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Abstract. In order to efficiently manage nonindigenous species (NIS), predictive tools are
needed to prioritize locations where they are likely to become established and where their
impacts will be most severe. While predicting the impact of a NIS has generally proved
challenging, forecasting its abundance patterns across potential recipient locations should
serve as a useful surrogate method of estimating the relative severity of the impacts to be
expected. Yet such approaches have rarely been applied in invasion biology. We used long-
term monitoring data for lakes within the state of Minnesota and artificial neural networks to
model both the occurrence as well as the abundance of a widespread aquatic NIS, common
carp (Cyprinus carpio). We then tested the ability of the resulting models to (1) interpolate to
new sites within our main study region, (2) extrapolate to lakes in the neighboring state of
South Dakota, and (3) assessed the relative contribution of each variable to model predictions.
Our models correctly identified over 83% of sites where carp are either present or absent and
explained 73% of the variation in carp abundance for validation lakes in Minnesota (i.e., lakes
not used to build the model). When extrapolated to South Dakota, our models correctly
classified carp occurrence in 79% of lakes and explained 32% of the variation in carp
abundance. Variables related to climate and water quality were found to be the most
important predictors of carp distribution. These results demonstrate that ecological niche-
based modeling techniques can be used to forecast both the occurrence and abundance
patterns of invasive species at a regional scale. Models also yielded sensible predictions when
extrapolated to neighboring regions. Such predictions, when combined, should provide more
useful estimates of the overall risk posed by NIS on potential recipient systems.

Key words: artificial neural networks; common carp; Cyprinus carpio; ecological niche-based modeling;
impact; nonindigenous species.

INTRODUCTION

Nonindigenous species (NIS) are an increasing

management priority for governments worldwide owing

to their potential to cause severe ecological and

economic impacts. The ecological effects of invasive

species can range from modifications in ecosystem

function and community structure to the extirpation or

extinction of native species (Lodge 1993, Clavero and

Garcia-Berthou 2005). Consequently, NIS are currently

recognized as a major threat to biodiversity (Chapin et

al. 2000). To mitigate this global problem, many

ecologists are aiming to develop tools that enable

predictions regarding the invasion process.

Environmental conditions have frequently been used

to assess the potential for NIS to establish in new

geographic locations (e.g., Zambrano et al. 2006,

Herborg et al. 2007, Kilroy et al. 2008). Such predictions

are founded in Hutchinson’s (1957) classical niche

theory, which states that species distribution patterns

are governed by a discrete set of ecological conditions

delineating the areas in which a given species can

establish and maintain populations at particular densi-

ties (Peterson 2003, Araujo and Guisan 2006). As such,

ecological niche-based modeling (ENM) techniques,

which relate various aspects of species distribution to

biologically relevant environmental variables, have

become valuable tools for forecasting biological inva-

sions (Peterson and Vieglais 2001).

ENM approaches are typically used in invasion

biology to predict the presence and absence of certain

NIS or to estimate the probability of their establishment

at particular sites (i.e., invisibility; e.g., Buchan and

Padilla 2000, Ficetola et al. 2007). Yet risk assessments

of greater management value would be achieved by

estimating both the probability of establishment and the

severity or magnitude of the impact resulting from the

invasion. Unfortunately, the factors that determine the

effects of introduced species on their recipient commu-

nities are the most poorly understood aspect of the

invasion process (Parker et al. 1999, Byers et al. 2002).

Furthermore, the impact of any individual NIS can be
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context dependant and may vary greatly across invaded

sites (Ricciardi and Kipp 2008), posing a challenge to

prediction (Ricciardi 2003). Consequently, there have

been few attempts to incorporate quantitative estimates

of impact into risk assessment frameworks (but see

Vander Zanden and Olden 2008).

A simple concept drawn from the invasion literature

suggests that the severity of the impact caused by an

introduced species is largely a function of its abundance

at the invaded site: in general, the higher the local

density, the greater the impact (Parker et al. 1999,

Ricciardi 2003). This intuitive principle is supported by

both experimental and observational evidence for

numerous NIS (Madsen 1998, Ruiz et al. 1999,

Chumchal et al. 2005, Ward and Ricciardi 2007,

Pintor et al. 2009) and in the absence of more suitable

metrics, various measures of invader abundance (e.g.,

density, biomass) have occasionally been employed as

surrogate measures of impact (e.g., Marchetti et al.

