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Abstract A major inconvenience of the traditional approach in portfolio choice,

based upon historical information, is its inability to anticipate sudden changes of price

tendencies. Introducing information about future behavior of the assets fundamentals

may help to make more appropriate choices. However, the specification and param-

eterization of a model linking this exogenous information to the asset prices is not

straightforward. Classification trees can be used to construct partitions of assets of

forecasted similar behavior. We analyze the performance of this approach and apply

it to different sectors of the S&P 500.

Keywords Portfolio optimization · Decision trees · Factor models

JEL Classification G12 · C35

1 Introduction

The classical approach in portfolio choice balances risk and return in order to determine

optimal asset allocations. This approach relies on past information and is generally

unable to capture variations in investment opportunities. To overcome this incon-

venience one approach is to model the time-varying behavior of mean returns and

variances and covariances (e.g., Bollerslev et al. 1988). Another way is to use models
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318 I. Roko, M. Gilli

where the returns are explained by either statistical, macroeconomic or fundamental

factors. Statistical factor models work like a black box and do not allow for an interpre-

tation of the relations in the model. What will be considered here are models where the

factors are economic, fundamental and technical variables allowing for interpretation

of the results.

Many of the relations between returns and the fundamental factors may exhibit

nonlinearities and therefore linear models have to be discarded. Possible approaches

are, among other, artificial neural networks and recursive partitioning techniques such

as classification trees. We will apply the latter to identify the set of outperforming

stocks of several sectors in the S&P 500 index.

Several papers have been published addressing similar problems. Albanis and

Batchelor (2000) investigate several linear and nonlinear classification techniques

including artificial neural networks and recursive partitioning methods to separate un-

derperforming from outperforming assets. Kao and Shumaker (1999) use classification

trees to explain relationships between macroeconomic variables and performance of

timing strategies based on market size and style. Sorensen et al. (2000) also use classi-

fication trees to identify outperforming stocks to enter a portfolio. In a different context

Velikova and Daniels (2004) use classification trees to model housing prices.

The paper is organized as follows: Section 2 describes the factor model and gives a

condensed description for the methodology used to build the classification tree; Sec-

tion 3 presents the application where portfolios composed by the set of outperforming

stocks are compared to the market index, and Sect. 4 concludes.

2 Factor models and classification trees

In the proposed factor model the returns for period t + 1 on an asset i are explained

by characteristics of this asset observed at period t

ri,t+1 = f (z1t , z2t , . . . , zmt ) (1)

where the variables z1t , . . . , zmt are the factors such as balance sheet average, liquidity,

incomes, price-to-earning ratios or earnings growth. To model the nonlinear relations

existing between the explanatory variables and the returns we use a classification

tree where the returns are assigned to three classes of state: outperforming, neutral

and underperforming. For the explanatory variables the classes will be defined by the

quartiles.

The methodology for classification trees has been well established by Breiman

et al. (1984). The following small example recalls the principles of the procedure for

building a classification tree. We consider the observations of returns and two corre-

sponding explanatory variables for nine successive time periods. Returns are assigned

to the three classes of state O, N and U and the explanatory variables z1 and z2 to the

ordered classes 1, 2, 3, 4 and 5.
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t 1 2 3 4 5 6 7 8 9

rt+1 O N O U U N O N U

z1t 5 1 2 1 2 3 4 4 1

z2t 1 1 2 3 4 5 2 4 5

In the next tables the data are reordered corresponding to the ascending order of the

explanatory variables z1 respectively z2 and the vertical bars indicate the different

possible partitions (splits) of the data.

t 2 4 9 3 5 6 7 8 1

rt+1 N U U O U N O N O

z1t 1 1 1 2 2 3 4 4 5

t 1 2 3 7 4 5 8 6 9

rt+1 O N O O U U N N U

z2t 1 1 2 2 3 4 4 5 5

All these partitions have to be explored in order to find the one which maximizes

the homogeneity of the two sets created. For the sake of brevity the definition of the

criterion to be maximized is not given here and the reader is referred to (Martinez and

Martinez 2002, p. 346–347). For this example the optimal split is given by z1 < 5.

The set verifying z1 < 5 is then partitioned according to z2 < 3 and so on. Figure 1

shows the complete classification tree with the corresponding splitting rules. All ter-

minal nodes contain observations from only one class. Such nodes are also called pure

nodes.

