
Using dynamic cache management techniques to reduce energy in a

high-performance processor �

Nikolaos Bellas, Ibrahim Hajj, and Constantine Polychronopoulos

Department of Electrical & Computer Engineering

and the Coordinated Science Laboratory

University of Illinois at Urbana-Champaign

1308 West Main Street, Urbana, IL 61801, USA

fnikos,hajjg@uivlsi.csl.uiuc.edu

Abstract

In this paper, we propose a technique that uses an additional
mini cache, the L0-Cache, located between the instruction
cache (I-Cache) and the CPU core. This mechanism can pro-
vide the instruction stream to the data path and, when man-
aged properly, it can e�ectively eliminate the need for high
utilization of the more expensive I-Cache. In this work, we
propose, implement, and evaluate a series of run-time tech-
niques for dynamic analysis of the program instruction access
behavior, which are then used to proactively guide the access
of the L0-Cache. The basic idea is that only the most fre-
quently executed portions of the code should be stored in the
L0-Cache since this is where the program spends most of its
time.

We present experimental results to evaluate the e�ective-
ness of our scheme in terms of performance and energy dissipa-
tion for a series of SPEC95 benchmarks. We also discuss the
performance and energy tradeo�s that are involved in these
dynamic schemes.

1 Introduction

As processor performance continues to grow, and high perfor-
mance, wide-issue processors exploit the available Instruction-
Level Parallelism, the memory hierarchy should continuously
supply instructions and data to the data path to keep the
execution rate as high as possible. Very often, the memory
hierarchy access latencies dominate the execution time of the
program. The very high utilization of the instruction memory
hierarchy entails high energy demands for the on-chip I-Cache
subsystem.

In order to reduce the e�ective energy dissipation per in-
struction access, we propose the addition of a small, extra
cache (the L0-Cache) which serves as the primary cache of the
processor, and is used to store the most frequently executed
portions of the code, and subsequently provide them to the
pipeline. Our approach seeks to manage the L0-Cache in a
manner that is sensitive to the frequency of accesses of the
instructions executed. It can exploit the temporalities of the
code and can make decisions on-the-
y, i.e., while the code
executes.

The problem that the dynamic techniques seek to solve is
how to select basic blocks1 to be stored in the L0-Cache while
the program is being executed. If a block is selected, the CPU
will access the L0-Cache �rst; otherwise, it will go directly to
the I-Cache. In case of an L0-Cache miss, the CPU is directed
to the I-Cache to get the instruction and, at the same time,
to transfer the instruction from the I-Cache to the L0-Cache.
A penalty of one clock cycle has to be paid in case of an L0-
Cache miss. The L0-Cache is loaded with instructions from
the I-Cache after a miss.

The paper is organized as follows: in section 2, we review
previous work regarding energy and power minimization in
the microarchitectural level, as well as dynamic management
of the memory hierarchy for performance enhancement. Next,
in section 3 we brie
y describe the hardware that we use, and,
in section 4, we explain the basic idea behind our scheme. Sec-
tion 5 details our solution to dynamic selection of basic blocks
to be cached in the L0-Cache, and gives several techniques
that trade o� delay and energy reduction. The experimental
results for each technique are also given in section 5. The
paper is concluded with section 6.

2 Related Work

The area of power minimization at the architectural and soft-
ware levels is relatively new. The impact of memory hierar-
chy in minimizing power consumption, and the exploration of
data-reuse in order to reduce the power required to read or
write data in the memory is addressed in [1].

The �lter cache [2] tackles the problem of large energy
consumption of the L1 caches by adding a small, and thus more
energy-e�cient cache between the CPU and the L1 caches.
The penalty to be paid is the increased miss rates and, hence,
longer average memory access time.

In [3], the addition of a compiler-managed extra cache (the
Loop-Cache) is proposed that amends the large performance
degradation of the �lter cache. In this scheme, the compiler
generates code that exploits the new memory hierarchy by
maximizing the hit rate of the L-Cache.

