

Generator
SMILES P e
Encoder Decoder i

1
Embedding M: £ > z »[Fc] | F>smiLes
T ¢ o‘ . y’ |
! 1

Fig. 5. Architecture of the VAE in Fig. 4

Obtaining Labels for Acceptable Molecules The intent of module D is to
produce an approximation to drawing samples (in our case, labels for molecules)
from Dy |x p,. We describe the actual Bp used for experiments in Sec. 3.1.
The discriminator in D is a BotGNN [4], which is a form of graph neural
network (GNN) constructed from data (as graphs) and background knowledge
(as symbolic relations or propositions) using mode-directed inverse entailment
(MDIE [5]). In this work, data consists of graph-based representations of molecules
atoms and bonds, and Bp consists of symbolic domain-relations applicable to
the molecules. The goal of the discriminator is to learn a distribution over class-
labels for any given molecules. Fig. 6 shows the block diagram of the discrimi-
nator block.

" aaical” Bottom Graphs
Logical P NS, BotGNN |—» Labels
molecules T
Bp

Fig. 6. Discriminator based on BotGNN. “Logical” molecules refers to a logic-based
representation of molecules. Bottom-graphs are a graph-based representation of most-
specific (“bottom”) clauses constructed for the molecules by an ILP implementation
based on mode-directed inverse entailment.

Generating Active Molecules The intent of module G2 is to produce an
approximation to drawing from Dx |y g. That is, we want to draw samples of
molecules, given a label for the molecule and domain-knowledge B. We adopt
the same architecture as generator used for drawing from Dy g, above, with a
simple modification to the way the SMILES strings are provided as inputs to the
model. We prefix each SMILES string with a class-label: y = 1 or y = 0 based
on whether the molecule is an active or inactive inhibitor respectively. The VAE
model is also able to to accomodate any data that may already be present about
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the target, or about related targets (it is assumed that such data will be in the
form of labelled SMILES strings).

3 System Testing

Our aim is to perform a controlled experiment to assess the effect on system per-
formance of the inclusion of high-level symbolic domain-knowledge. Specifically:
we investigate the effect on the generation of new inhibitors for the target when:
(a) No domain-knowledge is available in the form of symbolic relations (but some
knowledge is available in a propositional form); and (b) Some domain-knowledge
is available in form of symbolic relations. We intend to test if the system is able
to generate possible new inhibitors in case (a); and if the performance of the
system improves in case (b).

3.1 Materials

Data The data used are as follows. (a) ChEMBL dataset [2]: 1.9 million molecules;
used to train generator for legal molecules (G1); (b) JAK2 [9]: 4100 molecules
(3700 active); used to test conditional generator (G1) and to build proxy model
for hit confirmation (see Method section below); (¢) JAK2 Homologues [9]: 4300
molecules (3700 active); used to train discriminator (D) and train conditional
generator (G2).

Domain-Knowledge We use the following categories of domain-knowledge
(also see Appendix A). (a) Molecular Constraints [9,10]: Logical constraints
on acceptable molecules, including standard validity checks (based on molecular
properties); (b) Molecular Properties [9]: Bulk-properties of molecules (propo-
sitional in nature); (¢) Molecular Relations [11]: Logical statements defining
ring-structures and functional groups (relational in nature)

Algorithms and Machines We use the following software. (a) RDKit [10]:
Molecular modelling software used to compute molecular properties and check
for validity of molecules; (b) Chemprop [12]: Molecular modelling software used
to build proxy model for hit confirmation; (¢) Transducer: In-house software to
convert representation from SMILES to logic; (d) Aleph [13]: ILP engine used
to generate most-specific clauses for BotGNN; (e) BotGNN [4]: Discriminator
for acceptable molecules capable of using relational and propositional domain
knowledge; (f) VAE [14]: Generative deep network used for generators. We used
PyTorch for implementation of BotGNN and VAE models, and Aleph was used
with YAP.

All experimental work was distributed across two machines: (a) The discrim-
inator (D) was built on a Dell workstation with 64GB of main memory, 16-core
Intel Xeon 3.10GHz processors, a 8GB NVIDIA P4000 graphics processor; (b)
The generators (G1, G2) are built on a NVIDIA-DGX1 station with 32GB Tesla
V100 GPUs, 512GB main memory, 80-core Intel Xeon 2.20GHz processors.
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3.2 Methods

We describe the procedure adopted for a controlled experiment comparing sys-
tem performance in generating potential inhibitors when: (a) domain-knowledge
is restricted to commonly used bulk-properties about the molecules; and (b)
domain-knowledge includes information about higher-level symbolic relations
consisting of ring-structures and functional groups, along with the information
in (a). In either case, the method used to generate acceptable molecules (from
module G1 in Fig. 3) is the same.