Such a complete tree certainly overfits the data and will not generalize well to new

observations. Breiman et al. (1984) suggests to find a nested sequence of subtrees by

pruning branches. The best subtree of this sequence minimizes the misclassification

estimated by ten-fold cross-validation (see Han and Kamber 2001). In the very simple

case of our example such a subtree could be obtained by pruning the branches from

node (2,3,7). Node (2,3,7) would then become an impure node and we would classify

an observation at this node with the class O using the plurality rule. Again the reader

is referred to (Martinez and Martinez 2002, p. 352–364) for a detailed description of

these procedures.

We can now use this tree to predict future classes of state for the returns, given new

observations of the explanatory variables. Thus if we observe z1,10 = 4 and z2,10 = 2

we expect the return to fall into class O. Recall that the branches leaving node (2, 3, 7)

have been pruned.

An additional technique introduced by Breiman (1996) used to reduce the vari-

ance of the predictions is bootstrap aggregation (bagging). The technique consists in

Fig. 1 Complete classification

tree
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320 I. Roko, M. Gilli

building trees from a certain number of samples obtained by bootstrapping. The final

classification model will be an aggregation of the bootstrapped trees. Details of this

procedure can be found in (Sutton 2005, p. 318–323).

To evaluate the accuracy of the aggregated classification tree one can measure the

percentage of observations that are correctly classified providing an estimation of the

probability of correctly classified cases. This enables the use of different statistics, like

the hit-ratio or R2-type measures as well as Pearson chi-square test or versions of likeli-

hood ratio chi-square tests (see Arentze and Timmermans 2003; Ritschard and Zighed

2003). Another possibility is to extend the Hosmer and Lemeshow’s goodness-of-fit

test (Hosmer and Lemeshow 2000) to ordinal categorical data like in the binary choice

models. Our objective is to find the model with the best forecasts and therefore the

accuracy will be defined by the performance of the portfolio formed by the predicted

outperformers.

3 Application

As mentioned earlier the application mainly yields the identification of assets which

are likely to outperform, for the period ahead, the index of the sectors composing the

S&P 500. These assets are then chosen to form an equally-weighted portfolio. The

selection process and the rebalancing of the portfolio are repeated monthly and its

performance is compared to the corresponding index. This is done by applying the

methodology described in the previous section. An additional benefit of using classi-

fication trees is that the splitting rules, defining the optimal classification tree, reveal

valuable information about the driving forces in the market.

3.1 Data set

We consider monthly observations of returns and financial and economic factors from

different sectors of the S&P 500 for the period from January 1999 to July 2006 (obser-

vations prior to 1999 are incomplete). The composition of the index is as of July 15,

2006. The definition of the sectors is based on MSCIs Global Industry Classification

Standards (GICS). The data have been provided by Factset Research Systems Inc.

Our objective is to identify assets with higher returns relative to the other assets.

Therefore we consider for a given month the empirical distribution of the returns of

the set of all assets in the sector. The lower quantile Qℓ corresponding to the ℓ = 0.40

percentile and the higher quantile Qu corresponding to the ℓ = 0.60 percentile provide

the boundaries that define the response variable y (rt+1,i < Qℓ is classified underper-

former, i.e. U, rt+1,i > Qu as outperformer O and else as neutral N). The explanatory

variables are discretized according to the quartiles of their empirical distribution.

Sectors are composed by 10 to 87 assets and therefore the number of observations

available for the estimation of the tree is insufficient. To overcome this bottleneck

Sorensen et al. (2000) suggest pooling the observations for successive months and

consider the data as a cross-section. The pooling is justified by the hypothesis that all

assets of a sector are driven by the same mechanisms. In order to clarify this procedure
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Fig. 2 Data and pooled model

Fig. 2 first represents the data available over the T periods and then shows how the

data are organized in the pooled model.

The columns of matrix [rt+1,i ] collect the returns at time t + 1 for the n A assets

of the sector. The columns of matrix [z
(k)
t,i ], k = 1, . . . , m represent the k-th factor

for each asset. The values of each row of matrices [rt+1,i ] and [z
(k)
t,i ] are then discret-

ized following the procedure described above. The discretized variables are denoted

Y respectively x (k), k = 1, . . . , m and are reorganized as follows,

vec(Y )
︸ ︷︷ ︸

y

≃ f
(

[vec(x (1)) vec(x (2)) · · · vec(x (m))]
︸ ︷︷ ︸

X

)

.