2004). According to niche theory, the abundance

patterns of introduced species should also relate to

various environmental conditions at potential recipient

locations. Thus, we should be able to use ENM

approaches to predict abundance, in addition to more

coarse metrics of distribution, such as presence and

absence (VanDerWal et al. 2009). However, the factors

and processes that mediate the abundance of a species

may differ from those that determine its occurrence or

establishment success (e.g., Ramcharan et al. 1992,

Neilsen et al. 2005, Heinanen et al. 2008). We may

therefore obtain a more comprehensive estimate of

invasion risk by forecasting both the probability of

establishment as well as the abundance patterns of NIS

in newly invaded regions.

Although this proposition is straightforward it has

not been widely adopted in invasion biology, which has

rarely used ENM to predict the abundance of intro-

duced species at regional scales (but see Ramcharan et

al. 1992, Koutnik and Padilla 1994, Wilson and Sarnelle

2002). Yet niche-based models for species abundance are

frequently developed beyond the scope of invasion

biology, ranging from exploratory analyses of the

organism–environment relationships (e.g., Lek et al.

1996, Wiley et al. 2004) to predictive applications

intended for conservation and management purposes

(e.g., Heinanen et al. 2008, Li et al. 2009). The

distinction between invasion biology vs. other fields of

research is important, given their different objectives. In

fields such as conservation biology, researchers often use

ENM to predict species abundances or to explain the

relationship between species distribution and various

environmental factors within the same region where the

model was parameterized. In contrast, given the nature

of biological invasions, we are often most interested in

extrapolating our predictions from ENM developed in

one region to new geographical locations.

In order to assess the utility of such models, their

predictive power should be tested using data that reflect

their intended purpose (Pearce and Ferrier 2000,

Vaughan and Ormerod 2005). Yet, several authors have
noted that a surprisingly large number of ENMs are

only evaluated using the same data that were also used
to fit the model (Araujo and Guisan 2006, Ozesmi et al.

2006). This can result in overly optimistic assessments of
performance and highly inaccurate predictions (Fielding
and Bell 1997, Olden et al. 2002). Where researchers

have taken the next step and validated ENMs, they have
typically done so by partitioning data from a single

region into subsets, using one portion of the data to
calibrate the model and using the remainder for

validation. This approach allows for confident predic-
tions at new sites within the same range where ENM was

parameterized, which we term interpolation. However,
models should also be evaluated using data that are

spatially or temporally separated from those used for
calibration in order to assess the ability to extrapolate

predictions to new geographical areas or temporal
horizons (Vaughan and Ormerod 2005). While the

popularity of niche-based models in invasion biology is
increasing, and there is often the implicit assumption

that predictions can be applied to new locations, tests of
extrapolation remain relatively rare. Further, as ENMs
for forecasting the abundance of introduced species are

uncommon in the invasion literature, and given that
such models have rarely been developed for similar

predictive purposes in other fields, the ability to
extrapolated model predictions to new geographic

locations should be assessed.
In this study, we develop ecological niche-based

models for predicting the occurrence as well as the
abundance of a widespread vertebrate invader, common

carp (Cyprinus carpio). Using data for lakes within the
state of Minnesota, USA, we developed artificial neural

networks to forecast these two aspects of carp distribu-
tion from several limnological and climatic variables.

We then examined the accuracy with which our models
were able to interpolate to sites within the main study

region and extrapolate to independent data for lakes
within the neighboring state of South Dakota. We also

estimated the relative contribution of environmental
variables to model predictions. By incorporating abun-
dance as a surrogate metric for impact and examining

the degree to which models for both the occurrence and
abundance of a highly invasive species can extrapolate

to new sites, this study assesses the viability of using
ENM methods to more fully model the risk posed by

NIS on their recipient communities.

METHODS

Model organism

Common carp was selected as a model species for this

study owing to the availability of data regarding its
distribution and impacts. The common carp is native to
Eurasia, but has been introduced across the globe both

deliberately, for aquaculture, recreational and ornamen-
tal purposes, and unintentionally due to live bait release
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and other vectors (Balon 1995, Koehn 2004). Carp were

first introduced into the United States in the late 1870s

and were subsequently spread throughout the country,

reaching the Midwest, including Minnesota, shortly

after the initial introduction (Cole 1905). The common

carp is currently considered to be one of the world’s

most ecologically harmful invasive species (Lowe et al.

