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T
he response of the terrestrial biosphere to increasing 
atmospheric CO2 concentration (Ca) is a major uncertainty 
in models projecting future climate change, because of the 

critical feedback between terrestrial ecosystem carbon (C) cycling 
and the atmosphere1–3. Current Earth system models disagree 
strongly on the size of this feedback2.  �is disagreement results 
from di�erences in the projected increase of plant production 
owing to CO2 fertilization, including its interactions with terres-
trial nitrogen (N)4–6 and phosphorus7 cycles, as well as di�erences 
in the turnover times of C in terrestrial ecosystems8

. �ese di�er-
ences among models imply that our predictive understanding of 
the e�ects of Ca on terrestrial C storage remains very low.

FACE experiments aim to investigate how terrestrial ecosys-
tems respond to elevated atmospheric CO2 concentration (eCa). 
In general, FACE experiments are ecosystem-scale, long-term, 
multi-investigator experiments that provide an extraordinarily 
rich source of data on plant and soil processes mediating ecosys-
tem-level responses to eCa (refs 9,10). However, the full richness 
of these experiments has rarely been exploited to constrain model 
uncertainty, with model outputs typically only being compared 
against the response of net primary production (for example, 
refs 11–13). 

�e FACE Model–Data Synthesis (FACE-MDS) project14 
aimed to bene�t from the wide range of complementary data 
sets available from these experiments to better constrain eCa 
responses in models. To do so, we followed an ‘assumption-cen-
tred’ approach, in which we studied the underlying assumptions 
that models use to represent key ecosystem processes, and evalu-
ated which assumptions best represented the experimental data. 
We used 11 process-based models, including four stand-scale 
ecosystem models (DAYCENT15, ED216, GDAY17 and TECO18), 
�ve land surface models (CABLE19, CLM420, EALCO21, ISAM22 
and O-CN23) and two dynamic vegetation models (LPJ-GUESS24 
and SDGVM25). �ese models were compared with data from two 
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temperate FACE experiments on established forest plantations: 
the Duke FACE experiment on Pinus taeda26 and the Oak Ridge 
National Laboratory (ORNL) FACE experiment on Liquidambar 
styraci�ua27 (Fig. 1). �ese two experiments have the advantage 
of being stand-level, ecosystem experiments in established forests 
that are readily comparable with ecosystem-scale models. Both 
experiments ran for more than ten years, during which time data 
were collected on many aspects of ecosystem function.

�e major processes we studied included net primary produc-
tion (NPP) and N cycling28, water use and water-use e�ciency 
(WUE)29, and allocation and turnover30. �e two experiments 
demonstrated contrasting responses for each of these processes. 
�e eCa stimulation of NPP at Duke varied among FACE rings 
depending on N availability, but the site-average response 
remained high throughout the course of the experiment26,31. C 
allocation patterns did not change greatly, so the increase in NPP 
led to higher leaf area index (LAI)32 and higher vegetation C stor-
age at the end of the experiment. �ere was little change in total 
plant water use33. In contrast, at ORNL, the initial stimulation of 
NPP by eCa declined over time owing to developing nutrient limi-
tations27, and allocation shi�ed strongly belowground34, resulting 
in no change in LAI or vegetation C storage but a reduction in 
plant water use35. �ese contrasts between the experiments height-
ened the challenge for the models to simulate them accurately.

�e methods and results from the project are fully reported 
in refs. 14, 28–30, and project data36,37 are available from 
http://cdiac.ornl.gov/face. �e goal of this Perspective is to explain 
the approach that we took to the intercomparison and to demon-
strate the success of this approach by synthesizing our results into 
a clear research agenda for reducing model uncertainty.

The assumption-centred approach
Model intercomparisons against data o�en use a ‘benchmarking’ 
approach38 (Fig. 2a), in which models are compared against a suite 
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of observed system characteristics, and then ranked according 
to how well they replicated the observed patterns. While this 
approach can identify a ‘best’ model for a given data set (or suite 
of data sets), it rarely leads to model improvement because it does 
not identify the reasons for good or bad model performance. It 
also overlooks the problems of equi�nality and parameter tuning, 
which can lead to models performing well for the wrong reasons39.

In contrast, the assumption-centred approach used in the 
FACE-MDS explicitly aims to identify and evaluate the assump-
tions causing intermodel di�erences (Fig.  2b). �is approach 
makes use of the fact that ecosystem models at their core have 
a similar structure40. Each of the models participating in FACE-
MDS represents the major processes driving C, water and N �uxes 
among tree and soil components. �e di�erences among the mod-
els thus stem from the speci�c hypotheses and parameter values 
used to represent each individual process. As a consequence, 
the hypotheses representing individual processes can be directly 
compared among models, and their responses to eCa assessed.