Finally the variables y and X are the input for the construction of the classification

trees.

3.2 The set of factors

There is some evidence that excess returns can be realized by exploiting links between

movements in individual share prices and key accounting ratios. For instance, assets

with a low price-to-book ratio or assets with low price-to-earnings tend to outperform

the index (see Fama and French 1992 respectively Basu 1977). The literature exten-

sively discusses growth or value strategies defined by value or growth type factors.

Some authors (Fama and French 1992; Capual et al. 1993) find that in various peri-

ods value stocks tend to exhibit higher returns than growth stocks. Nevertheless, it

seems that shifting from one strategy to the other even leads to improved performance
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322 I. Roko, M. Gilli

(Kao and Shumaker 1999). Our approach combines the two strategies by introducing

variables of growth or value type. The model will then move gradually over time

between the different strategies according to the importance of the variables in the

splitting rules.

Another strategy largely used in practice relies on technical analysis. This approach

uses momentum in price or price patterns to forecast future performance. De Bondt

and Thaler (1985, 1987) report that long term past losers outperform past winners over

the subsequent three to five years. Jegadeesh (1990) and Lehmann (1990) find short

term reversals on returns. George and Hwang (2004) observe that 52-week high price

explains the profits from momentum investing.

Various explanations are given to justify the efficiency of these strategies, for

instance under- or overreaction of the market to new information (e.g. Jegadeesh

and Titman 2001, Chan et al. 1996). The common denominator of these explanations

is lack of market efficiency.

We use trend-following indicators like percentage price oscillator (PPO) or rela-

tive strength index (RSI). More elaborate technical trading strategies, based on kernel

regression can be considered (see Lo et al. 2000).

Hereafter the complete list of the 49 factors used in our model:

• Value and growth factors1:

• Price-to-Earnings (PE, PE1M, PE3M, PFE, PFE1M, PFE3M), value, one and

three month changes, trailing and forward.

• Earnings Momentum (E1M, E3M, FE1M, FE3M), one and three month change

ratios on trailing and forward earnings.

• Price-to-Earnings Growth rate (PEG, PEG1M, PEG3M, PFEG, PFEG1M,

PFEG3M), value, one and three month changes, trailing and forward. Computed

as, (price / earningstrailing or forward) / annual earnings growth.

• Price-to-Earnings Growth rate / Dividends (PEGD, PEGD1M, PEGD3M, PFEGD,

PFEGD1M, PFEGD3M), value, one and three month changes, trailing and

forward.

• Return on Equities (ROE, ROE1M, ROE3M, FROE, FROE1M, FROE3M), value,

one and three month changes, trailing and forward.

• Price-to-Cash flow (PCF, PFCF), trailing and forward.

• Price-to-Sales (PS, PFS), trailing and forward.

• Price-to-Book (PB, PFB), trailing and forward.

• Debt ratio (DebtR, FDebtR), computed as, total debtstrailing or forward / total

assets.

• Net Profit Margins (NPM), computed as, net profits after taxes / salestrailing.

• Mean Long Term Earnings Growth rate (MLTEG1M), one month changes.

• Dividend Yield (DIVY1M, FDIVY1M), one month changes on trailing and

forward yields.

1 All forward variables used in this study are 12-month forward consensus estimates provided by FactSet

JCF Estimates database propriety of Factset Research Systems Inc.
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• Payout Ratio (PR1M, PR3M, FPR1M, FPR3M), one month and three month

changes. Computed as, dividendstrailing or forward / earningstrailing or forward.

• Technical or momentum factors:

• Close Location Value (CLV), computed as,

(C − L) − (H − C)

(H − L)

where C is the current price and H and L are the highest, respectively the

lowest monthly closing prices for the preceding twelve months.

• Percentage Price Oscillator (PPO), computed as,

EMAshort(P) − EMAlong(P)

EMAlong(P)

where EMAshort(P) and EMAlong(P) are three respectively twelve month expo-

nential moving averages of prices.

• Relative Strength Index (RSI), defined as,

RSIt = 100 −
100

1 + RSt

where RSt =

∑12
i=1 I{t−i |rt−i >0} rt−i

∑12
i=1 I{t−i |rt−i <0} |rt−i |

and where the indicator function I defines the up, respectively down closing

months and rt−i is the return.