2004). Its impacts arise mainly from the ability to alter

aquatic habitats through high levels of excretion and by

disturbing the bottom sediments of lakes and other

waterbodies to which it had been introduced; often

resulting in increased turbidity, degraded water quality

and reduced macrophyte and benthic invertebrate

densities (e.g., Zambrano and Hinojosa 1999, Parkos

et al. 2003, Matsuzaki et al. 2007). Furthermore, the

severity of these effects has been shown to be highly

dependant on local carp biomass (Robel 1961, Crivelli

1983, Lougheed et al. 1998, Chumchal et al. 2005).

The physiological tolerances and habitat preferences

of carp have been investigated by several authors

(Crivelli 1981, Balon 1995, Garcia-Berthou 2001,

Penne and Pierce 2008), providing a sound basis for

predictor variable selection. Although carp prefer

shallow, warm, slow-moving waterbodies and have a

high tolerance of eutrophic waters, established popula-

tions have been found under a broad range of

environmental conditions (Koehn 2004, Schade and

Bonar 2005). Further, while ENM techniques have

previously been used to predict the full potential invaded

range of carp in North and South America (Zambrano

et al. 2006), the occurrence and abundance patterns of

this invader have not yet been modeled at a regional

scale.

Data collection

The abundance and distribution records used to

develop the models were obtained from the Minnesota

Department of Natural Resources (MNDNR). Carp

currently occur throughout most of the southern and

some of the northwestern areas of Minnesota and are

established in over 800 lakes that are routinely surveyed

by the department. While the MNDNR uses several

sampling methods to assess fish populations, we

restricted our analysis to biomass catch per unit effort

(BPUE) data from standard summer trap net sets, as

this method is most effective at capturing various

benthivorous fish species, including carp (A. Stevens,

personal communication).

The frequency with which a particular lake is surveyed

depends largely on its size, recreational value and

various logistic factors. BPUE measures can fluctuate

from one survey event to another due to factors such as

winter fish kills, atypically large age-0 year classes or

other stochastic events. We sought to minimize the

potential effects of sampling bias and short term

fluctuations in BPUE in our models. We did this by

limiting our analysis to lakes that had been sampled for

their fish populations a minimum of three times between

1980 and 2007 and derived a mean estimate of BPUE

from repeat samples. We believe that this metric best

reflects long-term equilibrium densities.

Independent variables with potential distributional

importance were compiled from several main sources.

Climatic variables, consisting of 20-year averages, were

obtained from the National Climate Data Center. For

each lake, climate data was extracted from the nearest

sampling station, generally located within 10–30 km of

the site. Lake morphometry data were provided by the

MNDNR, while water chemistry variables, which

consisted of 10-year summer averages, were obtained

from the Minnesota Pollution Control Agency and the

Environmental Protection Agency’s STORET database.

In most cases, variables within each category (i.e.,

climate, morphometry, water chemistry) formed several

tightly correlated subsets. As a high degree of correla-

tion between predictor variables is generally undesirable

for ENM applications, the number of predictors was

reduced after removing all but one variable within each

highly correlated grouping (Spearman’s jrj . 0.8), while

taking into consideration the availability of data for

each predictor.

The final set of variables included maximum and

minimum annual air temperature, annual precipitation,

growth degree days (annual sum of daily air temperature

above 58C), lake surface area and maximum depth, total

nitrogen concentrations, total alkalinity, and Carlson’s

trophic state index (TSI). TSI is a common measure of

lake productivity and can be derived from Chlorophyll a

concentrations, total phosphorus, secchi depth measure-

ments, or a combination of these factors (Carlson 1977).

Variables are summarized in Table 1.

The final Minnesota database consisted of 285 carp-

invaded lakes and 238 lakes where carp have been

historically absent, after removing all entries that did

not meet our criteria or for which data on predictor

variables were unavailable. These data were used to

derive (1) the abundance data set which contained mean

BPUE values and respective environmental predictors

for the 285 lakes containing carp and (2) the occurrence

data set which contained information on all 523 water

bodies, where carp BPUE was converted to a dichoto-

mous variable representing presence or absence.