Let By denote domain-knowledge consisting of bulk-molecular properties
used in the construction of QSARs for novel inhibitors; B; denote the the
definitions in By along with first-order relations defining ring-structures and
functional-groups used in the construction of QSAR relations; and B¢ denote
the domain-knowledge consisting of constraints on acceptable molecules (see
“Domain-Knowledge” in Sec. 3.1). Let T'r denote the data available on inhibitors
for JAK1, JAK3 and TYK2; and Te denote the data available on inhibitors
for JAK2 (see “Data” in Sec. 3.1). Let A denote a database of (known) legal
molecules. Then:

1. Construct a generator for possible molecules given A (the generator in mod-

ule G1 of Fig. 3) .

2. Fort=0,1

(a) Let Ey = {(z,y)}}", where x is a molecule in Tr and y is the activity
label obtained based on a threshold € on the minimum activity for active
inhibition.

(b) Let BD = Bz

(¢) Construct a discriminator (for module D in Fig. 3) using Ey and the
domain-knowledge Bp (see Sec. 2);

(d) Sample a set of possible molecules, denoted as N, from the generator
constructed in Step 1;. Let N’ C N be the set of molecules found to
be acceptable given the constraints in Bg (that is, N’ is a sample from
Dx|Bg);

(e) For each acceptable molecule x obtained in Step 2d above, let y be the
label with the highest probability from the distribution Dy‘ X,B COn-
structed by the discriminator in Step 2c. Let E = {(z,y)}Y

(f) Construct the generator model (for module G2 in Fig. 3) using Ey U E.

(g) Sample a set of molecules, denoted as M;, from the generator in Step 2f;

(h) Let M! C M; be the molecules found to be acceptable given the con-

straints in Bg (that is, M] is a sample from Dy |x p)

3. Assess the samples My ; obtained in Step 2g above for possible new inhibitors
of the target, using the information in Te

The following details are relevant:

— For experiments here A is the ChEMBL database, consisting of approx-
imately 1.9 million molecules. The generator also includes legality checks
performed by the RDKit package, as described in Sec. 2;
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— Following [9], # = 6.0. That is, all molecules with pIC50 value > 6.0 are
taken as “active” inhibitors;

— The discriminator in Step 2c is a BotGNN. We follow the procedure and
parameters described in [4] to construct BotGNN. We use GraphSAGE [15]
for the convolution block in the GNN. This has been shown in [4] to be an
effective way of including symbolic domain knowledge for graph-based data
(like molecules);

— The generator in Steps 1 and 2f are based on the VAE model described ear-
lier. The hyperparameters are as follows: vocabulary length is 100, embedding
dimension is 300, number of highway layers is 2, number of LSTM layers in
encoder is 1 with hidden size 512, and the type is bidirectional, number of
LSTM layers in decoder is 2, each with hidden size 512, dimension of latent
representation (z) is 100. We use a word-dropout rate of 0.5 for the decoder
to be more robust to noise. The reconstruction loss coefficient is 7. We use
cost-annealing [6] for the KLD-coefficient during training. We use the Adam
optimizer [16] with learning rate of 0.0001; training batch-size is 256.

— In Step 2d, |N| = 30,000. The B¢ provided here results in |[N'| = 18, 000;

— In Step 2g, | M| = |M;] = 5000.

— The acceptable molecules M671 after testing for consistency with Bg are
assessed along two dimensions:

(a) Activity: In the pipeline described in Fig. 1 assessment of activity would
be done by in wvitro by hit confirmation assays. Here we use a proxy
assessment for the result of the assays by using an in silico predictor
of pIC50 values constructed from the data in Te on JAK2 inhibitors.
The proxy model is constructed by a state-of-the-art activity prediction
package (Chemprop [12]: details of this are in the Appendix).* We are
interested in comparing the proportions of generated molecules predicted
as “active”;

