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Dynamic vegetation models (DVMs) follow a process-based approach to simulate plant population demography, and 
have been used to address questions about disturbances, plant succession, community composition, and provisioning 
of ecosystem services under climate change scenarios. Despite their potential, they have seldom been used for studying 
species range dynamics explicitly. In this perspective paper, we make the case that DVMs should be used to this end and 
can improve our understanding of the factors that influence species range expansions and contractions. We review the 
benefits of using process-based, dynamic models, emphasizing how DVMs can be applied specifically to questions about 
species range dynamics. Subsequently, we provide a critical evaluation of some of the limitations and trade-offs associated 
with DVMs, and we use those to guide our discussions about future model development. �is includes a discussion on 
which processes are lacking, specifically a mechanistic representation of dispersal, inclusion of the seedling stage, trait 
variability, and a dynamic representation of reproduction. We also discuss upscaling techniques that offer promising 
solutions for being able to run these models efficiently over large spatial extents. Our aim is to provide directions for 
future research efforts and to illustrate the value of the DVM approach.

Understanding and predicting the regional and global distri-
bution of plants is fundamental due to their role in ecosys-
tem functioning (Lavorel and Garnier 2002), carbon storage 
and release (McGuire et al. 2001), and feedbacks to the 
global climate system (Sitch et al. 2008). �ere is still an 
open discussion about how the current distribution of plants 
will be impacted by climate change. Global vegetation mod-
els already consider shifts in global biome distributions; these 
models are however based on the simplified assumption that 

plants will be able to track rapid climate change (Sitch et al. 
2008). �is would require some plant species to move over 1 
km yr–1 (Loarie et al. 2009), which is particularly unlikely 
for plants with long generation times, low reproductive rates, 
or limited dispersal abilities.

�is is not to say plants will not migrate at all; range  
shifts have already been recorded for some plant species in 
response to on-going climate change (Walther et al. 2005, 
Jump et al. 2012). However not all plants are shifting their 
ranges in the way we might have expected: range contractions 
(Zhu et al. 2012), shifts in the opposite direction (Crimmins 
et al. 2011), or significant time lags (Bertrand et al. 2011) are 
just some examples. Range dynamics are transient in space 
and time, and a variety of factors influence if, when and how 
species will shift their ranges. Predicting future range shifts 
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requires a better understanding of the processes that influence 
current distributions, range expansions and contractions.

Species distribution models (SDM) use correlative statistics 
to relate environmental variables to observed species presence 
or absence (Guisan and �uiller 2005). �ese relationships are 
then used to project how a species potential habitat niche 
might shift under different environmental  
conditions. Although SDMs are the most commonly used 
tools for evaluating current and future species ranges (Dormann 
et al. 2012), their limitations and assumptions are also widely 
acknowledged (Hampe 2004, Heikkinen et al. 2006, �uiller 
et al. 2008). SDMs do not explicitly represent the processes 
that determine the boundaries of the species distribution such 
as dispersal, demography and biotic interactions (�uiller 
et al. 2013). SDMs also assume that species distributions are 
in equilibrium with the environment, even though range shifts 
will almost always involve scenarios where species are in dis-
equilibrium with the current climate (Svenning and Sandel 
2013). �ese assumptions cause uncertainty in their ability to 
predict future range shifts. �erefore, a process-based approach 
is necessary for understanding the transition phase and how 
the boundaries of ranges are determined.

Within the SDM field of research, the solution has been 
to include some processes into existing SDMs (i.e. the hybrid 
or fitted process-based models), such as dispersal (Engler et al. 
2012) and demography (papers in this issue; Dullinger et al. 
2012). In this perspective paper, we would like to promote an 
alternative way forward; improving and using dynamic, pro-
cess-based, vegetation models to advance our understanding 
and ability to simulate how processes and interactions influ-
ence plant species ranges and their shifts. We aim to do so by: 
1) emphasizing why a process-based approach would be ben-
eficial for simulations of species range shifts, 2) evaluating key 
processes to include and/or improve so as to better simulate 
range dynamics, and 3) discussing the limitations and meth-
odological challenges associated with using DVMs. We high-
light different upscaling approaches using examples, and 
address the issues of parameterization and model validation. 
Although DVMs come with their own restrictions, they pro-
vide an alternative to SDMs and thus enrich the toolbox for 
understanding climate change impacts on vegetation.

Dynamic vegetation models (DVMs)

We define a dynamic vegetation model (DVM) as a model 
that includes processes based on ecological and physiological 
knowledge of the factors influencing individual plant demo-
graphy. In particular, the following three points are constitu-
tive for a DVM. First, DVMs simulate more than one species 
or plant functional type at the same time. �erefore, a funda-
mental property of DVMs is their explicit treatment of inter-
specific competition. Second, DVMs simulate the dynamic 
changes through time in the occurrence, abundance, and 
productivity of plant species (or functional types). �ese 
changes reflect how individual plant performance is influ-
enced by environmental conditions, biotic interactions 
(mostly resource competition, but some models also include 
herbivory), and disturbances. �ird, plant population 
dynamics and demographic rates are not prescribed but are 
instead emergent properties of these models. DVMs simulate 

the processes and interactions shaping plant demography; 
including reproduction, growth, recruitment and mortality.

Using a dynamic model with multiple interacting processes 
has several advantages for studying plant range shifts. First, 
species presence or absence at a particular site is a direct conse-
quence of interactions with lower-level processes and higher-
level constraints such as the physiological response to the 
environment, dispersal limitations, biotic interactions, and 
even historical contingencies if management is taken into 
account (Schumacher and Bugmann 2006). Including multi-
ple processes and their interactions is important to capture 
non-linear and non-additive relationships (Wu and David 
2002). Second, a process-based approach is flexible to the 
development of novel interactions under new environmental 
conditions. For example, species respond to climate indepen-
dently of each other (i.e. species migrate, not communities; 
Huntley 1991) which could lead to non-analog communities 
with unknown behavior in the future (Williams and Jackson 
2007). �ird, the dynamic nature of DVMs allows us to 
address questions about when and how range shifts will occur. 
DVMs can account for long-term, transient ecological pro-
cesses like succession (Hickler et al. 2012, Bodin et al. 2013), 
as well as lags caused by dispersal limitation (Normand et al. 
2011) and biotic interactions (Svenning et al. 2014). Finally, it 
is likely that different processes are important at the leading 
versus trailing edge of a migrating species (�uiller et al. 2008). 
For long lived organisms such as trees, consideration of lon-
gevity, plasticity and tolerance can be particularly important 
for understanding local extinction rates at trailing edges, which 
in turn influence the advancement of other species.