The work in [4] focuses on the excessive energy dissipation
of high-performance, speculative processors that tend to exe-
cute more instructions than are actually needed in a program.
The CPU stops execution in the pipeline when there is a large
probability of wrong path execution, and it resumes only when
the actual execution path is detected.

There has been an extensive research e�ort lately on tech-
niques to improve the memory hierarchy performance through

1A basic block is a sequence of instructions with no transfers in and
out except possibly at the beginning or end.



dynamic techniques. Along this line, the authors in [5] present
techniques for dynamic analysis of program data access behav-
ior, which are then used to guide the placement of data within
the memory hierarchy. Data that are expected to have little
reuse in the cache are bypassed and are not placed in the L1
D-Cache.

The techniques proposed in [5] can also be used in our
scheme to manage the caching of instructions in the L0-Cache.
They can detect the most frequently executed portions of the
code dynamically, and, then, direct the L0-Cache to store only
those portions. However, these techniques require the addition
of extra hardware in the form of extra tables or counters to
keep statistics during execution. The extra hardware dissi-
pates energy, and can o�set the possible energy gains from
the usage of the L0-Cache. To make the dynamic techniques
attractive for low energy, we need to use hardware that already
exists in the CPU. The hardware we will use in this work is
the branch prediction mechanism.

3 Branch prediction and con�dence estimation{A brief overview

As the processor speed increases and instruction-level paral-
lelism becomes widely used, conditional branches pose an in-
creasingly heavy burden for the growth of uniprocessor per-
formance. Branch prediction is the most popular method to
increase parallelism in the CPU, by predicting the outcome
of a conditional branch instruction as soon as it is decoded.
Provided that the branch prediction rate is high, the pipeline
executes from the correct path and avoids unnecessary work
most of the time.

The branch prediction problem can actually be divided into
two subproblems. The prediction of the direction of the branch
and the prediction of the target address if the branch is pre-
dicted to be taken. Both subproblems should be solved for the
branch prediction to be meaningful. In this work, we are only
interested in the prediction of the branch direction.

3.1 Previous work on branch prediction

Successful branch prediction mechanisms take advantage of
the non-random nature of branch behavior [6]. Most branches
are either taken or not-taken. Moreover, the behavior of a
branch usually depends on the behavior of the surrounding
branches in the program.

PC

Counts

Branch 
prediction

Branch
address

Figure 1: Bimodal branch predictor. Each entry in the table
is a 2-bit saturated counter.

Bimodal branch predictor. The bimodal branch pre-
dictor in Fig. 1 takes advantage of the bimodal behavior of
most branches. Each entry in the table shown in Fig. 1 is a
2-bit saturated counter which determines the prediction. Each
time a branch is taken, the counter is incremented by one, and
each time it falls through it is decremented by one (Fig. 2).
The prediction is done by looking into the value of the counter:
if it less than 2, the branch is predicted as not taken; other-
wise, it is predicted as taken. By using a 2-bit counter, the

predictor can tolerate a branch going into an unusual direction
once.

Strongly
Not Taken

Weakly 
Not Taken

Strongly
Taken

Weakly 
Taken

Taken

Not Taken
Taken

Not
Taken

Not Taken

Taken

Not Taken

1

2
3

0

Taken

Figure 2: FSM for the 2-bit saturated counters.

The table is accessed through the address of the branch
using the program counter (PC). Ideally, each branch has its
own entry in the table, but for smaller tables multiple branches
may share the same entry. The table is accessed twice for
each branch: �rst to read the prediction, and then to modify
it when the actual branch direction has been resolved later in
the pipeline.

PC

Counts

Branch 
prediction

GBH

XOR

Combined
Global Hist. &
Branch address

Figure 3: Global branch predictor with index sharing.