External validation data

To assess the degree to which we might generalize

from our sample of Minnesota lakes, we compiled

information for an additional 38 lakes in eastern South

Dakota. Carp distribution data were obtained from the

South Dakota Game, Fish and Parks Commission

(SDGFP), which employs a similar sampling protocol

and equipment to that used by the MNDNR. This data

set consisted of mean BPUE values and presence–

absence data derived from the past 10 years of trap net

sampling. Environmental data corresponding to this set

of lakes were compiled from a database maintained by
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the South Dakota Department of Environment and

Natural Resources and additional sources cited above.

Model development and validation:

artificial neural networks

We used multi-layer feed-forward artificial neural

networks (ANN) trained by back-propagation

(Rumelhart et al. 1986) to model the occurrence and

abundance of carp. We chose to work with ANN

because this method requires no prior assumptions

about underlying distributions, can account for nonlin-

earity and interactions between variables, and has

demonstrated a high predictive power compared to

several common ENM methods, including generalized

linear models, discriminant analysis, classification and

regression trees and other machine learning methods

(Baran et al. 1996, Ozesmi and Ozesmi 1999, Tan et al.

2006, Olden et al. 2008). ANN have previously been

applied to many problems in ecology (e.g., Lek and

Guegan 1999, Ozesmi et al. 2006, Goethals et al. 2007),

and have shown promising performance in their ability

to model both the occurrence (Vander Zanden et al.

2004) and abundance patterns (Baran et al. 1996, Brosse

and Lek 2002) of several freshwater fish species. For

more information concerning ANN, their implementa-

tion, comparison to other modeling methods and

available software we refer readers to Bishop (1995) as

well as Olden et al. (2008).

Our feed-forward networks consisted of multiple

interconnected layers of processing elements, often

termed neurons. These included an input layer, repre-

senting each of our nine predictor variables, one to two

hidden layers and an output node, each connected by a

set of adjustable parameters (i.e., weights). During the

training process, variables associated with each set of

observations are fed through the network, multiplied by

their respective weights, summed and transformed into

an output signal by applying a transformation function.

This process is repeated at each hidden layer until the

signal reaches the output neurons where the values,

corresponding to the variable being predicted, are

calculated. Using this output, the mean squared error

(MSE) between predicted and observed values was

computed and used to adjust the weights between the

neurons in each layer, by applying the Levenberg-

Marquardt backpropagation algorithm (Hagan and

Menhaj 1994). This process was repeated for multiple

epochs (i.e., training iterations) to sequentially minimize

the MSE between observed and predicted outputs.

Prior to training, input variables were proportionally

scaled to a range of �1 to 1. This was done in order to

standardize the units of measurement associated with

different predictor variables, ensuring that each receives

equal attention during training (Goethals et al. 2007).

We then separated the data into three components: the

calibration set, and the internal and the external

validation sets. The calibration data, which consist of

;80% of lakes randomly selected from the complete

Minnesota data set, were used to fit the models and

optimize network architecture. The remaining 20% of

the Minnesota data was allotted to the internal

validation set, which was later used to evaluate the

ability of our models to interpolate within the main

study region. Data for the South Dakota lakes (i.e., the

external validation set) were used to test the model’s

ability to extrapolate to independent sites.

To limit over-fitting the networks, we used a form of

cross validation known as early stopping (Prechelt

1998). Before training, the calibration data were

randomly divided into training and test sets, corre-

sponding to roughly 60% and 20%, respectively, of the

full Minnesota data. During the training process, the

test data were employed to limit the number of training

iterations by terminating training when test set MSE did

not decrease during five subsequent epochs. This

procedure did not directly influence weight adjustments

but rather was used to improve the ability of the fitted

model to generalize to new data.

The optimal number of hidden layers and neurons

within them was determined empirically by creating

TABLE 1. Summary of the nine environmental variables used for modeling the occurrence and the abundance and of Cyprinus
carpio.