Despite their potential, only a few studies have used 
DVMs to study range shifts explicitly. Scheller and Mladenoff 
(2008) used LANDIS-II to illustrate that the future  
northward migration of tree species in northern Wisconsin 
may strongly be limited by interspecific competition and 
landscape fragmentation. TreeMig simulated species range 
shifts along transects through Siberia and the Alps under 
future climate change (Epstein et al. 2007, Nabel et al.  
2013) and for parts of Switzerland under Holocene  
conditions (Lischke et al. 2006). LPJ-GUESS simulated  
vegetation range shifts for Sweden (Koca et al. 2006) and 
Europe (Hickler et al. 2012), however these simulations 
assumed unlimited seed dispersal.

While increasing complexity can be an advantage, it  
may be an important reason why DVMs are not used as fre-
quently to study range shifts. Complex models are difficult 
to parameterize and approach the limits of current computa-
tional resources. �e addition of processes and parameters 
makes it hard to evaluate error propagation, to understand 
the different sources of uncertainty, and their relative  
importance. Including processes also requires a good  
understanding of the underlying mechanisms, which is not 
always available. Finally, DVMs were not necessarily designed 
to study range dynamics explicitly and thus may be limited 
in their extent or comprehensiveness, or lacking important 
processes such as seed dispersal, which can have strong con-
sequences for simulating range dynamics. We address some 
of these limitations below.

We use a sample of DVMs covering all four categories 
(Box 1, Table 1) to illustrate the variation in the models 
available, and point to the gaps and processes that are  
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Dynamic global vegetation models (DGVMs) simulate biogeochemical cycles, vegetation distribution, structure and the ecological 
processes and disturbances that determine the balance between different plant types, such as establishment, competition, growth and 
mortality (Cramer et al. 2001). DGVMs include feedbacks between the atmosphere and land surface, and are often coupled with 
General Circulation Models to simulate the global climate. DGVMs typically do not simulate individual species, but group similar 
species into plant functional types (PFTs). DGVMs were designed to predict global or continental distributions of biomes, carbon 
pools and fluxes.

Hybrid DGVMs combine the generalized ecophysiological process representations of DGVMs with the detailed patch-scale 
population dynamics of forest gap models (Sato et al. 2007, Scheiter and Higgins 2009). This structure allows these models to 
simulate vertical structure and competition for light within a grid cell, as well as more realistic representations of mortality, gap 
formation and succession. Hybrid models are often applied over smaller areas at a finer resolution compared to DGVMs, which 
means the PFTs can be parameterized to better represent regional vegetation or individual species (Hickler et al. 2012).

Forest gap models simulate forest dynamics at the stand scale (typically, several hectares) by considering tree population dynamics 
on multiple patches. They include individual-based calculations of tree growth, competition for light, space and water, regeneration, 
and mortality as functions of the abiotic environment (climate, soil). The death of a large tree creates a gap in the canopy, which 
causes increased growth and recruitment in understory trees and results in forest succession (Bugmann 2001). Forest structure is 
derived by averaging the properties simulated at several patches, usually representing spatial scales  10 ha. Spatially explicit 
forest gap models include additional spatial interactions and processes such as seed dispersal, spread of disturbances or 
competition from neighboring grid cells (e.g. FORMIND, Köhler and Huth 2007; reviewed by Bugmann 2001).

Forest landscape models often apply upscaled versions of forest gap models over a grid-based landscape (typically, several 100 to  
10 000 ha) by selecting a range of methods and processes to upscale. TreeMig, for example, uses a height structured description of tree 
populations and includes seed production and dispersal (Lischke et al. 2006). LandClim is an example of a spatially explicit, stochastic 
landscape model; it simulates processes at the patch scale (i.e. growth and mortality) on annual time steps, whereas landscape-scale 
processes (i.e. disturbances, harvesting, and seed dispersal) are simulated in decadal time steps (Schumacher and Bugmann 2006).

Box 1. Brief summary of the different types of dynamic vegetation models (DVMs) mentioned in the text.

Table 1. Additional details about the models used as examples in the text. An ‘x’ means the processes is included (in parentheses, if only in 
a rather limited way), and a blank means the process is not included. Cell sizes and spatial extent refer to applications so far, which are  
mostly flexible and depend on the availability of environmental input data. Subscripts: 1Sitch et al. (2003), 2Scheiter and Higgins (2009), 
3Snell (2014), 4Scherstjanoi et al. (2013), 5Lischke et al. (2006), 6Schumacher and Bugmann (2006), 7Köhler and Huth (1998).

Dynamic vegetation model

DGVM Hybrid DGVM Forest landscape model
Forest gap 

model

LPJ-DGVM1 aDGVM22 LPJ-GUESS1 LPJ-DISP3 LPJ-Gappard4 TreeMig5 LandClim6 FORMIND7

Reproduction x x x x x x x x

Dispersal x x x x

Establishment x x x x x x x x

Reaching 
maturation 
(determined by)

age age tree height age stem diameter

Trait variability (x) x (x)

Grid cell 
resolution

 55–300 km 1 ha stand on 
a 37 km 
grid

30 m–200 km 18 km 1 km 25 m–1 km 25 m 20 m

Extent global Africa forest stand  
to global

eastern North 
America 
32 400 km2

Switzerland 
70 000km2

Switzerland 
70 000km2

500 km2 500 km2

Temporal scale day to year day to year day to year day to year day to year year year to decade day to year

Number of 
species or PFTs

9 PFTs 4 PFTs but 
variability 
within 
those types

16 species 
and PFTs

10 species  
and PFTs

15 species 30 species 30 alpine 
species, 4 
New Zealand 
species

up to 400 
species 
(grouped in 
5–15 PFTs)

typically present or missing from DVMs. We refer to 
Bugmann (2001), Lischke (2001), Scheller and Mladenoff 
(2007), and Quillet et al. (2010) for a more comprehensive 
review of DVMs.