• Price Momentum (PMom1M, PMom3M), one and three month changes in prices.

3.3 Tree construction

The process how the market appreciates our predictors is evolutive. For instance, the

assets will not outperform always for the same reasons. In order to capture this dynam-

ics we consider a relatively short sample period which is successively moved forward.

We tested different lengths of the sample period—called sample window—and found

best results for the 12 month length. To clarify the way the backtesting has been carried

out Fig. 3 illustrates the successive estimation and prediction steps over time.

The first sample window contains predictors observed from January 15, 2000 to

December 15, 2000 and observations on returns from February 15, 2000 to January 15,

2001. At January 15, 2001 this sample window is used to construct the bagged decision

tree. Forecasts of the outperforming assets are then obtained using the observations of

predictors as of January 15, 2001.

The bagging procedure, in a nutshell, is the following. We bootstrap B samples

from our original sample window and construct the corresponding B trees. Then the

predictors observed at January 15, 2001 are fitted into each tree and one possible

criterion for the final classification of each observation is the class to which the obser-

vation has been attributed with the highest frequency. Another possible criterion is to
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Fig. 3 Displacement of the sample window over the testing period

aggregate (bagg) the probability estimates given by the misclassification rates of each

terminal node. Hastie et al. (2001) reports that this criterion tends to perform better for

small values of B. We tested both approaches for different values of B and adopted

the latter for B = 50.

This methodology has been applied to the ten sectors composing the S&P 500.

We will first discuss in greater detail the results for the Health-Care sector and then

describe more generally the outcomes for the remaining sectors.

Figure 4 reproduces one of the 50 bootstrapped trees obtained for the Health-Care

sector using the second sample window. Notice that the splitting rules define the first

class of outperforming assets as those for which the price-to-forward sales (PFS)

lies in the first four quantiles and the price-to-forward cash flow (PFCF) in the first

quantile.

The hierarchy in the tree of the factors in the splitting rules reflects their capability

in distinguishing the performance classes of the response variable. The evolution in

time of this hierarchy is important to gain insight into the dynamic of the market’s

driving forces. Recall that the bagging technique constructs for each learning sample

B = 50 trees, therefore the representation of the hierarchy has been limited to the

Fig. 4 Particular tree for the Health-Care sector (learning sample 15-02-00 to 15-01-01)
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        PMom3M
PMom1M
        RSI
PPO
        CLV
PR3M
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FROE3M
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0

0.5

1

Fig. 5 Frequency of factors appearing in the root node over time (Health-Care sector)

most important ones, i.e. the factors appearing in the root node2. Figure 5 reproduces

the frequency with which the factors appear in the root node in the successive time

periods. Value factors seem to be the most important ones for the Health-Care sector.

The mostly used are price-to-forward earnings (PFE), price-to-forward sales (PFS),

price-to-forward cash flow (PFCF) and price-to-forward book (PFB). Notice how

these variables appear and disappear in time and how they are occasionally replaced

by growth or technical analysis type factors. Also notice, the periods where technical

analysis factors are important follow periods of up or down trends.

This same methodology has also been applied to the other sectors composing the

S&P 500 and Table 1 reproduces the factors appearing at each period with the highest

frequency in the root node. Hence, this table reveals the most relevant factors for the

different sectors and periods.

Recall that the model highlights the characteristics of the outperformers of the past

twelve months and assumes that these driving forces remain the same for the month

that follows. Changes in the way the market reacts to the factors will be perceived

gradually by the model. Typically new factors will enter in the lower part of the deci-

sion tree and move toward the root if they remain dominant. Therefore the table only

tells when a factor has become predominant in the preceding 12 months. In order to

anticipate this information we need to analyze the complete bagged trees.

What follows are a few comments for the sectors where the model performed best.

In the Energy sector the most used factors are of value or technical analysis type. The

first become important mostly in periods without significant trends. The period from

2 Another possibility would consist in constructing an index of relative importance of the factors accounting

for the position in the tree and the frequency they appear in the 50 bootstrapped trees.
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2003 on is characterized by a significant growth of the sector and the trend following

indicators become predominant. In the Materials sector the most used factors are

price-to-sales and price-to-book. Notice that these factors account for realized num-

bers and not for forecasted ones. Another characteristic of this sector is the absence

of factors based on earnings. Sales also dominate the industrial and consumer staples

sectors. As it appears already in Fig. 5 concerning the Health-Care sector the factors

based on forward earnings are the most significant of the sector. In the Utility sector

price-to-forward cash flow is important between the last quarter of 2002–2004 and

is then replaced by price-to-earnings and price-to-sales. Notice that we do not find

many growth factors in the table. However, they are present throughout the periods

and sectors, but they appear in lower levels of the trees.