Variable Abbreviation Minimum Mean Median Maximum

Climate

Maximum air temperature (8C) MAXT 35.56 37.27 37.22 41.11
Minimum air temperature (8C) MINT �46.67 �35.14 �35.00 �31.67
Growth degree days GDD 3536 4369 4496 4890
Annual precipitation (mm) MP 571.20 741.90 744.00 878.30

Morphometry

Lake area (ha) LA 0.86 316.43 164.19 4025.42
Maximum depth (m) MXD 1.00 10.51 8.20 42.70

Water chemistry

Total nitrogen (ppm) TN 0.38 1.52 1.40 5.07
Total alkalinity (ppm) ALK 41.00 149.00 145.00 324.00
Carlson’s trophic state index TSI 41.30 62.67 62.59 93.29

Note: Descriptive statistics were derived from the full Minnesota data set, which included the 285 lakes containing carp and 238
lakes where carp are absent.
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multiple networks, with all other parameters held

constant. Network performance can be sensitive to the

random initial weight values set prior to training

(Ozesmi et al. 2006, Olden et al. 2008). For this reason,

100 networks were run based on the same architecture,

after resetting the initial weights to small random values,

and performance was assessed based on the averaged

predictions across all 100 runs.

For the occurrence data we tested networks with no

hidden layer and a single hidden layer containing

between 1 and 15 neurons. Models with no hidden layer

were included to evaluate the performance of ANN

against what is essentially a generalized linear model

(Ozesmi et al. 2006). For the abundance data, in

addition to testing models with zero and one hidden

layer, we also examined models containing two hidden

layers, since during the optimization procedure net-

works with a single layer had a consistent bias toward

underestimating high BPUE values. All networks were

constructed and trained using version 5 of the Neural

Network Toolbox in MATLAB, version 7.5.0 (The

MathWorks, Natick, Massachusetts, USA).

The relative importance of each predictor variable

was assessed using Garson’s algorithm (Garson 1991).

This procedure consisted of calculating the product of

the weighting factors between each input-output neuron

connection, summing the products across all hidden

neurons, and calculating a percentage representing the

individual contribution of each variable to network

predictions. For more information on calculating

variable importance using Garson’s algorithm, we refer

readers to Goh (1995).

Model performance criteria

For the occurrence model, network outputs take on

continuous values ranging between 0 and 1, representing

the probability of carp presence at each site. In order to

assess model accuracy, we opted to employ a threshold

selection procedure that maximized the sum of model

sensitivity (the proportion of correctly classified pres-

ences) and model specificity (the proportion of correctly

classified absences), as the arbitrary choice of a

threshold probability at which the carp were deemed

either present or absent (e.g., 0.5) could greatly influence

our results (Manel et al. 2001). This procedure consisted

of developing receiver-operating characteristic (ROC)

curves (i.e., plots of model sensitivity against 1 �
specificity across different thresholds) and determining

the threshold at which the sum of these values was at its

maximum (Manel et al. 2001, Jimenez-Valverde and

Lobo 2007). Using this threshold, we then generated

confusion matrices: 2 3 2 tables containing the true

positive, false positive, true negative and false negative

rate associated with each network (Fielding and Bell

1997). These matrices as well as the ROC itself were

used to derive four performance measures, including (1)

the percentage of correct classification instances (CCI)

(i.e., the percentage of sites where the model correctly

predicted either presence or absence); (2) model sensi-

tivity; (3) model specificity; and (4) the area under the
ROC curve (AUC), a measure that is independent of

threshold selection (Fielding and Bell 1997, Pearce and
Ferrier 2000).

In contrast to the occurrence model, the outputs of
the abundance networks are inherently continuous.

Performance was therefore evaluated based on regres-
sion analysis of the fit between observed and predicted
values. The slope (m), intercept (b), and goodness of fit

(R2) of this relationship were used to derive the model
non-ideality index (d): the Euclidean distance between

the observed, jm, b, R2j, and the ideal agreement vectors
j1, 0, 1j, which would be obtained from a perfect fit

(Plumb et al. 2005). Networks with the lowest d were
considered to provide the best predictions.

Once the optimal network architectures were deter-
mined based on the performance for the calibration

data, the resulting models were used to generate
predictions of expected carp occurrence and abundance

for both the internal and external validation sets. As
with the calibration data, predictions were obtained by

averaging outputs across all 100 runs of the optimal
networks. Performance on the validation data was

assessed as described above, with the exception that,
for occurrence predictions, the threshold probability for

carp presence was derived from calibration data results.