Global branch predictor. In the bimodal brach pre-
diction method, only the past behavior of the current branch is
considered. Another scheme is proposed in [7] which also con-
siders the behavior of other branches to predict the behavior
of the current branch. This is called global prediction, and the
hardware implementation is similar to the implementation of
the bimodal method (Fig. 3). The di�erence is that the table
with the counters is accessed with the Global Branch History
(GBH) register, which contains the outcome of the n most
recent branches. A single shift register, which records the di-
rection taken by the nmost recent branches, can be used. This
information is combined with the address of the branch under
consideration (via XOR or concatenation) to index the table
of counters. This predictor is called global branch predictor
with index sharing.

McFarling branch predictor. Finally, McFarling [8]
combines two predictors to achieve better results. In Fig. 4,
a McFarling predictor is shown which consists of three tables.
The tables PR1 and PR2 contain the counters for the two
independent predictors, and the selector counter determines
which predictor will be used to give the prediction. The two
predictors can be any of the predictors we discussed in the
previous paragraphs. McFarling found out that the combina-
tion of a local [9] and a global predictor with index sharing
gives the best results.

Each entry in the selector counter contains a 2-bit satu-
rated counter. This counter determines which predictor will
be used for the prediction and is updated after the direction
of the branch has been resolved. The counter is biased to-
wards the predictor that usually gives correct prediction for
that particular branch.



PC

Branch
address

PR1 PR2

Counts1 Counts2Counter
Selector

Figure 4: McFarling branch predictor.

3.2 Previous work on con�dence estimation

In many cases computer architects want to assess the quality
of a branch prediction and determine how con�dent the ma-
chine is that the prediction will be correct. The relatively new
concept of con�dence estimation has been introduced recently
to quantify this con�dence and keep track of the quality of
branch predictors [10].

The con�dence estimators are hardware mechanisms that
are accessed in parallel with the branch predictors when a
branch is decoded, and they are modi�ed when the branch
direction is resolved. They characterize a branch prediction
as \high con�dence" or \low con�dence" depending upon the
history of the branch predictor for the particular branch. For
example, if the branch predictor predicted a branch correctly
most of the time, the con�dence estimator would designate this
prediction as \high con�dence," otherwise as \low con�dence."
We should note that the con�dence estimation mechanism is
orthogonal to the branch predictor used. In other words, we
can use any combination of con�dence estimators and branch
predictors.

Fetch Decode Issue Writeback Commit

I-Cache

Instruction
Stream

Branch
Predictor

Prediction

Update

L0-Cache

Figure 5: Pipeline microarchitecture

Figure 5 shows the pipeline with the extra cache and the
branch predictor. A branch is decoded at the front end of the
pipeline, but its direction is only resolved when it is executed.

4 Basic idea of the dynamic management scheme

The dynamic scheme for the L0-Cache should be able to select
the most frequently executed basic blocks for placement in the
L0-Cache. It should also rely on existing mechanisms without
much extra hardware investment if it is to be attractive for
energy reduction.

The branch prediction in conjunction with the con�dence
estimator mechanism is a reliable solution to this problem.
During program execution, the branch predictor accumulates
the history of branches and uses this history to guess the
branch behavior in the future. Since the branch predictor
is usually successful in predicting the branch direction, we
can assume that predictors describe accurately the behavior
of the branch during a speci�c phase of the program. Con-
�dence estimators provide additional information about the
steady-state behavior of the branch.

For example, a branch that was predicted \taken" with
\high con�dence" will be expected to be taken during program

execution in that particular phase of the program. If it is not
taken (i.e., in case of a misprediction), it will be assumed to
behave unusually. Of course, what is \usual" or \unusual"
behavior in the course of a program for a particular branch
can change. Some branches can change behavior from mostly
taken to mostly untaken during execution. Moreover, many
branches, especially in integer benchmarks, can be in a gray
area, and not have a stable behavior with respect to direction,
or can follow a complex pattern of behavior.

B1

B2

B4

B5

B6

B3

B7

Figure 6: An \unusual" branch direction leads to a rarely
executed portion of the code.