3.4 Portfolio construction and transaction costs

Once the set of outperforming assets has been identified for the first period we con-

struct an equally-weighted portfolio and invest an initial wealth of one. In the succes-

sive periods the portfolio is rebalanced in order to correspond to the updated set of

outperformers. In the literature it has been often argued that good theoretical results

are in reality annihilated by transaction costs or spreads. To better adapt our backtests

to reality we applied a cost of 10 bp per transaction.

Given the transaction costs the quantities of assets to be sold and bought cannot be

determined directly if we want to respect the weights in the portfolio. The procedure

for computing these quantities of assets is detailed hereafter. We denote xi t the quan-

tity of asset i in the portfolio at time t . The set of indices of assets appearing in the

portfolio at time t is Jt = {i | xi t �= 0} and the nominal value of the portfolio is,

vt =
∑

i∈Jt

xi t pi t (2)

where pi t is the price of asset i at time t . The value of the portfolio at time t just

before rebalancing is v−
t =

∑n A

i=1 xi,t−1 pi t . In the absence of transaction costs, we

have v−
t = vt and if transaction costs occur they are deducted from the portfolio value,

vt = v−
t − Ct (3)

where the transaction costs Ct are

Ct =
∑

i∈Jt−1∪Jt

(

ν |xi t − xi,t−1| pi t

)

. (4)

As indicated earlier ν has been fixed to 10 bp. Replacing (2) and (4) in (3) we get,

∑

i∈Jt

xi t pi t +
∑

i∈Jt−1∪Jt

(

ν |xi t − xi,t−1| pi t

)

= v−
t (5)
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Fig. 6 Performance and returns of the monthly rebalanced portfolio (Health-Care sector)

and considering the portfolio weight constraints,

xi j ,t pi j ,t

vt

=
1

#{Jt }
j = 1, 2, . . . , #{Jt } − 1 (6)

we have a nonlinear system F(xi t ) = 0, i ∈ Jt , given by (5) and (6). The quantities

of assets in the rebalanced portfolio are then given by the solution of this nonlinear

system.

As previously, we first discuss the results concerning the Health-Care sector and sec-

ond summarize the findings of the other sectors. The lower panel of Fig. 6 confronts

the monthly returns of our equally-weighted portfolio, including transaction costs,

to the returns of the index of the Health-Care sector. Notice that in 40 out of 66 peri-

ods the model outperforms the index returns. The corresponding evolution of wealth

is represented in the upper panel. The transaction costs reduce the overall performance

by 11.4 %.

From now on all results include transaction costs. Relative to the index, the overall

performance of this portfolio is 168 %, representing an annualized return of 30.5 %.

However the performance varies for the different years as shown in Fig. 7. In this fig-

ure we also report the cardinality of the portfolios for the successive periods. Notice

that in several instances the portfolio is fully invested in cash. An important fact is

that the relative performance of the portfolios seem not to be influenced by the market

tendency, i.e., whether the market is bullish or bearish.

A weakness of models based on fundamentals is their tendency to be overexposed

to subsectors where the fundamentals, e.g., earnings, are higher than those of the

other subsectors. A typical example in the Health-Care sector is Biotechnology. In our

selection of outperformers this seems to be avoided. Figure 8 represents the subsecto-

rial decomposition of the portfolios in time for the Health-Care sector. Generally, the

portfolios are not concentrated on a particular subsector.
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Fig. 7 Yearly performance of the monthly rebalanced portfolio including transaction costs. The index is

drawn in gray lines and the numbers indicate the varying cardinality of the portfolio (Health-Care sector)
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Fig. 8 Evolution of the subsectorial decomposition of the portfolio (Health-Care sector). Cardinalities of

subsectors are in parenthesis

We now consider all the different sectors composing the S&P 500. Figure 9 presents

the overall performance of the sector portfolios together with the corresponding

indexes. The best performing sectors in terms of portfolio performance relative to

the index are Energy, Materials, Industrials and Health-Care. Indeed 60–70% of

their monthly returns are higher than the index returns. The overall return of the

Energy sector is 282% including 10 bp of transaction costs. Relative to the index its

performance is 196%, representing a relative annualized return of 32.6%. The absolute

returns of Materials and Industrials sector portfolios are 254% respectively 186%, net

of transaction costs and their returns relative to the index 172% respectively 163%.
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Fig. 9 Wealth evolution for all sectors, with transaction costs

In the Financial and Utilities sectors the portfolios also significantly outperform their

relative indexes. Their annualized returns are 23.1% respectively 23.5%.