RESULTS

Occurrence model

The optimal presence–absence network consisted of
nine input neurons, corresponding to each of the

predictor variables (Table 1), one hidden layer contain-
ing five neurons, and a single output node. Sigmoid

transfer functions were used at each layer. All networks
that included a hidden layer outperformed those with no

hidden neurons (i.e., GLM). For the calibration data,
the model correctly identified 197 of 228 (86%) lakes

where carp are present and 171 of 191 (90%) lakes where
carp have been historically absent. When applied to the

internal validation set, the model correctly predicted
carp presence in 49 of 57 (86%) lakes and carp absence
in 39 of 48 (81%) lakes. When extrapolated to South

Dakota lakes, carp presence and absence was correctly
predicted at 25 of 33 (76%) and four out of five sites

(80%), respectively (Fig. 1).
Performance criteria including CCI, sensitivity, spec-

ificity, AUC and respective P values for each data set are
presented in Table 2. For all indices, performance on the

internal validation set was comparable to that on the
calibration data but slightly reduced when applied to the

South Dakota lakes. For AUC, values of 0.5 or lower
indicate that model predictions are no better than

random, while values above 0.5 are increasingly
accurate. According to Pearce and Ferrier (2000), the

AUC values obtained indicate very good discrimination
for the Minnesota lakes and reasonable predictive power

when applied to the external validation data.
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Abundance model

The optimized network architecture for carp biomass

per unit effort (BPUE) consisted of nine input neurons,

two sigmoid hidden layers (containing six and three

neurons, respectively), and one linear output neuron. As

with the occurrence model, networks with a hidden layer

performed better than those with no hidden neurons but

optimal performance was achieved when two hidden

layers were included. Observed carp BPUE was signif-

icantly related to model predictions for the calibration

set (R2¼ 0.76, n¼ 228, F1, 226¼ 735.0, P , 0.0001), the

internal validation set (R2¼ 0.73, n¼ 57, F1,55¼ 145.8, P

, 0.0001) and for the South Dakota data (R2¼ 0.32, n¼
33, F1,30 ¼ 15.90, P ¼ 0.0004), Fig. 2A–C.

The non-ideality index (d) was 0.24, 0.41, and 2.03 for

the calibration data, internal validation set and South

Dakota lakes, respectively. For each data set, the

intercepts of the fitted regression line did not differ

significantly from zero (t ¼ 0.06, 0.73, 1.49, P ¼ 0.95,

0.47, 0.15 for the calibration, internal, and external

validation data, respectively). The slope of the relation-

ship between predicted and observed BPUE did not

differ significantly from 1 for both the calibration (t ¼
�0.75, P¼ 0.45) and the internal validation data (t¼ 0.1,

P¼ 0.92); although for the South Dakota data set there

was a significant departure from a one to one

relationship (t ¼�2.10, P ¼ 0.04). However, despite a

loss of predictive power, the three lakes with the highest

BPUE observed in the South Dakota data set, were

FIG. 1. Geographic locations and model classifications for the 523 Minnesota lakes and the 38 South Dakota lakes used in this
study. Circles represent sites where carp are currently established while triangles indicate sites from which carp are absent. Lakes
correctly classified by the occurrence model are illustrated in black, and incorrectly classified lakes are shown in gray.

TABLE 2. Performance of the carp occurrence model for the 485 lakes on which the model was trained (calibration data), the 57
lakes within Minnesota withheld from model development (internal validation data), and the 38 lakes from eastern South
Dakota (external validation data). Criteria include CCI (the percentage of sites where the model correctly predicted either
presence or absence), model sensitivity and specificity, AUC (area under the receiver-operating characteristic curve), and
corresponding P value.

Data set CCI Sensitivity Specificity AUC P

Calibration 87.83 86.40 89.53 0.94 .0.0001
Internal validation 83.81 85.96 81.25 0.90 .0.0001
External validation 78.95 78.79 80.00 0.75 0.04

STEFANIE A. KULHANEK ET AL.208 Ecological Applications
Vol. 21, No. 1



among the five lakes predicted to support the highest

carp densities. The model also correctly identified 8 of 10

lakes with the lowest observed carp BPUE.