If a branch behaves \unusually," it will probably drive the
thread of control to a portion of the code that is not very
frequently executed. The loop shown in Fig. 6 executes the
basic blocks B1; B2, and B3 most of the time, and it seldom
executes B4;B5, and B6. The branch at the end of B1 will be
predicted \not-taken" with \high con�dence." If it is taken,
it will drive the program to the rarely executed branch, i.e.,
it will behave unusually. A similar situation exists for B3 and
B7.

These observations lay the foundation for the dynamic se-
lection of basic blocks in the L0-Cache scheme. In our ap-
proach, we attempt to capture the most frequently executed
basic blocks by looking into the behavior of the branches. The
basic idea is that, if a branch behaves \unusually," our scheme
disables the L0-Cache access for the subsequent basic blocks.
Under this scheme, only basic blocks that are executed fre-
quently tend to make it to the L0-Cache. Hence, we avoid
cache pollution problems in the L0-Cache, i.e., storing there
infrequently accessed portions of the code, that replace more
frequently accessed code, and that could create con
ict misses
in the small L0-Cache.

Instructions are transferred to the L0-Cache only in case
of an L0-Cache miss. A whole block is then transferred from
the I-Cache (8 or 16 bytes in our experiments). We assume
that no prefetching mechanism exists in the memory hierarchy
system.

0

5

10

15

20

25

30

%
 M

isp
re

dic
tio

n R
ate

tomcatv
swim

su2cor

hydro2d

applu

fpppp
go

m88ksim
gcc

compress95

li
perl

Figure 7: Misprediction rate for the SPEC95 benchmarks.

Not all branches can be characterized as \high con�dence."
What is more, branch predictors are not always accurate in
predicting the direction of a branch. In Fig. 7, the branch



misprediction rates for most of the SPEC95 benchmarks are
shown. The �rst six benchmarks are 
oating point, and the
last six are integer. We use a McFarling branch predictor in
which each one of the three tables used has 2048 entries. The
bimodal and the global branch predictor with index sharing
are used as the component predictors. Branch predictors are
quite successful with numerical or computation-intensive code,
yet they sometimes fail for integer benchmarks like 099.go and
126.gcc.

In section 5 we propose various dynamic methods for the
selection of basic blocks that span the range of accuracy and
complexity. We make the realistic assumption that the proces-
sor is already equipped with a branch prediction mechanism.
We are assuming a McFarling predictor for all experiments.

5 Dynamic techniques for selecting basic blocks for the L0-
Cache

5.1 Experimental setup

To gauge the e�ect of our L0-Cache in the context of a realistic
processor operation, we simulated the MIPS2 instruction set
architecture (ISA) using theMINT [11] and the SpeedShop [12]
tool suites. MINT is a software package for instrumenting and
simulating binaries on a MIPS machine. We built a MIPS2
simulator on top of MINT which accurately re
ects the exe-
cution pro�le of the R-4400 processor. Table 1 describes the
memory subsystem base con�guration as (cache size / block
size / associativity / cycle time / latency to L2 cache in clock
cycles / transfer bandwidth in bytes per clock cycles from the
L2 Cache). Both I-Cache and D-Cache are banked both row-
wise and column-wise to reduce the access time and the energy
per access [13]. We use the tool cacti, described in [13], to es-
timate the access time of the on-chip caches, as well as the
optimal banking that minimizes the access time.

We have developed our cache energy model based on the
work by Wilson and Jouppi [13] in which they propose a timing
analysis model for SRAM-based caches [14]. Our model uses
run-time information of the cache utilization (number of ac-
cesses, number of hits, misses, input statistics, etc.) gathered
during simulation, as well as complexity and internal cache
organization parameters (cache size, block size, associativity,
banking, etc.). A 0.8 �m technology with 3.3 volts supply
voltage is assumed. These models are used for the estimation
of energy in both the I-Cache and the L0-Cache. The detailed
description of the energy models can be found elsewhere [14].