�e basis of the assumption-centred approach is that, instead 
of investigating the emergent ecosystem-level response, one sub-
set of processes is examined at a time. We used two key analysis 
tools to do this (Box  1). One tool is model simpli�cation: for a 
given process, we identify the simplest possible representation for 
that process and compare it against output from each model. We 
then ask, what assumptions are made in that model to explain 
its divergence from the simplest possible representation? A sec-
ond tool is process decomposition: we mathematically decompose 
composite variables into component variables that each repre-
sents a sub-process of the target process. �ese types of analyses 
provide major insights into model behaviour by allowing us to 
identify the key assumptions that are responsible for di�erences 
among model predictions.

�e modelled process responses can then be compared against 
relevant experimental data to identify which of the assumptions 
are supported by the observations and which are not. In the 
FACE-MDS we were sometimes, but not always, able to identify 
the assumption corresponding best to the available observations. 
In some cases, the FACE experimental data were not su�cient 
to discriminate among assumptions, indicating a need for addi-
tional observations, including non-FACE data. In other cases, it 
was clear that none of the models were correctly capturing the 
experimental responses, demonstrating a need for development of 
new theory. �ese results are summarized in Fig. 3.

Discrimination among alternative model assumptions
For the following processes (shown in green in Fig. 3), it was pos-
sible to distinguish model assumptions that best captured the 

experimental responses, leading to clear recommendations for the 
types of models to use. 

Stomatal conductance. �ere is a relationship between stomatal 
and photosynthetic responses to Ca, with the strongest reductions 
in stomatal conductance occurring when photosynthetic increases 
are smallest and vice versa41. Models thus commonly represent 
stomatal responses to Ca as a function of assimilation. �e most 
widely used stomatal conductance models assume that the ratio 
of assimilation to stomatal conductance is proportional to Ca, but 
some variants of these models assume a di�erent relationship (see 
Box 1). Data from the two forest FACE experiments support pro-
portionality, as do a wide range of other experiments42,43, suggest-
ing that the most widely used models are appropriate29.

Allocation. Allocation describes the distribution of NPP among 
the di�erent plant organs (leaves, wood and �ne roots). Of the 
allocation assumptions considered, we found that ‘functional 
relationship’ allocation models, in which allocation is calculated 
to give allometric relationships among plant tissues that vary with 
resource availability, were best able to capture the general features 
of the observations. Some models assumed that the fractions of 
NPP allocated to each tissue were constant, but allocation in the 
FACE experiments responded dynamically to eCa, with signi�-
cantly greater root allocation at ORNL44 and slightly greater wood 
allocation at Duke26,30, so the ‘constant coe�cient’ models did not 
perform well. Similarly, models that used allocation coe�cients 
that were unconstrained by relationships among plant biomass 
components gave results that were inconsistent with data. We thus 
recommend allocation models that include dynamic allometric 
constraints30. Such models may include empirical, optimization 
or competitive approaches45.

N limitation. �e ecosystem models di�ered in how quickly N 
availability declined owing to eCa such that it limited plant pro-
duction. In two models, N limitation was assumed to e�ectively 
preclude any stimulation of productivity even at the start of the 
experiments. �is assumption is not supported by either experi-
ment, as site-average productivity was strongly stimulated in the 
�rst years at both sites. Limitation of the eCa e�ect by N availabil-
ity occurred at the ORNL site as a gradual process in subsequent 
years27. �ese results clearly indicate that models need to allow 
for a degree of �exibility in the coupling of the C and N cycles28.

Missing or wrong model assumptions
�ere were a number of processes (shown in red in Fig.  3) for 
which it was found that no model correctly captured the behaviour 

a b

Figure 1 | Aerial views of FACE experiments. a, ORNL FACE experiment; b, Duke FACE experiment. 
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seen in the experiments. �ese cases indicate areas where new 
theory is needed.

Leaf mass per area. Leaf mass per area (LMA) is important in 
determining LAI, a key ecosystem property. �e experimental 
data showed an increase in LMA in eCa, particularly at the sin-
gle-species, more homogeneous ORNL FACE, which meant that 
LAI did not respond as strongly to eCa as did foliage biomass. An 
increase in LMA is a common observation in eCa experiments (for 
example, ref. 9) but was not captured by any of the models; in fact, 
most of the models treat LMA as a constant. Further theory is 
needed to predict such changes in LMA and avoid over-prediction 
of eCa e�ects on LAI31.