(b) Similarity: we want to assess how similar the molecules generated are
to the set of active JAK2 inhibitors in Te.” A widely used measure
for this is the Tanimoto (Jacquard) similarity: molecules with Tanimoto
similarity > 0.75 are usually taken to be similar. We are interested in
the proportion of molecules generated that are similar to known target
inhibitors in Te;

Each sample of molecules M; drawn from the conditional generator can there-

fore be represented by a pair (a;, b;) denoting the values of the proportions in

(a) and (b), and (c) above. We will call this pair the “performance summary”

of the set M;;

— We compare performance summaries of sets of molecules in two ways. First,
a performance summary P; = (a;,b;) can be compared against the perfor-

4 Such a model is only possible in the controlled experiment here. In practice, no
inhibitors would be available for the target and activity values would have to be
obtained by hit assays, or perhaps in silico docking calculations.

5 Again, this is feasible in the controlled experiment here. In practice, we will have
no inhibitors for the target, we will have to perform this assessment on the data
available for the target’s homologues (7).
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mance summary P; = (a;,b;) in the obvious lexicographic manner. That is,
P; is better than P; if [(a; > a;)] or [(a; = a;) A (b; > bj)]. Secondly, since
all the elements of a performance summary are proportions, we are able to
assess if the difference in corresponding values are statistically significant.
This is done using a straightforward hypothesis test on proportions. Given
an estimate p of a proportion of NV instances, the distribution of proportions

is approximately Normal, with mean p and s.d. 0 = 4/ w. For testing the
hypothesis p; < p; at a 95% confidence level the critical value from tables of
the standard normal distribution is 1.65. That is, if p; < 1.650 we will say

the difference is statistically significant at the 95% level of confidence.

3.3 Results

A summary of the main results obtained is in Fig. 7. The principal points in this
tabulations are these: (1) The performance of the system with Bp = By is better
than than with Bp = By or simple random draw of molecules; and (2) The dif-
ferences in proportions for Activity and Similarity are statistically significant at
the 95% confidence level. Taken together, these results suggest that the inclusion
of symbolic relations can make a significant difference to the performance of the
generation of active molecules. We turn next to some questions of relevance to
these results:

Qty. Bp = B1 | Bp = By | Random
‘M| 5000 5000 5000
|M/| 2058 2160 2877
Act |0.47 (0.01) 0.43 (0.01) 0.34 (0.01)
Sim|0.14 (0.01) 0.11 (0.01) 0.00 (0.00)

Fig. 7. Summary of system performance. Bp = B; denotes that the discriminator has
access to both propositional and relational domain-knowledge; Bp = By denotes that
the discriminator has access to propositional domain-knowledge only. Random denotes
a random draw of molecules from the unconditional molecule generator G1. M denotes
the set of molecules drawn (from the conditional generator, or from the unconditional
generator for Random). M’ denotes the set of acceptable molecules generated in the
sample of M molecules (acceptable molecules satisfy molecular constraints defined on
molecular properties). Act denotes the proportion of M’ that are predicted active
(the proxy model predicts an pIC50 > 6.0); Sim denotes the proportion of M’ that
are similar to active target inhibitors (Tanimoto similarity to active JAK2 inhibitors >
0.75). The numbers in parentheses denotes the standard deviation in the corresponding
estimate.

Better Discriminators? A question arises on whether the differences in pro-
portions would be different if we had compared against a different discriminator
capable of using Bp = By. Since By is essentially propositional in nature, any
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of the usual statistical discriminative approaches could be used. We have found
replacing the BotGNN with an MLP with hyper-parameter tuning resulted in
significantly worse performance than a BotGNN with Bp = B;. We conjecture
that similar results will be obtained with other kinds of statistical models. On
the question of whether better discriminators are possible for Bp = Bj, we note
results in [4] show BotGNNs performance to be better than techniques based on
propositionalisation or a direct use of ILP. Nevertheless, better BotGNN mod-
els than the one used here may be possible. For example, we could construct
an activity prediction model for the JAK2 homologues using a state-of-the-art
predictor like Chemprop. The prediction of this model could be used as an ad-
ditional molecular property by the BotGNN.

Better Generators? Our generators are simple language models based on vari-
ational auto-encoders. Substantial improvements in generative language models
(for example, the sequence models based on attention mechanism [17,18]) sug-
gest that the generator could be much better. In addition, the rejection-sampling
approach we use to discard sample instances that fail constraints in B¢ is in-
herently inefficient and we suggest that the results here should be treated as a
baseline. The modular design of our system-design should allow relatively easy
testing of alternatives.