Important elements for simulating range 
dynamics

All DVMs include formulations of the main ecological pro-
cesses determining plant population dynamics, specifically 

reproduction, establishment, growth and mortality  
(Table 2). Each of these processes is influenced by the envi-
ronment, plant physiology, competition, community  
structure, and subject to trait variability and selection  
(Fig. 1). �e representation of these processes however  
differs greatly among models. Some of these processes, such 
as reproduction and establishment, are currently included  
as very simple formulations. Additionally important pro-
cesses, such as seed dispersal and trait variability, are  
only included in a few DVMs (Table 2). We have chosen to 
focus on these four processes since we believe they could be 
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Table 2. General descriptions of how each process is typically represented in different model types (Box 1). For every model type, there will 
be exceptions however the aim of this table is to identify the common trends.

Dynamic vegetation model type

Processes DGVM Hybrid DGVM Forest landscape model Forest gap model

Reproduction Percentage of carbon allocated to seeds. Parameter based on size and/or 
species.

Parameter based on size and/or 
species.

Dispersal Perfect dispersal. Perfect dispersal for most, 
otherwise a fixed species 
(or PFT) dispersal kernel.

Fixed species (or PFT) dispersal 
kernel.

Fixed species (or PFT) dispersal 
kernel.

Establishment Climatically 
suitable PFTs 
establish 
uniformly as 
small trees.

Climatically suitable PFTs 
establish as small trees, 
abundance depending 
on environmental 
conditions at forest floor 
and (in some cases) in 
proportion to adult 
density.

Landclim – parameter based on 
species and landcover type, 
influenced by climate, soil, 
and light.

TreeMig – filters for germination 
and seedling survival, young 
tree growth and survival with 
species specific parameters.

Species specific parameters for actual 
evapotranspiration, light and 
degree-day sum determine the 
species which could establish. 
Establishment is then a stochastic 
process from that pool, limited by a 
maximum number of small trees per 
area.

Individual 
tree growth

Plant physiology approach: carbon uptake 
based on photosynthesis, respiration, and 
allometric scaling (dynamic partitioning for 
aDGVM).

Species specific growth rate, 
influenced by light, growing 
degree days and drought.

Species specific growth rate, influenced 
by light, growing degree days and 
drought.

Some gap models take a plant 
physiology approach and simulate 
growth as an emergent outcome (e.g. 
FORMIND, similar to DGVMs).

Competition Competition for light, water, nutrients and space

Disturbances Fire Small gaps created by single tree death and large gaps by stand-replacing disturbances

Fire, herbivory Fire, wind, herbivory,  
management

Fire, wind , landslides ,  
management

Perfect dispersal is the assumption that seeds can arrive at any suitable location regardless of absolute distance or barriers.
Only in spatially explicit forest gap models. For every DVM type, there are some models which include nutrient competition and some 

which do not.

Figure 1. �e interaction between processes in dynamic vegetation models (DVMs) and how they could be used for studying species  
range shifts. Each grid cell within the species range (represented by the large box) interacts with the neighbouring cells (yellow arrows).  
For each grid cell, a variety of processes are simulated (represented by the small green boxes). Blue boxes represent input, and the transfer 
of information is shown with arrows. Solid lines show the processes/links which are typically included in the DVMs, and dotted lines indi-
cate the processes/links which should be added. Highlighted in red, are the processes which are discussed in more detail in the text. �e 
frequency distributions inside each box indicate trait variability. �e image of forest structure is from FORMIND (Köhler and Huth 1998), 
the upper map uses distribution data from Little (1971) and was generated in R (  http://CRAN.R-project.org/package  maps ).
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decreasing precipitation will likely reduce mast frequency 
(Perez-Ramos et al. 2010). If reproductive effort was 
directly linked to plant performance under varying climate, 
DVMs could be used to investigate hypotheses about the 
influence of climate change on mast frequency and result-
ing effects on species range shifts.

Dispersal

�e dispersal characteristics of a plant species are a key deter-
minant of how likely it is to track climate change (Bullock 
et al. 2012) and any predictive model of transient range 
dynamics at large scales should include this process. DVMs 
have typically assumed that the colonization of new sites is 
not limited by dispersal; seeds of all species (or functional 
types) arrive every year in every simulated grid cell if  
the environmental conditions allow establishment. �is 
assumption is justifiable when projecting potential equilib-
rium vegetation under alternative climate scenarios, or  
when simulating successional dynamics at a local scale  
where dispersal limitation is unlikely. �e few DVMs that 
explicitly include seed dispersal use a fixed species/ 
PFT-specific dispersal kernel (Table 2). However, the distri-
bution of the distances travelled by seeds can be sensitive to 
wind conditions (Stephenson et al. 2007) or to the behavior 
and composition of animal dispersal agents (Morales et al. 
2013). Importantly, this variability can have a non-linear 
effect on population spread rates (Bullock et al. 2012). �ere 
is an urgent need to integrate emerging approaches for  
modeling both wind and animal dispersal of seeds into 
DVMs to better simulate transient range dynamics.

Mechanistic models are now available for simulating 
wind dispersal (Kuparinen 2006, Nathan et al. 2011). For 
local scale simulations, fine scale resolution models that 
explicitly simulate air flow and turbulence (�ompson and 
Katul 2013) might be useful for capturing seed dispersal 
and range dynamics along altitudinal gradients. For larger 
spatial extents, models such as WALD (Katul et al.  
2005) could provide new possibilities. WALD requires min-
imal parameters that are relatively straightforward to  
collect (e.g. seed release height and seed terminal velocity), 
is computationally efficient and retains links to key mecha-
nisms involved in seed transport by wind. WALD has  
also been shown to perform well in capturing rare, long-
distance dispersal events (Katul et al. 2005) that are most 
important for range shifts (Clark et al. 2001).

Significant progress has recently been made in model-
ling seed dispersal by animals (Nathan et al. 2008, Bullock 
et al. 2011). At a relatively small spatial extent, the realized 
dispersal kernel could emerge from the DVM based on 
simulated interactions between seed properties, animal 
characteristics (e.g. gut retention time, fur adhesion time), 
distribution and the spatial structure of the environment. 
�e explicit consideration of animal seed dispersal could 
significantly alter migration rates if there is a spatial  
mismatch between the plant and the disperser. �e cou-
pling with DVMs could be achieved using a hierarchical 
approach, where dispersal kernels would be generated using 
a mechanistic model for the specific landscape characteris-
tics of the local grid cell.

better represented in DVMs, and would be particularly ben-
eficial for the future application of DVMs to simulate spe-
cies’ range dynamics.