In order to reveal more information about the evolution of the portfolios in time,

Table 2 presents the year by year performances for the different sectors. The table

also contains Sharpe ratios based on a risk free rate of 5%. Notice that in our case

years are defined from January 15th to January 15th, and therefore, annualized returns

refer to this schedule. Highest Sharpe ratios are observed for the Energy, Materials

and Industrial sector portfolios. The Sharpe ratios for Consumer-Discretionary, Infor-

mation-Technology and Telecommunication-Services are the lowest over all sectors.

Lack of homogeneity for the first sector and the particularity of the Information-

Technology and Telecommunication-Services with respect to the other sectors may

be an explanation for their weaker performance. Treating them apart from the point

of view of the parameterization of the model might enhance their performance.

3.5 A real world test

The backtesting results presented in the previous section seem to assess the efficiency

of our approach. However in reality it is not possible to replicate this policy exactly.
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Table 2 Yearly performance of portfolios of outperformers (PO) by sectors and annualized Sharpe ratio

2001 2002 2003 2004 2005 2006 Sharpe
ratio

Energy PO −12.1 12.3 37.9 43.9 78.7 11.6 1.15

Index −11.0 −11.6 21.2 30.3 39.6 4.4 0.75

Materials PO 45.6 16.6 29.7 30.6 10.7 1.5 1.21

Index 3.9 −1.8 28.9 10.8 6.0 −0.7 0.56

Industrials PO 35.9 9.3 27.5 17.3 14.5 5.2 1.19

Index −8.4 −23.2 30.1 10.3 4.1 −0.1 0.13

Cons.-discret. PO 14.3 4.6 38.0 11.3 7.6 −8.7 0.66

Index −7.3 −20.2 32.0 8.8 −2.6 −6.1 0.04

Cons.-staples PO 44.3 −0.1 27.8 13.1 0.1 3.9 0.99

Index 0.2 −4.5 6.5 7.7 1.4 2.3 0.27

Health-Care PO 36.4 −7.3 34.9 44.1 11.6 −6.8 0.98

Index −3.7 −17.5 11.8 −2.3 9.0 −7.2 −0.10

Financials PO 15.2 −3.3 49.1 20.4 20.5 0.9 0.94

Index −6.3 −12.1 23.2 3.3 9.2 −2.7 0.20

Info.-tech. PO −7.7 −31.7 97.9 −0.9 16.9 −17.3 0.25

Index −29.1 −34.3 40.1 −7.6 11.2 −17.1 −0.30

Telecom.-serv. PO −29.8 −7.1 28.5 3.2 7.4 5.0 0.11

Index −28.8 −30.0 1.6 4.5 −1.4 4.9 −0.45

Utilities PO 16.9 −14.6 19.5 38.6 33.5 0.8 0.69

Index −20.4 −30.2 17.3 18.3 16.8 1.6 0.01

Some of the reasons are that in the backtesting exercise the portfolio is computed

and rebalanced using the closing prices, revenues from dividends are not taken into

account, and spreads cannot be predicted. Even if we augment the transaction cost to

cover the spreads the backtesting will not correspond to reality.

In order to provide some evidence that the model is also likely to perform well in

the real world, we invested an initial wealth of 100,000 USD at January 16th, 2006.3

The transaction costs paid are 0.005 per share with a maximum per order of 20 bp.

The first difference with respect to the backtesting exercise is that the database with

the closing prices of the 15th of the month is available at the end of the day. We then

execute the procedure for estimating the outperformers and rebalance the portfolio

during the 16th day. Evidently, the prices for selling the old positions and buying the

new ones do not generally correspond to the closing prices used in the selection of the

outperformers. Another constraint is the integer nature of the number of traded assets,

implying a loss of equal weight in the positions and thus the holding of some cash.