Finally, we consider how samples from the conditional generator can be used
to identify potential molecules for synthesis and testing in hit-confirmation as-
says. We propose a selection based on a combination of (predicted) activity and
similarity to the existing inhibitors (when these are unavailable, we would have
to rely on models constructed with the target’s homologues). Using these mea-
sures, there are two surprising subsets of molecules. Molecules in S are those
that are similar to JAK?2 inhibitors (Tanimoto similarity > 0.75), but have a low
predicted activity (substantially lower than 6.0); and molecules in S are signifi-
cantly different to the JAK2 inhibitors (Tanimoto similarity < 0.5), but have a
high predicted activity (substantially higher that 6.0).° For the sample in this
paper, S = (). However S # () and can provide interesting candidates for novel
inhibitors We exemplify this with a chemical assessment of 3 elements from S
is shown Fig. 8. Molecule 1562 is identified as a possible candidate for synthesis
and hit confirmation.

4 Related Work

Recent applications of Al-based methods have shown promise in transforming
otherwise long and expensive drug discovery process [21,22]. The initial stud-
ies were focused on exploring vast, yet unexplored chemical space for a better
screening library [23]. Some works focused towards drug-like property optimiza-
tion which helped in biasing the models to generate molecules with the properties
of interest [22,24,25]. The efficiency of the models to generate chemically valid
molecules with optimized properties has significantly improved [9,24]. There are

5 A good reason to consider dissimilar molecules is that it allows us to explore more
diverse molecules.
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Discard this molecule.

551

This molecule has very low similarity to
known JAK2 inhibitors. Also none of
the groups specific to JAK2 could be
identified by the substructure search.
However, the sulfonamide group com-
monly found in JAK family inhibitors
was found to be present (highlighted)

Act = 9.04

1548 Sim = 0.22

Despite low similarity to existing
JAK2 inhibitors, 1562 had one JAK2-
selective subgroup and a group com-
mon to JAK inhibitors, indicating po-
tential to act as JAK family inhibitor,
but the selectivity to JAK2 cannot
be confirmed. Possibly interesting new
scaffold (highlighted) and worth pursu-
ing further.

Act = 9.49

1562 Sim = 0.32

Fig. 8. A chemical assessment of possible new JAK2 inhibitors. The molecules are
from the sample of molecules from the conditional generator, that are predicted to
have high JAK2 activity, and are significantly dissimilar to known inhibitors. The
assessment is done by one of the authors (AR), who is a computational chemist. The
assessment uses structural features and functional groups identified for the JAK2 site
in the literature [9,19,20].

also attempts to build molecule generation models against novel target proteins,
where there is a limited ligand dataset for training the model [9,26].

Recurrent Neural Networks (RNNs) are a popular choice for molecule gen-
eration. For example, [27] propose a bidirectional generative RNN, that learns
SMILES strings in both directions allowing it to better approximate the data dis-
tribution. Attention-based sequence models such as transformers have recently
been used for protein-specific molecule generation [28]. There are also generative
models, for instance, masked graph modelling in [29], that attempts to learn a
distribution over molecular graphs allowing it to generate novel molecule with-
out requiring to dealing with sequences. Some generative modelling techniques
to molecule generation are surveyed in [30].

Incorporating domain-knowledge into deep neural networks has shown con-
siderable success over the years. Possibly the earliest approach is propositional-
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isation [31,32] leading to construction of deep relational machines [33,34] where
the deep network is a multi-layered perceptron. Recent studies on domain-
knowledge inclusion includes: vertex-enrichment [35], bottom-graph construc-
tion via [4]. A recent survey presents a more elaborate discussion on various kind
of domain-knowledge and their inclusion into deep neural networks [36].