The utilization parameters are available from the simula-
tion of the memory hierarchy. The cache layout parameters,
such as transistor and interconnect physical capacitances, can
be obtained from existing layouts, from libraries, or from the
�nal layout of the cache itself. We use the numbers given
in [13] for a 0.8 �m process.

Table 1: Memory subsystem con�guration in the base ma-
chine.

Parameter Con�guration

L1 I-Cache 32KB/32/1/1/4/8
L1 D-Cache 32KB/32/2/1/4/8

5.2 Simple method without using con�dence estimators

The branch predictor can be used as a stand-alone mechanism
to provide insight on which portions of the code are frequently
executed and which are not. A mispredicted branch is assumed
to drive the thread of execution to an infrequently executed
part of the program.

Table 2: Energy results for the simple method.

Benchmark 256 B 512 B
8 B 16 B 8 B 16 B

tomcatv 0.185 0.177 0.100 0.121
swim 0.123 0.134 0.099 0.118
su2cor 0.238 0.208 0.161 0.172

hydro2d 0.125 0.137 0.091 0.115
applu 0.329 0.253 0.292 0.232
fpppp 0.574 0.365 0.566 0.361
go 0.609 0.509 0.572 0.488
m88ksim 0.435 0.315 0.382 0.288

gcc 0.556 0.445 0.515 0.420
compress95 0.437 0.349 0.338 0.290
li 0.453 0.363 0.403 0.322
perl 0.513 0.396 0.451 0.355

Table 3: Delay results for the simple method.

Benchmark 256 B 512 B

8 B 16 B 8 B 16 B

tomcatv 1.050 1.032 1.011 1.006
swim 1.028 1.017 1.015 1.008
su2cor 1.056 1.030 1.021 1.012
hydro2d 1.020 1.013 1.006 1.004
applu 1.108 1.056 1.089 1.045

fpppp 1.235 1.118 1.230 1.116
go 1.159 1.091 1.138 1.079
m88ksim 1.184 1.103 1.155 1.085
gcc 1.180 1.107 1.158 1.093
compress95 1.193 1.115 1.126 1.074

li 1.189 1.118 1.159 1.093
perl 1.225 1.138 1.188 1.114

Our strategy is as follows: If a branch is mispredicted, the
machine will access the I-Cache to fetch instructions. If a
branch is predicted correctly, the machine will access the L0-
Cache. In a misprediction, the pipeline will 
ush, and the ma-
chine will start fetching instructions from the correct address
by accessing the I-Cache. In a correct prediction, the machine
will start fetching instructions from the L0-Cache as soon as
the branch is resolved. This might well be several instruc-
tions after the branch in a high-performance, superpipelined
processor has executed.

Therefore, the instruction fetch unit (IFU) can be in either
of two states at any given time: fetch from the L0-Cache, or
fetch from the I-Cache. Only when a branch is resolved can
the state of the IFU be modi�ed. Therefore, a prediction in
the IFU, which will be proven correct when the branch will
be executed, does not trigger an L0-Cache access immediately,
but only after the actual execution of the branch. In the mean-
time, the instructions that follow the branch will be fetched
from wherever they used to be fetched.

Tables 2 and 3 show the normalized energy and delay re-
sults for the SPEC95 benchmarks. We denote the energy dis-
sipation and the execution time of the original con�guration
that uses no extra caches as unity, and normalize everything
else with respect to that. Our model accounts for all possible
stalls in the R-4400 CPU, which is used as the base machine.
The delay increase is due to the relatively high miss ratio on
the L0-Cache.

Numeric code has better energy gains and smaller perfor-
mance degradation than integer code. This is because there
is a smaller number of basic blocks in numeric code that con-
tribute signi�cantly to the execution time of the program, and,
thus, there is less contention in the L0-Cache. Also, the branch
predictor has a smaller prediction rate for integer benchmarks;
thus, the L0-Cache will not be utilized as frequently as in
the case of FP benchmarks. However, the energy gains for
non-numeric code is also very signi�cant, much more than the
method presented in [3].