Reproduction

Plant reproductive effort is known to vary as a function of 
age and size (�omas 2011) and environmental conditions 
(Ladeau and Clark 2006, Bykova et al. 2012). �e onset of 
reproduction, or maturation age, can also be influenced by 
abiotic factors (Sakai et al. 2003). As variations in plant 
reproduction affect migration rates (Clark et al. 2001) and 
species distributions (Bykova et al. 2012), it is important to 
include these relationships in DVMs.

All DVMs include some representation of reproduc-
tion, but the implementation varies strongly between 
models (Table 2). In general, PFT or species-specific 
parameters describe seed or propagule production and the 
onset of reproduction (Table 1, 2). For example in TreeMig 
and FORMIND, the onset and amount of seed produc-
tion is determined by tree height and species (Lischke 
et al. 2006, Köhler and Huth 2007). Alternatively, in LPJ-
GUESS and aDGVM propagule production is, at least 
partly, a function of assimilated carbon or net primary 
productivity. In both cases, larger or more productive 
plants produce more seeds than smaller plants. As growth 
is determined by environmental conditions, reproduction 
is only indirectly influenced by external factors. It would 
be relatively simple to replace the existing reproduction 
parameters with functions that more directly relate seed 
production to plant characteristics such as age, and envi-
ronmental factors such as temperature and precipitation, 
provided the required empirical data are available. For 
example, a dynamic carbon allocation approach has already 
been adopted in aDGVM (Scheiter and Higgins 2009) for 
partitioning among roots, stems and leaves depending 
upon envi ronmental conditions, and could be adapted to 
include reproduction.

Using dynamic calculations for reproductive rates  
would allow DVMs to simulate some additional effects of 
global change on plant range dynamics. When grown under 
elevated CO2, trees may reach reproductive maturity  
at smaller sizes, younger ages and allocate more to repro-
duction (Ladeau and Clark 2006). If future climate change 
and increased CO2 modify life history strategies, we may 
expect to see faster migration rates (i.e. younger maturation 
age and higher fecundity) although potentially at the  
cost of shorter life spans (Sakai et al. 2003, Bugmann and 
Bigler 2011).

Interannual variability in reproduction may have  
important consequences for the dynamics of range  
expansions (Mustin et al. 2013). A direct link between 
reproduction and climate would also allow DVMs to sim-
ulate masting in a more mechanistic way (as opposed to a 
simple mast frequency based on average occurrence  
intervals). In nature, the occurrence of a masting event is 
related to large scale climatic cues, such as high summer 
temperatures during ENSO events (Koenig and Knops 
2005). Increasing temperature is expected to result in more 
frequent mast events (Schauber et al. 2002) whereas 
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(Meiners et al. 2000). More experimental studies and novel 
parameterization techniques will improve our ability to 
model plant establishment.

Trait variability

Individual plants can show large variability in traits, both 
within and between populations. �eoretical evidence 
suggests that ignoring intra-specific variability may cause 
substantial errors in projections of species range dynamics 
(Atkins and Travis 2010, Bocedi et al. 2013). Local  
adaptation, phenotypic plasticity and blocking effects by 
maladapted individuals (Borges 2009) could influence the 
rate of species range expansions, contractions and local 
extinctions. Traditionally, DVMs have not explicitly 
treated variability, plasticity or heritability of traits: species 
(or PFTs) have one set of parameters that is applied  
to every individual. However, some traits in these  
models vary in response to climatic conditions, such as the 
leaf to fine root ratio, leaf nitrogen content and leaf area to 
sapwood cross-sectional area ratio (Sitch et al. 2003, 
Hickler et al. 2006), and the aDGVM2 model even allows 
each individual to have a potentially unique set of traits 
(Scheiter et al. 2013). Due to the likely importance of trait 
variability for range dynamics, we propose several 
approaches that could be used to incorporate intra-specific 
(or intra-PFT) variability in DVMs.

�e first approach is the simplest, and would require 
minimal or no modifications of the existing DVMs.  
Each species (or PFT) would be composed of a finite set of 
environment types, each of which is locally adapted to differ-
ent environmental conditions. For example, rather than 
simulating broadleaf evergreen trees as a single PFT where 
each individual or cohort has the exact same parameters, 
broadleaf evergreen trees would be simulated as ten PFTs. 
Each simulated individual would be assigned randomly  
to one of these ten types that, for example, would range  
from cool- to warm-adapted, with temperature-adapted  
base respiration rates (Lavigne and Ryan 1997). Heritability 
could be coarsely captured by having the offspring retain the 
identical environmental type as their parent. �is assump-
tion could be relaxed to accommodate a situation where 
heritability is less than 100% by allowing an individual’s 
phenotype to deviate to one of the neighbouring environ-
mental types with a given probability.

A second method would take a quantitative genetics 
approach. �is method assumes that many alleles contrib-
ute to variability in local adaptation, but does not explicitly 
simulate alleles or loci. Each individual or cohort would 
hold a single quantitative trait value determining the condi-
tions to which it is optimally adapted. Continuous variabil-
ity in local adaptation to one or more environmental 
conditions would be allowed, such as a temperature optima 
and drought tolerance. In the simplest case, offspring  
would have the same ‘environmental condition values’ as 
their parent with some degree of randomness (e.g. values 
would be drawn from a normal distribution with a mean 
equal to that of its parent).

A third approach takes advantage of the individual- 
based structure of some DVMs and allows each individual  

One important consideration will be the thematic reso-
lution of plants (i.e. species or PFTs) and knowledge about 
their seed dispersal vectors. Simulating the range dynamics 
at a species level would require a model to describe the  
specific vector that is known to be the most important dis-
persal agent for each species, as well as simultaneously 
requiring a distribution model for the specific dispersing 
agents. However, for DVMs that use a PFT resolution, it 
may be more appropriate to use ‘seed dispersal types’ 
(Vittoz and Engler 2007), where each dispersal type uses a 
more generic dispersal pattern (e.g. movement rules or 
landscape-dependent kernel).

It will be relatively straightforward, albeit computation-
ally expensive, to incorporate such mechanistic dispersal 
modules. �e advantage is that DVMs will readily incorpo-
rate the effect of climate (Bullock et al. 2012, Travis  
et al. 2013) and landscape contingencies (Carlo et al. 2013) 
on seed dispersal, rather than simply assuming a fixed distri-
bution kernel.