Table 3 presents the performance of the real, backtested and index portfolios for the

real test period.

The backtesting results seem to be in agreement with the results of the real world test

even if the testing period is relatively short for drawing strong conclusions. Except for

the Consumer discretionary and Information-Technology sectors all the other real and

backtesting sector portfolios present the same tendencies in the year-to-date results.

Generally the differences of the monthly returns are due to the trend and the volatility

3 We thank Capital Strategy for providing funds and help for this experience and Factset Research Systems

for the prompt supply of the data at the rebalancing days.
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Table 3 Monthly performance of real, backtested and index portfolio, by sector, as of July 15, 2006

15Feb06 15Mar06 15Apr06 15May06 15Jun06 15Jul06 Year-to-date

Real PO −6.7 7.1 6.0 0.0 −0.8 7.8 13.2

Energy PO −5.3 5.6 6.6 0.3 −2.5 7.1 11.6

Index −4.5 3.5 3.8 0.3 −4.1 5.8 4.4

Real PO 2.6 2.2 1.3 2.1 −4.0 −3.0 1.0

Materials PO 3.1 1.7 0.6 3.9 −5.3 −2.4 1.5

Index 2.1 3.0 2.3 1.1 −7.5 −1.5 −0.7

Real PO 3.1 3.6 1.1 3.5 −3.7 −3.2 3.7

Industrials PO 2.9 4.3 1.5 3.2 −4.4 −2.2 5.2

Index 1.6 3.5 0.9 3.0 −4.3 −4.5 −0.1

Real PO 0.7 −1.0 0.4 0.1 −1.8 −4.1 −5.7

Cons.-discret. PO 0.5 −0.3 −0.7 −0.5 −2.4 −5.5 −8.7

Index 0.4 0.3 −0.7 1.6 −2.7 −5.0 −6.1

Real PO 1.0 1.0 −1.1 3.0 −0.3 0.7 4.4

Cons.-staples PO 0.4 0.9 −1.4 3.4 −0.6 1.2 3.9

Index 0.3 1.6 −2.9 2.8 −0.7 1.4 2.3

Real PO −0.7 1.2 −4.9 0.2 −1.2 −1.8 −7.1

Health-Care PO −0.3 1.3 −6.7 0.8 −0.5 −1.2 −6.8

Index 0.2 0.5 −5.0 −0.8 −1.0 −1.1 −7.2

Real PO 1.0 3.6 −2.1 1.9 −2.0 −1.2 1.1

Financials PO 1.4 3.1 −3.7 2.6 −2.1 −0.2 0.9

Index −0.8 2.0 −1.4 2.7 −3.8 −1.3 −2.7

Real PO −2.3 −0.1 −0.2 −3.8 −5.0 −5.6 −15.9

Info.-tech. PO −2.1 −0.5 −0.2 −4.2 −5.4 −6.1 −17.3

Index −3.1 1.1 0.0 −5.7 −4.5 −6.0 −17.1

Real PO 5.0 6.5 −4.1 −1.9 5.3 −4.0 6.4

Telecom.-serv. PO 4.7 6.5 −4.3 −2.2 4.6 −3.8 5.0

Index 7.7 3.2 −3.5 −2.0 2.5 −2.6 4.9

Real PO −1.2 0.4 −5.3 2.8 2.1 2.1 0.7

Utilities PO −1.3 0.1 −5.6 3.1 2.2 2.6 0.8

Index −1.8 1.3 −5.8 3.6 2.7 1.8 1.6

of the market during the rebalancing day. Despite the fact that we pay relatively low

costs for the transactions and that the spreads are not very important due to the small

amount invested, the transaction costs applied in the backtesting seem to be justified.

4 Conclusions

We proposed a methodology for the selection of assets achieving future returns above

average using classification trees improved by bootstrap aggregation (bagging). The

model relies on factors with growth or value characteristics and technical analysis

information. The approach has been applied to forecast outperforming assets for the

different sectors of the S&P 500 index from January 2001 to July 2006. We conducted

out-of-sample backtests by constructing equally-weighted portfolios composed by

the outperforming assets and compared their performance relative to the index. The

performance of these portfolios is significantly superior to the indexes even if more

elaborate strategies than equal weighting can be implemented to improve the relative
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Sharpe ratios. Finally, a test with a real investment has been performed in 2006, which

seems to confirm the backtesting results.
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