Flexibility of plant stoichiometry. Increasing tissue C/N 
ratios is one mechanism by which plants can maintain high 
productivity under nutrient limitation. �e experimental data 
showed a consistent decline of the mass-based foliar N con-
centration with eCa. A subset of the ecosystem models under 
investigation included this acclimation process, which quali-
tatively increased the agreement with observations. However, 
all of these models overestimated the extent of stoichiometric 
acclimation, suggesting that the current models lack an appro-
priate representation of the fundamental trade-o�s govern-
ing foliar N allocation28. �eories on foliar N demand are in 

development (for example, ref.  46) and may help to determine 
foliar N demand beyond simple stoichiometric coe�cients. 
 
Priming of soil N release. �e models underestimated the obser-
vation-based net transfer of N from soil organic matter to vegeta-
tion associated with eCa, and thus suggested stronger than observed 
N limitation at the Duke site, where this net N transfer was sub-
stantial. �is model failure is very probably owing to a missing 
representation of the increase in soil organic matter turnover with 
increased plant rhizodeposition47,48. Such an increase was observed 
at both sites48,49. However, the magnitude of this e�ect di�ered 
strongly between the sites, alleviating N limitation in the Duke 
evergreen, needle-leaved site, but not the ORNL deciduous, broad-
leaved forest. New theory is needed for the models to incorporate 
this e�ect (see refs 50, 51). In addition, slow accrual rates and large 
standard errors in observations of soil matter content made it dif-
�cult to quantify the extent of the model failure, suggesting that 
improving the accuracy of soil organic matter records is pivotal28.

Additional data are needed for discrimination
In several cases (shown in orange in Fig. 3), the reasons for dis-
crepancies among models were not speci�c to eCa, but related to 
model representation of plant ecophysiological function in general. 
In these cases, broader data sets and data syntheses are needed to 
constrain the models.
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Figure 2 | Comparison of the benchmarking and model–data synthesis approaches to model intercomparison. a, Model benchmarking/validation; 

b, Model–experiment synthesis. The assumption-centred approach translates model evaluation into hypothesis testing, allowing a two-way flow 

of information between modelling and experiment to improve our predictive understanding of the system. Figure adapted with permission from 

ref. 14, AGU. 
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�e relative importance of electron transport and Rubisco 
limitations to photosynthesis. Most models employ the 
Farquhar–von Caemmerer model of photosynthesis52, in which 
photosynthesis is determined by the most limiting of two pro-
cesses, electron transport and Rubisco activity. As Rubisco-limited 
photosynthesis responds more strongly to changes in Ca than 
electron-transport-limited photosynthesis, models in which the 
Rubisco limitation predominates predict larger direct responses of 
canopy photosynthesis to eCa

28. Direct empirical tests of theoretical 
predictions for how the ratio of the two limitations varies on the 
leaf scale (for example, ref. 53) and on the canopy scale (for exam-
ple, ref. 54) could help identify the best way to parameterize these 
processes and thereby reduce intermodel di�erences.

Sensitivity of transpiration to stomatal conductance. An 
important cause of di�erences in the predicted eCa e�ect on WUE 
among models was that the sensitivity of canopy transpiration 
to stomatal conductance varied dramatically among the models. 
Although most models predicted that the stomatal conductance 
would be reduced signi�cantly with eCa (see ‘Stomatal conduct-
ance’ section), the resultant change in transpiration varied from 
close to proportional to the change in stomatal conductance, to 
almost none. Given that there has been much previous work on 
the strength of coupling of transpiration to canopy conductance 
(for example, refs 55–57), this discrepancy seems remarkable, and 
should be resolvable from existing data on canopy coupling29.

Interception. Models disagreed on what fraction of rainfall was 
intercepted (and evaporated) by the canopy, and how canopy gas 
exchange was a�ected when the canopy is wet. Both components 
noticeably a�ected the overall water-budget response to eCa, as eCa 
a�ected the foliar projected cover. A model-oriented review of data 
on wet canopy function would help to reduce uncertainty around 
the representation of this component of the water balance29. �is 
issue is particularly important for moist canopies with high leaf 
area index, such as tropical rainforests.

Drought. Models disagreed on whether low soil-moisture availa-
bility a�ected the ratio of stomatal conductance to photosynthesis, 
or the biochemistry of photosynthesis, or both29. �is assumption 
strongly a�ects the WUE response to eCa under low soil-moisture 
availability. Evidence emerging from other studies of drought 
impacts on gas exchange indicates that both processes are impacted 
by drought58,59, suggesting that models should include both e�ects.