Establishment

Plant establishment in new areas is a crucial step for range 
expansion (Germino et al. 2002, Körner 2012). Seedlings 
are small (commonly  15 cm high), and thus respond to 
environmental variability at a much smaller scale, exhibit 
different environmental sensitivities and react faster to  
environmental stress than older trees (Barbeito et al.  
2012). Factors specifically important for seedling success are 
microclimate and microtopography (Scherrer and Körner 
2010), facilitation and competition by ground vegetation 
(Germino et al. 2002, Venn et al. 2009), herbivory (Myster 
2009), and nutrients (Zurbriggen et al. 2013). Due to  
the large number of seedlings and the large degree of stochas-
ticity in this stage, DVMs usually simulate establishment as 
the transition of a young tree above a threshold size, such as 
minimum tree diameter in FORMIND (e.g. stem diameter 
of 10 cm; Köhler and Huth 2007) or minimum tree height 
in TreeMig (e.g. height above 1.37 m; Lischke et al. 2006). 
�is implies that the seedling stage is not explicitly included, 
and most DVMs would require an additional size or age class 
to distinguish seedlings from older trees (Wehrli et al. 2007, 
Zurbriggen et al. 2013). As seedlings may have different 
environmental constraints, the transition from the seedling 
to later stages should be represented more explicitly in DVMs.

For example, a refined submodel for regeneration that 
included herbivory and shading was found to improve simu-
lated species composition and successional dynamics in a 
forest gap model (Wehrli et al. 2007). �us, submodels that 
focus on the establishment phase and simulate seedlings as 
individuals (Peringer and Rosenthal 2011) could be used as 
part of a stochastic, multi-scale approach. Seedlings would 
be simulated at a fine scale and adult trees at coarser spatial 
and temporal resolutions. Alternatively, it may be more  
efficient to use these complex individual-based models  
to upscale the processes and their influencing factors (see 
upscaling section below). Although the establishment phase 
is a crucial step in range shifts, the large variability in this 
stage can make it difficult to establish clear relationships 
between environmental factors and establishment success 
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�us, more empirical and theoretical work needs to be done 
before mortality processes can be represented in DVMs in a 
meaningful way.

Another example is how rising atmospheric CO2  
levels could affect competition among plants by promoting 
changes in growth (Dawes et al. 2011) or water-use efficiency 
in trailing edges (Peñuelas et al. 2008), with strong conse-
quences for range dynamics. In fields such as this, more  
synthesis work is required that must be based on a solid the-
oretical basis (Bugmann and Bigler 2011), as additional 
short-term experiments are unlikely to provide conclusive 
answers.

Further examples include global warming impacts  
on seed development, germination and establishment 
(Milbau et al. 2009), understanding frost tolerance of  
different plant tissues (Charrier et al. 2013), how changes in 
growing season length, growing degree-days and chilling 
temperature will affect plant phenology (Zhao et al. 2013), 
and the importance of soil processes (Lenka and Lal  
2012). Overall, models are a reflection of what we know, and 
they never will be better than the underlying data and our 
knowledge about ecological processes. Developing a solid 
theoretical understanding of the processes briefly reviewed 
above will allow us to incorporate them into DVMs  
and improve our ability to predict species range dynamics.

Methodological challenges and how to cope 
with them

While it is possible to improve existing processes and add 
more, this can lead to increasingly complex models that are 
difficult to parameterize. Furthermore, a common require-
ment for simulating species range shifts is to increase  
simulated spatial extents, which also increases the computa-
tional requirements. As the computational demand can be 
reduced only partly with technical methods (e.g. paralleliza-
tion, optimizing the code), we need to consider scaling  
solutions (Lischke et al. 2007). �ese are more than a meth-
odological technique, however. �ey also help to understand 
how local scale processes effectively influence larger scale 
community organization.

For our purposes, scaling refers to all methods that 
change the spatial, temporal or thematic resolution of a 
model (thematic resolution refers to the description of state 
variables). Upscaling refers to the derivation of models  
that operate at coarser resolution (Fig. 2), often with sim-
plified model formulations while retaining the essential 
information and dynamics of the original model.  
Upscaling approaches are complicated by the nonlinearity 
of processes, interactions, feedbacks and heterogeneity,  
and range from pure or approximated analytical derivations 
of aggregated model formulae to heuristic assumptions,  
or the creation of an entirely new model (reviewed by 
Lischke et al. 2007). In most situations, analytical deriva-
tions are not feasible for vegetation models due to the com-
plexity of resource competition. �erefore upscaling is 
often conducted heuristically, with subsequent tests of the 
upscaled model against simulations using the original 
model (Acevedo et al. 1995).

to adopt a potentially unique combination of trait values. 
For example, plants in aDGVM2 are defined by traits that 
specify the influence of the environment on rates of plant 
growth, respiration, carbon assimilation and allocation 
(Scheiter et al. 2013). Individuals with a poor combination 
of traits die, and those with a better combination survive  
and reproduce. Tradeoffs between traits prevent the emer-
gence of an individual adapted to all conditions. Inheritance 
of traits is managed by a genetic optimization algorithm 
which allows mutation and recombination to define the 
combination of traits in seeds, while at the same time restrict-
ing gene flow to within suites of individuals. �e assemblages 
of plant communities that emerge are adapted to a site’s 
biotic and abiotic conditions (Scheiter et al. 2013).

A fourth method – the most complex, although  
potentially the most biologically realistic – takes an allelic 
modeling approach (Schiffers et al. 2013). In this case, a 
finite number of loci contribute to the degree of local  
adaptation to particular conditions. A sophisticated genetic 
architecture (e.g. linkage, epistasis, pleiotropy) underpin-
ning the traits can be incorporated. �is fourth option  
would allow DVMs to generate reliable estimates for the  
rate of local adaptation. Unfortunately, the information 
needed to parameterize models to include this degree of eco-
logical genetic realism is not yet available.