Predictor variable contribution

The relative contribution of each predictor variable is

illustrated in Fig. 3. For both the carp occurrence and

abundance models, limnological variables were weighted

more heavily than climate variables, with the exception

of minimum annual temperature. For the occurrence

model, the variables with the largest contributions to

network predictions included trophic state index (TSI),

minimum annual temperature, and total alkalinity. For

the abundance model, the most highly weighted

variables included TSI and total nitrogen, with lake

morphometry and climate variables contributing more

evenly to network outputs.

DISCUSSION

Using a neural network approach, we were able to

predict both the occurrence and the abundance of

common carp and to extrapolate model predictions to

new data. Our occurrence model correctly identified

over 75% of all sites where this invader is either present

or absent, even when generating predictions in locations

independent from those where the model was parame-

terized. Predictions at new sites within the same region

and in independent locations explained 73% and 32% of

variation in carp biomass, respectively. Extrapolation to

new geographic regions, while rarely done, represents

the strictest test of ecological niche-based models

intended for management application. Although the

predictive power of our carp abundance network was

reduced when applied to South Dakota lakes, the model

still explained a significant portion of biological

variation. At a minimum, this degree of transferability

would allow for a relative ranking of sites vulnerable to

carp invasion within the area.

Indeed, based on the five sites predicted to support the

highest carp biomasses, we were able to identify the

three most heavily carp-infested lakes in our South

Dakota data set. Cumulatively, these three waterbodies

account for over 36% of total observed carp BPUE. It is

also interesting to note that the lake for which carp

biomass was most substantially overestimated is a small

eutrophic waterbody that experiences frequent fishkills

and is also commercially harvested for carp, which may

partially explain the discrepancy between observed and

predicted BPUE for this site (D. Lucchesi, personal

communication). When this data point is removed, the

strength of the relationship between observed and

predicted BPUE increases substantially (R2 ¼ 0.43, n ¼
32, F1,30¼ 22.97, P , 0.0001) and the non-ideality index

decreases to 1.66. Further, our model also correctly

identified 8 of the 10 lakes where carp impacts would be

expected to be minimal. Thus, while rarely employed in

the study of biological invasions, using ENM techniques

to predict the abundance of introduced species can be a

FIG. 2. Relationship between predicted and observed carp abundance, measured as biomass (kg) per unit effort (BPUE), for
(A) the calibration data, (B) the internal validation set, and (C) the external validation data. Solid lines represent the fitted
regression line between observed and predicted BPUE values, and dotted lines represent a one-to-one fit.

FIG. 3. Percent relative contribution (mean 6 SD, derived
from 100 runs of the optimal networks) of the nine
environmental predictor variables for the carp occurrence
(P/A stands for presence/absence) and abundance (BPUE)
models, assessed using Garson’s algorithm. A key to abbrevi-
ations for each variable can be found in Table 1.
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viable approach to gaining additional insight into the

risk they pose on potential recipient habitats, even when

extrapolating predictions to new locations.

Joint model approach

By combining models for predicting the establishment

success of introduced species with those for forecasting

abundance, we should be able to generate more

comprehensive measures of the relative risk posed by

particular NIS, and allocate prevention efforts accord-

ingly. Such joint-model approaches have recently been

advocated in the literature, with the general consensus

that, where possible, multiple elements of the invasion

process should be examined in concert to provide

improved predictions. Most existing studies have fo-

cused on combining models of NIS introduction effort

(i.e., propagule pressure) with those for predicting

invasibility (e.g., ENM for occurrence) to estimate the

overall risk of establishment (e.g., Herborg et al. 2007,

Leung and Mandrak 2007, Jacobs and MacIsaac 2009),

but few have explicitly considered impacts. Yet by

combining models for occurrence, surrogate measures of

propagule pressure, and quantitative analyses of the

effects caused by introduced species, several researchers

have demonstrated the added value of integrating

impacts into predictive models of invasion risk

(Vander Zanden et al. 2004, Mercado-Silva et al. 2006,

Vander Zanden and Olden 2008).