Turnover. �e e�ect of eCa on biomass accumulation is strongly 
a�ected by the rate at which plant organs, particularly wood, 
turn over. Most models represented this process with a relatively 
simple parameterization, and the parameter values chosen dif-
fered strongly among models, indicating large uncertainty about 
this process30. However, the timescale of the FACE experiments 
(10 years) is clearly too short to constrain this long-term process. 
Data to constrain this aspect of the models need to come from 
observational studies rather than manipulative experiments (for 
example, refs 60, 61).

Ecosystem N losses. �e models disagreed strongly on the 
magnitude of the eCa e�ect on ecosystem losses of mineral N 
through leaching. On the ten-year time scale of this experiment, 
this disagreement had only a small e�ect on plant N uptake, 
because changes in soil organic N turnover had a stronger e�ect28. 
However, as changes in ecosystem N losses accumulate over time, 
for longer-term simulations we will need better-constrained esti-
mates of these losses.

Outcomes
Our new ‘assumption-centred’ approach to model–data inter-
comparison used in the FACE-MDS proved highly successful in 
several ways. �e principal outcome is the clear roadmap, out-
lined above, for improving model capacity to predict eCa e�ects 
on forests. �is roadmap highlights key research tasks for both 
modellers and experimentalists. 

A second major outcome was that our approach provided a 
strict test of model consistency. Each model was required to out-
put information on C, water and nutrient budgets that allowed 
us to verify that all models conserved mass and energy, and that 
�uxes were de�ned consistently across models. �is veri�ca-
tion, and the detailed model analysis using the tools outlined in 
Box 1, identi�ed several cases in which model assumptions had 
either not been correctly implemented or had unintended conse-
quences31. We recommend that modellers apply the assumption-
centred analysis tools both in model comparisons and individual 
model runs as a way of verifying model results.

�ird, the FACE-MDS has provided real insights into how and 
why models di�er in their predictions of ecosystem responses 
to rising Ca. �ese insights are not limited to the models con-
sidered in FACE-MDS. Having highlighted the key alternative 
assumptions causing intermodel di�erences, we can classify other 
models according to which of those alternatives they use, and 

Model simpli�cation. One technique is to compare all outputs 
for a given process against those from a ‘lowest common denomi-
nator’ simple model. For example, 10 of the 11 models considered 
here applied similar representations of stomatal conductance. All 
used di�erent versions of the stomatal conductance model of Ball, 
Woodrow and Berry64. �e simplest possible application of this 
model predicts that WUE, de�ned as canopy assimilation divided 
by transpiration, should be proportional to the Ca, independent of 
model parameterization. We therefore compared modelled WUE 
against this simple prediction. In two of the models, the di�er-
ence from the simple model could be attributed to the fact that 
they used structurally di�erent variants of the Ball, Woodrow and 
Berry model, which do not yield the same proportional response 
to Ca. Leaf-level gas exchange data from both experiments sup-
ported the simplest possible model rather than the variants29. 
�us, this approach allowed us not only to identify an important 
di�erence among the assumptions of the models and outline their 

importance for predicting the ecosystem-level consequence of 
CO2 fertilization, but also to identify which of these assumptions 
were supported by observations. 

Model decomposition. A second technique is to decom-
pose a process into its components to identify which of several 
underlying assumptions is causing intermodel di�erences28,65. 
For example, ref. 28 decomposed net primary production 
(NPP, gC m–2 yr–1) into N use e�ciency (NUE, gC per gN) and N 
uptake (Nup, gN m–2 yr–1): 

NPP = NUE × Nup 

Using this decomposition, ref. 28 showed that, although sev-
eral models correctly estimated the eCa e�ect on NPP, they did so 
for the wrong reason: e�ects of eCa on NUE were overestimated, 
whereas e�ects on Nup were underestimated. 

Box 1 | Examples of analyses used in the assumption-centred approach.
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interpret their outcomes accordingly. For example, inspection of 
the assumptions of the JULES model62 indicates that transpiration 
should be strongly coupled to stomatal conductance, implying 
that this model should give larger responses of WUE to eCa than 
models with weaker coupling, such as the LPJ family of models63. 

Our approach to model intercomparison could be usefully 
applied in other, similar projects aiming at synthesizing the out-
comes of data-rich ecosystem manipulation experiments into 
process-based ecosystem modelling. We particularly encour-
age new experiments to adopt and plan for such a modelling 
framework as the experiment is established. Early preparation 
will increase the e�ciency with which experimental data are 
collected and organized for use in models, and a priori model-
ling allows for the generation of testable hypotheses to guide 
experimental measurements.
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