5.3 Using a con�dence estimator

As we show in Fig. 7, branch predictors are not always able to
give a correct prediction. Therefore, we need a con�dence esti-
mation mechanism which, coupled with the branch predictor,
gives a better insight into the behavior of the branch.

In this scheme, the con�dence of each branch is determined
dynamically. We use the prediction of each one of the com-
ponent predictors (the bimodal and the global) to determine
the con�dence. If both predictors are strongly biased in the
same direction (both \strongly taken" or both \strongly not-
taken"), we signal a \high con�dence" branch. In any other
case, we signal a \low con�dence" branch. This methodology
uses a minimal amount of extra hardware and has been shown
to be reliable in [15].

We manage the access of the L0-Cache as follows: If a \high
con�dence" branch was predicted incorrectly, the I-Cache is
accessed for the subsequent basic blocks. Moreover, if more
than two \low con�dence" branches have been decoded, the
I-Cache is accessed. In any other case, the machine accesses
the L0-Cache.

The �rst rule for accessing the I-Cache is due to the fact
that a mispredicted \high con�dence" branch behaves \un-
usually" and probably drives the program to an infrequently
executed portion of the code. The second rule is due to the
fact that a series of \low con�dence" branches will also suf-
fer from the same problem since the probability that they are
all predicted correctly is low. The number of successive \low
con�dence" branches is a parameter of the method. If a larger
number of \low con�dence" branches is used as a parameter,
more basic blocks will be accessed from the L0-Cache.

Tables 4 and 5 show the normalized energy and delay re-
sults for the SPEC95 benchmarks.

Table 4: Energy results for the method that uses the con�-
dence estimator.

Benchmark 256 B 512 B
8 B 16 B 8 B 16 B

tomcatv 0.181 0.174 0.096 0.119
swim 0.123 0.134 0.099 0.118
su2cor 0.208 0.188 0.139 0.149
hydro2d 0.125 0.137 0.090 0.114
applu 0.369 0.293 0.338 0.276

fpppp 0.572 0.361 0.564 0.357
go 0.642 0.548 0.609 0.529
m88ksim 0.432 0.311 0.379 0.284
gcc 0.546 0.432 0.505 0.406

compress95 0.416 0.329 0.308 0.264
li 0.435 0.344 0.386 0.303
perl 0.503 0.382 0.440 0.340

Table 5: Delay results for the method that uses the con�dence
estimator.

Benchmark 256 B 512 B
8 B 16 B 8 B 16 B

tomcatv 1.046 1.029 1.008 1.006
swim 1.029 1.017 1.015 1.008

su2cor 1.059 1.034 1.025 1.014
hydro2d 1.019 1.013 1.006 1.004
applu 1.104 1.053 1.089 1.045
fpppp 1.237 1.120 1.232 1.117
go 1.149 1.085 1.130 1.074

m88ksim 1.185 1.104 1.156 1.089
gcc 1.186 1.111 1.163 1.096
compress95 1.192 1.114 1.119 1.071
li 1.194 1.122 1.164 1.097
perl 1.232 1.142 1.194 1.117

5.4 Another method using a con�dence estimator

The methods described in the previous sections tend to place
a large number of basic blocks in the L0-Cache, thus degrad-
ing performance. In modern processors, one would prefer a
more selective scheme in which only the really important ba-
sic blocks would be selected for the L0-Cache.

We use the same setup as before, but the selection mecha-
nism is slightly modi�ed as follows: the L0-Cache is accessed
only if a \high con�dence" branch is predicted correctly. The
I-Cache is accessed in any other case.

Table 6: Energy results for the modi�ed method that uses the
con�dence estimator.

Benchmark 256 B 512 B
8 B 16 B 8 B 16 B

tomcatv 0.202 0.183 0.119 0.141
swim 0.129 0.140 0.105 0.124
su2cor 0.256 0.248 0.205 0.219

hydro2d 0.138 0.151 0.105 0.130
applu 0.558 0.498 0.532 0.483
fpppp 0.602 0.405 0.595 0.401
go 0.800 0.758 0.783 0.748
m88ksim 0.473 0.361 0.419 0.334

gcc 0.694 0.627 0.667 0.598
compress95 0.563 0.498 0.486 0.452
li 0.601 0.529 0.560 0.498
perl 0.602 0.508 0.552 0.447

Table 7: Delay results for the modi�ed method that uses the
con�dence estimator.