By prioritizing management of the small subset of

invasible South Dakota lakes expected to support high

carp densities, we would be able to mitigate a substantial

portion of the impact to be expected in the area. Thus,

recent approaches that have been developed to incor-

porate impact, and additional aspects of the invasion

process, should improve predictive power and signifi-

cantly reduce the number of sites thought to require

management intervention, rather than limiting analyses

to a single component. As demonstrate here, models for

forecasting the abundance of particular NIS can provide

insightful predictions and identify sites are most likely to

at risk of negative impacts, beyond those which are

simply invasible. The utility of such models is however

dependant upon their ability to predict invasions in new

areas. For invasive species in particular, tests of

extrapolation are critical when evaluating the utility of

ENMs, given that we are primarily interested in

generating predictions for presently uninvaded locations

where invasive species may eventually spread.

Predictor variable contribution

Of the factors that may influence the transferability,

as well as the overall accuracy of niche-based models,

the choice of predictor variables is of particular

importance (Vaughan and Ormerod 2003, Araujo and

Guisan 2006). Thus, it is relevant to further examine the

relative contribution of specific variables to our model

predictions. For both the carp occurrence and abun-

dance models, most of the variables contributing

strongly to network predictions are directly interpret-

able. For example, minimum annual temperature, which

was found to be a significant predictor of carp

occurrence, affects carp spawning activity and can also

cause winter fishkills, both of which can limit the

distribution of this species (Balon 1995). Low winter

temperatures may currently restrict carp to the southern

two thirds of Minnesota but may not be as important a

factor in determining their distribution in South Dakota,

where minimum annual temperatures are somewhat less

extreme.

Alkalinity, another relevant predictor for carp occur-

rence, is essentially a measure of buffering capacity, and

influences many important limnological parameters,

primarily by controlling pH. For example, water acidity

can influence carp by affecting larval development

(Korwinkossakowski 1988) and macroinvertebrate den-

sities: an important food source for carp (Garcia-

Berthou 2001). Alkalinity may therefore influence carp

distribution both directly and indirectly by affecting

numerous biotic processes.

Variables related to trophic state (i.e., TSI, TN) were

found to be relevant predictors for both carp occurrence

and abundance. The contribution of these factors likely

reflects the high tolerance of carp to eutrophic condi-

tions and their tendency to establish and become

dominant in even heavily degraded waterbodies

(Schade and Bonar 2005). However, while carp have

an affinity for eutrophic conditions, they also tend to

perpetuate this state through their feeding activities and

excretion (Parkos et al. 2003, Chumchal et al. 2005,

Matsuzaki et al. 2007). As such, the contribution of

these variables may also partly be explained by the

impacts that carp have had on the waterbodies to which

they have been introduced. Unfortunately, given the

historic introduction of carp to Minnesota, resulting in a

lack of data prior to invasion, we were unable to

investigate of the relative importance of this factor.

The contribution of most variables suggests that, to

some extent, different environmental conditions are

important in determining carp occurrence and its

abundance. Within the context of ENM, similar results

have been reported by several authors (e.g., Ramcharan

et al. 1992, Neilson et al. 2005, Heinanen et al. 2008).

Although models developed from occurrence data have

been shown to predict the upper limit of abundance for a

variety of species (VanDerWal et al. 2009), we would

nonetheless caution against the interpretation of the

probability of NIS occurrence alone as representative of

its likely abundance or potential impacts.

CONCLUSION

Our results suggest that ecological niche-based

modeling methods, similar to those commonly employed

to forecast the occurrence of invasive species, can be

used to develop accurate predictions for measures of

invader abundance. Such models can be particularly

useful for forecasting the relative severity of the impacts
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of NIS across sites yet to be invaded. When the

relationship between an invader’s abundance and its

impacts is known, models that predict abundance from

local environmental variables could also be used to

quantitatively forecast the magnitude of particular

impacts at potentially invasible sites, thereby contribut-

ing to a more informative assessment of future invasion

threats. Further, when combined with predictions

regarding establishment success, such models can lead

to more informed measures for the overall risk posed by

particular NIS and can allow for identification of sites

where management interventions are most needed.

The accuracy and transferability of such models must

be rigorously tested in order to assess their utility for

practical management applications. As ENM for inva-

sive species are often intended to inform management

decisions at currently uninvaded sites, the influence of

various factors that can affect the ability of such models

to extrapolate to new areas merits more thorough

investigation. Finally, the ability of many NIS to modify

conditions that influence their own abundance through

positive feedbacks (Gonzalez et al. 2008) must be also

addressed, as such effects may compromise the ability of

models developed from current abundance data to

generate useful predictions in uninvaded habitats.
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