In general, parameterizing models that incorporate local 
adaptation will be a major challenge. However, we anticipate 
that considerable progress could be made over the next 
decade using the first three methods. For example, for the 
first two methods, data from reciprocal transplant or  
warming experiments can provide the information needed  
to define population dependent plasticity of physiological 
traits (Gunderson et al. 2000, Ishizuka and Goto 2012), 
while species distribution maps or experiments can indicate 
the range of climatic tolerances for each species. �ere is  
also potential for inverse modeling approaches (Hartig  
et al. 2012) to infer the characteristics of local adaptation. 
One further challenge when incorporating local adaptation 
will be in determining the starting conditions for our  
scenarios. �us careful thought will be required about  
the assumptions we make regarding initialization (e.g. in 
determining the nature of a spin-up).

Important processes that require more information

Above we discussed four processes that we believe need to  
be improved in DVMs to better simulate species’ range 
dynamics. However, other limiting processes and factors 
may be of high importance for simulating changes in  
species’ ranges. Tree mortality, for example, is a key process 
particularly for populations at the trailing edge of species dis-
tributions (Jump et al. 2009). Although progress has been 
made over the past 15 yr in the statistical modeling of tree 
mortality (Wyckoff and Clark 2002, Bigler and Bugmann 
2004, Wunder et al. 2008), the existing models do not lend 
themselves for integration into DVMs because their  
structure and parameter values appear to vary in both  
time and space (Macalady and Bugmann 2014). In addition, 
the mechanisms underlying global change-induced tree  
mortality remain hotly debated (cf. McDowell et al. 2013). 
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Figure 2. Principle of model upscaling. �e rows illustrate the different thematic and spatial scales in a forest. Entities (e.g. leaves or trees) 
differ among each other and in their spatial position, creating heterogeneity. Blue arrows indicate the dynamics within a level, i.e. temporal 
changes influenced by the same and other entities. �ese relationships can lead to feedbacks and are often nonlinear. Yellow arrows  
show interactions between entities. Higher levels can feed back (‘constrain’) to lower levels. Green arrows indicate the model upscaling. 
Upscaling means to derive formulations for the upper level variables, processes and interactions given the lower scale interactions, processes 
and variables. For example, the formulation of the upper level variables can be the average or sum of the lower level state variables. Photos 
are courtesy of H. Lischke.

Sophisticated upscaling approaches have the potential 
for extending the applicability of DVMs but have only 
started to be applied in this field. Below we discuss some 
approaches to DVM upscaling, within the scope of  
improving predictions of range dynamics. Broadly, we 
divide the approaches into those that decrease spatial reso-
lution versus those that maintain spatial resolution but 
change thematic or temporal resolution. We end the sec-
tion by discussing ways to improve model parameterization 
and evaluate simulation results.

Approach 1: decreasing spatial resolution

�ere is a strong trade-off between the spatial resolution of 
DVMs and the spatial extent of the study region (Table 1). 
DVMs that use a fine grid cell resolution typically operate 
over a smaller spatial extent (e.g. resolution of 20 m,  
spatial extent of 500 km2), whereas those that simulate 
larger areas also have coarser grid cell resolution (e.g. 50 km, 
spatial extent global). However increasing grid cell resolu-
tion is a non-trivial task. DVMs that use coarser resolu-
tions typically simulate a small patch of land (  1 ha) 
every 50 km, and assume this small area is representative 
of the entire grid cell. One of the most important issues is 
how to handle the loss of information in larger cells, 
namely within cell heterogeneity of processes and vari-
ables, and the impact of their spatial location within the 
cell on spreading rates.

Within-cell heterogeneity
As cells become coarser, we lose information about fine scale 
landscape heterogeneity. Naive upscaling of the landscape, 
such as applying the same model to drivers averaged  
over coarser cells, can lead to strong systematic biases and 
impact simulated migration rates by reducing overall disper-
sal mortality (arrival in unsuitable habitat) and inflating 
spread rates (Bocedi et al. 2012). If the frequency distribu-
tion of a driver (e.g. temperature) within a grid cell is  
known, the entire model can be run for discrete classes of the 
driver and then averaged with the frequency distributions 
(Löffler and Lischke 2001). When there is heterogeneity of 
the state variables of the model, such as heterogeneity cre-
ated by population shifts, more sophisticated upscaling 
methods may be required (e.g. scale transition theory; 
Melbourne and Chesson 2006).

Within-cell spread
When grid cell resolution is large (  10 km), as is the case 
for most DGVMs (Cramer et al. 2001), the fact that the 
location of individuals within a grid cell is unknown may 
become problematic. If we assume them to be located in the 
centre of the cell, seeds are unlikely to disperse outside  
the grid cell. If we assume them to be homogeneously  
spread over the cell (e.g. as in TreeMig and LPJ-GUESS), 
new individuals that arrive would immediately travel the dis-
tance across the entire grid cell. Such discretization errors 
have made it almost impossible, thus far, to represent seed 
dispersal in coarse-scale model applications in a mechanistic 
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way. Two approaches have recently been applied in DVMs to 
represent within cell spread.

Using within-cell patch architecture – each grid cell in 
LPJ-GUESS contains a number of replicated patches (the 
size of a patch is usually 1000 m2, Fig. 3A), and each patch 
contains multiple cohorts for each PFT. �is within- 
cell patch architecture was used to simulate dispersal 
through a grid cell (Snell 2014). New PFTs arrive in a grid 
cell (cell to cell movement was determined by seed disper-
sal kernels), and establish in just one patch. Since patches 
do not have defined locations within the cell, a random 
spatial distribution of patches was assumed (Fig. 3A) and 
the plant was considered to have crossed the cell when a 
certain proportion of patches had been occupied. �e rate 
of this within-cell filling is a classic issue for epidemiology 
when describing the spread of disease in a population 
(Berger 1981), and is often solved using a logistic growth 
function. Following this approach, LPJ-DISP uses a  
logistic curve to calculate the number of patches who had 
the potential to receive seeds from a neighbouring patch 
given a certain percentage of patch occupancy in the  
grid cell (Fig. 3B). Establishment success within each patch 
was still dependent on seed production, available space  
and competition for light. Using this approach, LPJ-DISP 
was able to realistically simulate plant migration across a 
test landscape (Fig. 3C; Snell 2014).

Using a meta-modelling approach – DVMs with fine 
resolution in time and space can be used to simulate plant 
migration over a small spatial extent using a wide range of 
initial conditions. Simulation results on the time to cross 
the grid cell can then be synthesized using statistical func-
tions of migration rates given those initial conditions and 
local environment. TreeMig has already been used for this 
purpose; simulated migration rates were related to number 
of species, drought stress and degree day (Meier et al. 2012) 
and then used in a species distribution model. Note that a 
statistical model obtained this way would be restricted by 
the range of input variables, so caution should be taken 
when attempting extrapolation to new situations. Although 
this method requires a considerable amount of computing 
effort to generate the data, it is a promising upscaling 
approach.