5 Concluding Remarks

Incorporating some form of domain-knowledge into Al-based scientific discovery
has been emphasised strongly in [37]. A cutting-edge example of this form of
scientific discovery is the Robot Scientist [3], the latest generation of which—
Eve-is concerned with automating early-stage drug-design. At the heart of Eve
is the development of QSAR models. To the best of our knowledge, generation
of molecules is restricted to a library of known chemicals; and the use of domain-
knowledge is limited to pre-defined features. In this work, we have proposed an
approach that can generate novel molecules drawn from the very large space of all
possible small molecules, rather than pre-defined libraries; and we use a method
that allows the inclusion of relational domain-knowledge. The paper makes the
following contributions: (1) We have constructed a complete end-to-end neural-
symbolic system that is capable of generating active molecules that may not
be in any existing database; (2) We have demonstrated usage of the system on
the classic chemical problem on Janus kinase inhibitors. Importantly, working
with a computational chemist, we have shown how the system can be used
to discover an active molecule based on entirely new scaffolds; (3) The results
reaffirm the conclusions from [4] that inclusion of relational domain knowledge
through the use of ILP techniques can significantly improve the performance of
deep neural networks. To the best of our knowledge, the system-design is the first-
of-a~kind combination of neural generative models, techniques from Inductive
Logic Programming and symbolic domain-knowledge representation for lead-
discovery in early stage drug-design, and is of relevance to platforms like Eve.
Our system design is intentionally modular, to allow “plug-and-play” of dis-
criminators and generators. Indeed, there is already evidence from the construc-
tion of language-models that the VAE-based generators we have used could be
replaced by transformer-based deep networks. Thus, an immediate next step
would be to replace the existing generators with pre-trained language models
like GPT-2. We would also expect that molecular constraints would include both
hard- and soft-constraints (unlike here, where only hard-constraints are used).
This may presage a move to a probabilistic logic representation of the domain-
knowledge. On discriminators, BotGNNs continue to be a good choice for inclu-
sion of symbolic knowledge into deep networks, although, as we have pointed out,
the BotGNN model could be improved by inclusion as part of domain-knowledge,
results from models constructed by programs like like Chemprop (the extensive
use of fingerprints by such programs is essentially a form of relational informa-
tion), and also the possibility of inclusion of 3-dimensional constraints (see for
example, [38]). Looking beyond the goal of novel molecule generation, a promis-
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ing line of research concerns the development of schedules for synthesis of new
molecules. Of special interest is to consider if techniques for experiment-selection
could be adopted for prioritising molecules for synthesis.

Acknowledgements AS is a Visiting Professorial Fellow at UNSW, Sydney; and a TCS
Affiliate Professor. We thank Indrajit Bhattacharya for thoughtful discussions on system-design.
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A Domain-Knowledge used in Experiments

The domain constraints in Bg are in the form of constraints on acceptable
molecules. These constraints are broadly of two kinds: (i) Those concerned
with the validity of a generated SMILES string. This involves various syntax-
level checks, and is done here by the RDKit molecular modelling package; (ii)
Problem-specific constraints on some bulk-properties of the molecule. These are:
molecular weight is in the range (200, 700), the octanol-water partition coeffi-
cients (logP) must be below 6.0, and the synthetic accessibility score (SAS) must
be below 5.0. We use the scoring approach proposed in [39] to compute the SAS
of a molecule based on its SMILES representation.

The domain-knowledge in Bp broadly divides into two kinds: (i) Proposi-
tional, consisting of molecular properties. These are: molecular weight, logP,
SAS, number of hydrogen bond donors (HBD), number of hydrogen bond accep-
tor (HBA), number of rotatable bonds (NRB), number of aromatic rings (Num-
Rings), Topological Polar Surface Area (TPSA), and quantitative estimation
of drug-likeness (QED); (ii) Relational, which is a collection of logic programs
(written in Prolog) defining almost 100 relations for various functional groups
(such as amide, amine, ether, etc.) and various ring structures (such as aromatic,
non-aromatic etc.). The initial version of these background relations was used
within DMax chemistry assistant [11].

B Proxy Model for Predicting Hit Confirmation

A proxy for the results of hit confirmation assays is constructed using the assay
results available for the target. This allows us to approximate the results of
such assays on molecules for which experimental activity is not available. In
practice, if such target-inhibition information is not available, then a proxy model
would have to be constructed by other means (for example, using the activity of
inhibitors of homologues).

We use the state-of-the-art chemical activity prediction package Chemprop.”
We train a Chemprop model using the data consisting of JAK2 inhibitors and
their pIC50 values. Chemprop allows the construction of both classification and
regression models. The classification model is more robust, since pIC50 values
are on a log-scale. We use the classification model for obtaining the results in
Fig. 7, and we use the prediction of pIC50 values from the regression model as
a proxy for the results of the hit-confirmation assays.

"It is likely that a BotGNN with access to the information in Bp along with the
Chemprop prediction would result in a better proxy model. We do not explore this
here.
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