Benchmark 256 B 512 B

8 B 16 B 8 B 16 B

tomcatv 1.046 1.024 1.009 1.005

swim 1.028 1.017 1.015 1.008
su2cor 1.041 1.023 1.015 1.008
hydro2d 1.019 1.012 1.005 1.003
applu 1.082 1.043 1.069 1.035
fpppp 1.222 1.113 1.218 1.110

go 1.073 1.044 1.063 1.038
m88ksim 1.171 1.096 1.142 1.081
gcc 1.117 1.072 1.103 1.056
compress95 1.146 1.087 1.093 1.056
li 1.149 1.092 1.123 1.073

perl 1.190 1.119 1.159 1.098

This method selects some of the very frequently executed
basic blocks, yet it misses some others. Usually the most fre-
quently executed basic blocks come after \high con�dence"
branches that are predicted correctly. This is especially true
in FP benchmarks.

Again, Tables 6 and 7 present the normalized energy and
delay results. As before, the delay results consider all the
possible stalls in the R-4400 processor.

As expected, this scheme is more selective in storing in-
structions in the L0-Cache, and it has a much lower perfor-
mance degradation, at the expense of lower energy gains. It
is probably preferable in a system where performance is more
important than energy.

5.5 Comparison of dynamic techniques

The normalized energy and delay results of the three di�erent
schemes we proposed as well as the L0-Cache without any
support (�lter cache) are shown graphically in Figs. 8 and 9,
respectively. A 512 bytes L0-Cache with a block size of 16
bytes is assumed in all cases. The graphical comparison of the
results can be used to extract useful information about each
one of the three methods.



Normalized
Energy

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

to
m

ca
tv

sw
im

su
2c

or

hy
dr

o2
d

ap
plu fp

pp
p

go

m
88

ks
im

Simple method
Confidence estimation method
Modified confidence estimation method
Filter cache

pe
rl

li

co
m

pr
es

s9
5

gc
c

Figure 8: Normalized energy dissipation for the three dynamic
methods and the �lter cache. These are the same numbers that
appeared in the tables of the previous sections.

Normalized
Delay

tom
ca

tv

sw
im

su
2c

or

hy
dro

2d

ap
plu

fpp
pp go

m88
ks

im

1.0

1.1

1.2

Simple method
Confidence estimation method
Modified confidence estimation method
Filter Cache

pe
rl

li

co
mpre

ss
95

gc
c

Figure 9: Normalized delay for the three dynamic methods
and the �lter cache. These are the same numbers that ap-
peared in the tables of the previous sections.

The last \dynamic" method is the most successful in re-
ducing the performance overhead, but the least successful in
energy gains. The modi�ed method that uses the dynamic
con�dence estimator poses stricter requirements for a basic
block to be selected for the L0-Cache than the original dy-
namic con�dence method. The �lter cache has larger energy
gains at a cost of larger performance overhead. The dynamic
management of the L0-Cache attempts to regulate the tra�c
in the L0-Cache so that the excessive number of con
ict misses
of the �lter cache is reduced.

The numeric benchmarks show the largest potential for
energy gains without a severe performance penalty. The dy-
namic techniques have a larger impact on the integer bench-
marks as is shown in the two graphs. Since a large percentage
of branches are \low con�dence" in integer benchmarks, the
machine can be very selective when it picks up basic blocks
for the L0-Cache. This is why di�erent dynamic techniques
have so di�erent energy and delay characteristics for the in-
teger benchmarks. Regulation of the L0-Cache utilization is
more 
exible in these programs.