Approach 2: Simplify state variables and reduce 
temporal resolution

Maintaining a fine spatial resolution implies that some  
processes or state variables need to be simplified so as to 
reduce computational expenses and allow for an increase of 
the simulated spatial extent. We suggest three potential  
avenues for doing so.

‘One for many’ approach
In DVMs, it is common to stratify state variables into more 
or less homogenous groups, and to simulate only representa-
tive units. �is strategy is already employed in forest  
gap models with the cohort approach, where growth is  
calculated for one individual of the cohort and all indivi-
duals in the same cohort are identical (Bugmann 2001). 
Using PFTs instead of species is another common method 
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Figure 3. Simulating dispersal within large grid cells in LPJ-DISP 
(Snell 2014). (A) A sample 3  3 ‘landscape’ of grid cells, each grid 
cell has a number of replicate patches within. (B) Within cell spread 
rate (or filling) is determined by logistic curve. It is used to calculate 
the probability of dispersal between patches, where P is the popula-
tion of available patches for receiving seeds (i.e. have at least one 
neighbouring patch that contains the PFT) when there are p patches 
that contain reproducing adults for that PFT. �e carrying capacity, 
K, is the total number of patches in one grid cell, and r is the spread 
rate. (C) A sample of 10 simulations, the same 2 grid cells are shown 
(these would be located in position i and ii in (A)). Each line repre-
sents one simulation, the black lines show two of the 10 simula-
tions. In the solid black scenario, it takes 400 yr to cross the one cell 
(migration rate 45 m yr 1). In the dashed black scenario, it takes 
516 yr to cross the same cell (migration rate 35 m yr 1). �e  
average migration rate is 41 m yr 1. �e difference between the 
simulations is caused by stochastic processes and disturbances.
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GAPPARD to LPJ-GUESS allowed the model to simulate 
future climate change impacts at a 1 km resolution for all of 
Switzerland forests (Scherstjanoi 2013), in 10% of the time 
compared to LPJ-GUESS with 100 replicate patches  
yielding similar results. In its current form, GAPPARD is 
not suitable for simulating dispersal but it could be used  
for detecting regions of interest in a computationally effi-
cient way before detailed range shift simulations.

Aggregation of temporal resolution
Increasing the length of the (discrete) time step can help 
speed up models. �e effect of temporally variable drivers 
can be aggregated by long-term expected values for process 
rates based on the distribution of the variables (Lischke  
et al. 1997). However, when the timing of the drivers  
interacts with the model states, such as phenology, a multi-
scale approach is preferable. Multi-scale temporal simula-
tions calculate different processes at different time scales,  
and are already used in most DVMs (Table 1). For example, 
LPJ-GUESS and FORMIND calculate photosynthesis  
and water balance on a daily time step, but calculate growth 
and reproduction on an annual time scale. For simulating 
range dynamics, each of the processes reviewed above (i.e. 
reproduction, dispersal, establishment, and trait variability) 
could be a candidate for temporal upscaling, but more 
research would be needed. For example, the expensive simu-
lation of wind dispersal (hourly or daily time steps) could be 
replaced by an upscaled description of migration (annual 
time steps). A detailed upscaling study would be needed to 
test if the dynamics at the fine temporal resolution could  
be adequately captured within a longer time step. It is also 
important to note that the relevance of temporal aggregation 
increases with the length of the study period. Paleo-
applications, which simulate vegetation shifts after the  
last glacial maximum (Henne et al. 2011) are particularly 
good candidates for temporal upscaling, as time scales  
are long and uncertainty about the interannual variability in 
climatic reconstructions large (Simonis et al. 2012).

The link to reality: parameterization and validation

DVMs are built from knowledge of the underlying ecological 
and physiological processes. However, the models are only as 
good as the data used to feed them. Data are required for 
model parameterization, external data sets describing envi-
ronmental conditions, and independent observational data 
on vegetation to evaluate the simulation results.

�e traditional way to parameterize DVMs uses results 
from field measurements and from the literature to evaluate 
parameter values for a species or vegetation type. However, 
parameters based on a specific site or for particular regions 
can lead to weak model performance if applied outside the 
area for which they were initially intended (Badeck et al. 
2001) because factors not explicitly covered by the model 
may be masked by parameter values. In addition, within-
species plasticity or differences between populations can  
be similar to or larger than differences between species 
(Lavigne and Ryan 1997). Such variations need to be 
accounted for as they could impact simulated migration  
rates (Nabel et al. 2012).

used to simplify thematic resolution (Köhler et al. 2000, 
Sato et al. 2007). �e same idea can be applied to landscapes 
by simulating only representative cells. Grid cells with simi-
lar environmental drivers and species compositions often 
entail repetitive calculations in grid-based DVMs. To reduce 
this redundancy, a dynamic two-layer classification (D2C) 
concept was proposed (Nabel and Lischke 2013). With  
the D2C concept, the majority of modelled processes are 
simulated in specific representative cells that constitute a 
new coarser layer. Only those processes that can lead to  
cell-specific changes, such as seed dispersal and establish-
ment, are simulated on the original grid. �e main chal-
lenges of this concept are the organizational overhead 
required for the assignment and tracking of representative 
cells. �e main benefit is the conservation of detailed  
small-scale dynamics for simulations with a larger extent.

Simplifying vegetation heterogeneity and stochasticity
Many vegetation models rely on stochastic descriptions of 
demographic processes and disturbances to create spatial  
and temporal variability in ecosystems. However, stochastic 
processes require many replicates to estimate the mean  
and variance, and ensure adequate scaling properties 
(Melbourne and Chesson 2006). Several approaches have 
been developed to avoid these replicates while retaining 
information about their variability.

Aggregation of vegetation heterogeneity by using  
distributions – in forest gap models, vertical forest structure 
is described by cohorts of different heights and stand hetero-
geneity is maintained by simulating multiple patches at dif-
ferent development stages. Patch-to-patch variability of these 
properties is essential for shade-intolerant species to persist 
(Gravel et al. 2010). In TreeMig, the vertical structure  
was simplified by using height-structured population dyna-
mics. �e variability between patches within a grid cell  
was also simplified, by assuming that all trees within each 
height class are randomly distributed over the stand. �is 
results in dynamically changing probability distributions  
of light conditions within the stand, which in turn influence 
the process rates, and the dynamics (Lischke et al. 1998). 
�is aggregation of individuals strongly reduced the simula-
tion time to just 5% of the original time, which opened  
the way for a spatially explicit implementation. Such  
upscaling methods may however introduce errors, such as 
unrealistically fast height growth and accelerated spread.

Upscaling stochastic disturbances – forest gap models  
are strongly driven by stochastic stand-replacing  
disturbances, which require many replicates and increases 
simulation time. To reduce the simulation effort for  
disturbances, the GAPPARD upscaling method was  
developed (Scherstjanoi et al. 2013). GAPPARD uses the 
output of a single patch simulation with no disturbances 
from bare ground to determine the succession of patch states 
after a disturbance. �en, together with the probability dis-
tribution of the times since disturbance (on the basis of the 
disturbance frequency), the expectation value of the dis-
turbed forest’s state is calculated at each point in time. To 
account for temporal changes in model forcing (e.g. as a 
result of climate change), GAPPARD performs a series of 
non-disturbed simulations under different environmental 
conditions and interpolates between the results. Applying 



1194

parameterization methods and the increasing availability of 
larger databases will help alleviate some of these limitations.

Future directions

�e ability to predict current and future distributions 
requires an understanding of the processes that influence 
species range dynamics. Dynamic vegetation models already 
include many processes that are important for simulating 
species range dynamics and they provide a tool for improv-
ing our understanding of range dynamics even without  
making any modifications. Most of this paper addresses  
the processes that are lacking and other limitations when 
using DVMs. It is difficult to quantify beforehand, the 
degree to which overcoming these limitations would impact 
the simulated range shifts within the context of a given 
research question; this could only be tested by sensitivity 
analyses and comparing simulations between the extended 
and original model.

As they currently are, DVMs can offer predictions of 
range shifts under future climate change that include the 
effect of demography, competition and disturbances. �is 
should be a vast improvement over null models which assume 
no impact from biotic interactions. As DVMs simulate 
changes in vegetation type and structure, they can also be 
used to describe changes in habitat characteristics that may 
influence range expansions for other species, such as animals 
(see Linder et al. 2012 for an overview). DVMs can also  
generate relationships that can be used by other models. For 
example, DVMs could record population changes such as 
establishment, time to transition into new height classes,  
and mortality. We could use such model output to generate 
relationships between the environment and population 
demographic parameters (r, d, and K; Svenning et al. 2014). 
DVMs could also be used to estimate the competition  
matrix for the community of forest tree species, which are 
used by some SDMs to represent biotic interaction (Kissling 
et al. 2012).

It would also be very useful to see more studies which  
simulate a species range shift using both SDMs and process 
based models (Keenan et al. 2011), or studies which use 
DVMs to perform a stepwise inclusion of the processes dis-
cussed here. �ese comparisons could be used to analyze the 
relative influences of different ecological processes and inter-
actions on range dynamics, and could provide a method to 
evaluate the benefit of increasing model complexity. Such 
analyses will help to identify knowledge gaps and to direct 
future empirical and modeling work. DVMs have great 
potential to contribute to the study of vegetation range 
dynamics, and we hope to see more of this in the future.
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If we want to use DVMs to simulate species range dynam-
ics, new approaches should be incorporated in parameter 
calibration to better reflect parameter values across the  
whole species range. Bayesian methods for model fitting 
(Purves et al. 2008, Hartig et al. 2012) provide a framework 
to estimate parameter values or probability distributions of 
parameter values. �ey allow the inclusion of field data of 
different types in the estimation process (van Oijen et al. 
2005, Hartig et al. 2012) which increases the quantity of 
data that can be used for such purposes. In addition to 
Bayesian methods, further approaches of inverse modelling 
are available to identify parameter values for which no  
information or not enough direct information is available. 
For example, demographic rate parameters in forest gap 
models can be tuned so that the simulated mature forest  
corresponds in its biomass, tree density and species composi-
tion to real forests (Groeneveld et al. 2009).

Model parameterization will also benefit from the  
establishment and expansion of large vegetation databases. 
One example is the TRY database that includes information 
on life history and physiological attributes of plants  
(Kattge et al. 2011). Forest inventories are also becoming 
more available on internet platforms (e.g. USDA forest 
inventory, French NFF, Smithsonian Inst., Swiss NFI)  
offering new possibilities to estimate important plant attri-
butes (Purves et al. 2008) and testing model predictions 
(Hurtt et al. 2010). �ese databases can also be used to  
re-evaluate the parameters currently being used in DVMs.

A different approach to parameterization is that adopted 
by aDGVM2 (Scheiter et al. 2013). Here the model  
focuses on parameterizing general biophysical processes, 
such as how transpiration rate is influenced by leaf size and 
each plant has a trait that evolves within the model that 
defines its leaf size. Ultimately this approach reduces the 
dimensionality of the parameterization process, since the 
parameterization process does not define the traits of indi-
viduals, but defines the biophysical laws that influence the 
performance of these trait-states.

Evaluating simulation results is an on-going challenge for 
modellers, but necessary to determine how well the processes 
and species have been represented. �e first step of a model 
evaluation is to compare observed vegetation distribution to 
simulated distribution using modern climate. A combina-
tion of plot-based forest inventories, species distribution 
maps, potential natural vegetation maps, and remotely 
sensed data could be used to do so. Human impacts on  
the landscape and disequilibria between climate and distri-
butions (Normand et al. 2011) present a special challenge. 
Either human impact processes will have to be added to the 
model (Heiri et al. 2009) or human impact removed from 
the observational data.

�e second step is to evaluate potential range shifts simu-
lated by DVMs. �is step is more difficult because the 
involved processes are slow and operate over large temporal 
and spatial scales. Independent observational data should 
ideally represent several time-steps. Pollen-reconstructed 
landscapes are one option (Williams et al. 2004), as are  
phenomenological observations of recent altitudinal  
(Jump et al. 2012) or latitudinal (Walther et al. 2005)  
shifts of species. Data requirements have always been a chal-
lenge for modelling efforts, but recent developments in 
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