Although the proposed dynamically-managed L0-Cache is
not as energy e�cient as the �lter cache, it does not su�er from
performance degradation as the �lter cache does, and there-
fore it may be more suitable for high-performance processors
designs.

6 Conclusion

In this work, we presented methods for \dynamic" selection
of basic blocks for placement in an extra, small cache that is
inserted between the L0-Cache and the pipeline. Since the
small L0-Cache becomes the primary cache of the CPU, we
need to place instruction within it selectively in order to reduce
the possibility of a miss. Moreover, the \dynamic" techniques
need minimal extra hardware for the �nal solution to have
important energy gains with respect to the original scheme.

We are currently investigating further improvements in the
scheme, by using \dynamic" techniques with di�erent con�-
dence estimation and branch prediction mechanisms. In ad-
dition we are looking into L0-Caches with associativity larger
than one. Associativity becomes important for small caches
since the miss rate drops dramatically.

References

[1] J. Diguet, S. Wuytack, F. Catthoor, and H. De Man, \Formal-
ized methodology for data reuse exploration in hierarchical mem-
ory mappings," in Proceedings of the International Symposium of
Low Power Electronics and Design, pp. 30{35, Aug. 1997.

[2] J. Kin, M. Gupta, and W. Mangione-Smith, \The �lter cache: An
energy e�cient memory structure," in Proceedings of the Interna-
tional Symposium on Microarchitecture, pp. 184{193, Dec. 1997.

[3] N. Bellas, I. Hajj, C. Polychronopoulos, and G. Stamoulis, \Archi-
tectural and compiler support for energy reduction in the memory
hierarchy of high performance microprocessors," in Proceedings of
the International Symposium of Low Power Electronics and De-
sign, pp. 70{75, Aug. 1998.

[4] S. Manne, D. Grunwald, and A. Klauser, \Pipeline gating: Spec-
ulation control for energy reduction," in Proceedings of the In-
ternational Symposium of Computer Architecture, pp. 132{141,
1998.

[5] Teresa Johnson and Wen-mei Hwu, \Run-time adaptive cache hi-
erarchy management via reference analysis," in Proceedings of the
International Symposium of Computer Architecture, pp. 315{326,
1997.

[6] J. Hennesy and D. Patterson, Computer Architecture{A Quanti-
tative Approach. San Francisco, CA: Morgan Kaufmann, 1996.

[7] T. Y. Yeh and Y. N. Patt, \Alternative implementations of a two-
level adaptive branch prediction," in Proceedings of the Interna-
tional Symposium of Computer Architecture, pp. 124{134, 1992.

[8] S. McFarling, \Combining branch predictors," tech. rep., DEC

WRL 93/5, June 1993.

[9] T. Y. Yeh and Y. N. Patt, \A comparison of dynamic branch pre-
dictors that use two levels of branch history," in Proceedings of the
International Symposium of Computer Architecture, pp. 257{266,
1993.

[10] E. Jacobsen, E. Rotenberg, and J. Smith, \Assigning con�dence to
conditional branch prediction," in Proceedings of the International
Symposium on Microarchitecture, pp. 142{152, 1996.

[11] J. E. Veenstra and R. J. Fowler, \MINT: A front end for e�cient
simulation of shared-memory multiprocessors," in Proceedings of
the Second International Workshop on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems (MAS-
COTS), pp. 201{207, 1994.

[12] SpeedShop User's Guide. Silicon Graphics, Inc., 1996.

[13] S. Wilson and N. Jouppi, \An enhanced access and cycle time
model for on-chip caches," tech. rep., DEC WRL 93/5, July 1994.

[14] N. Bellas, I. Hajj, and C. Polychropoulos, \A detailed, transistor-
level energy model for SRAM-based caches," in Proceedings of the
International Symposium on Circuits and Systems, 1999.

[15] D. Grunwald, A. Klauser, S. Manne, and A. Plezskun, \Con�dence
estimation for speculation control," in Proceedings of the Interna-
tional Symposium of Computer Architecture, pp. 122{131, 1998.


