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Using electron scattering superscaling to predict charge-changing neutrino cross sections in nuclei
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Superscaling analyses of few-GeV inclusive electron scattering from nuclei are extended to include not only
quasielastic processes, but also the region where � excitation dominates. With reasonable assumptions about
the basic nuclear scaling function extracted from data and information from other studies of the relative roles
played by correlation and meson-exchange-current effects, it is shown that the residual strength in the resonance
region can be accounted for through an extended scaling analysis. One observes scaling upon assuming that the
elementary cross section by which one divides the residual to obtain a new scaling function is dominated by
the N → � transition and employing a new scaling variable suited to the resonance region. This yields a good
representation of the electromagnetic response in both the quasielastic and � regions. The scaling approach is
then inverted and predictions are made for charge-changing neutrino reactions at energies of a few GeV, with
focus placed on nuclei that are relevant to neutrino oscillation measurements. For this, a relativistic treatment of
the required weak interaction vector and axial-vector currents for both quasielastic and �-excitation processes is
presented.
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I. INTRODUCTION

In recent studies of inclusive electron scattering at interme-
diate to high energies from nuclei we explored various aspects
of scaling and superscaling [1–7]. The general procedure
used in such analyses is to divide the experimental inclusive
cross section by an appropriate single-nucleon cross section,
having contributions from Z protons and N neutrons with
their corresponding electromagnetic form factors, to obtain a
reduced cross section. Here the word “appropriate” entails
two things. First, the usual analysis in the region of the
quasielastic (QE) peak assumes that the dominant process
is elastic scattering from nucleons in the nuclear ground
state followed by quasifree ejection of the nucleons from
the nucleus, and hence the appropriate single-nucleon form
factors are the elastic ones. Second, the nucleons in the nuclear
ground state are moving (Fermi motion) and accordingly the
single-nucleon cross section used must take this into account.
Once one has the reduced cross section it can be plotted against
one or more appropriately chosen variables; if the results do
not depend on some of these variables and a universal behavior
is found, one says that the results scale. Specifically, when the
reduced cross section is plotted against a well-chosen scaling
variable (see below) and no dependence on the momentum
transfer q is observed, one says that one has scaling of the first
kind. When no dependence occurs on the momentum scale that
characterizes specific nuclei (essentially the Fermi momentum
kF of a given nuclear species), one says that one has scaling of

∗ To contact collaboration, send e-mail to: Ingo.Sick@unibas.ch.

the second kind. If both types of scaling behavior are found,
one says that superscaling occurs.

At sufficiently high energies we have seen both types
of scaling behavior. For specific nuclei one observes quite
good first-kind scaling at excitation energies below the QE
peak, namely, in the so-called scaling region. This is the
familiar y-scaling behavior. At energies above the peak, where
nucleon resonances (especially the �) are important, this type
of scaling is broken for the total reduced cross section. On
the other hand, from what data we have where longitudinal-
transverse separations have been made, we know that these
scaling violations apparently reside in the transverse response,
but not in the longitudinal. The latter appears to superscale.
In fact, this is not unexpected, since we know that there are
contributions that do not scale arising from meson-exchange
currents (MECs) plus the correlation effects1required by gauge
invariance which must be considered together with the MEC
[8–10] and from inelastic scattering from the nucleons [6].
As discussed below, it is important to observe that MEC
and inelastic contributions are predominantly transverse in
the kinematic regions of interest in the present work. Note
that scaling of the second kind works very well in the scaling
region and, even in the resonance region, it is only violated at
roughly the 20% level.

1Note that such correlation effects are not the only ones. In
particular, even in a factorized approach of the type presented here,
there are both mean-field and short-range correlations in the initial
state which are embodied in a nuclear spectral function and which
lead to the scaling function deduced from data, as discussed later.
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Using these recent studies as a basis we now extend our
analysis to encompass both the QE and � regions. Our
approach is the following: taking all of the high-quality data
for two specific nuclei of relevance to our later discussions,
namely for 12C and 16O, we proceed as outlined above and
begin by performing a comprehensive scaling analysis in
the QE region. Using our knowledge of the experimentally
determined longitudinal superscaling function as the starting
point, we work backward and predict the transverse response
one would obtain strictly from the contributions that are present
in that function. In other words, we reconstruct the part of
the transverse cross section that has neither MEC effects nor
inelasticity built into it. The net inclusive cross section so
obtained is then, in effect, the QE contribution, except for
corrections arising from MEC effects and their associated
correlations. The next step is to subtract this from the data.
What is left should now be dominated by the inelasticity; and,
in particular, when not too far above the QE peak region, we
expect the � resonance to be the most important contribution.

From other studies, we expect that a similar procedure
can now be followed for the subtracted results. We again
reduce the leftover cross section by dividing by the appropriate
single-nucleon cross section, now for the N → � transition,
and display the result versus a new scaling variable in which
the kinematics of resonance electro-production are respected.
As discussed later, the results scale quite well, suggesting that
this procedure has indeed identified the dominant contributions
not only in the QE region, but also in the � region. We check
our analysis by assembling all of the pieces obtained via the
scaling procedures to produce a total inclusive cross section
which can be compared with data. Overall the answers are
very encouraging, and only for specific kinematics do we
see deviations as large as 10–20%. We believe that effects
from MECs and their associated correlations (which are not
incorporated using this approach) are probably responsible for
these residuals.

Having met with success in extending the scaling and
superscaling analyses from the scaling region, through the
QE peak region, and now into the � region, we are in a
position to take a step in a new direction. Since we have the
scaling functions and can be sure that, upon being multiplied
by the electromagnetic N → N and N → � single-nucleon
cross sections, the total nuclear electromagnetic cross section
is quite well reproduced, we can just as well multiply by the
corresponding charge-changing weak interaction N → N and
N → � single-nucleon cross sections to obtain predictions for
neutrino reactions in nuclei at similar high-energy kinematics.

Thus, the second motivation for the present investigation
has been to work backward to predictions for these cross
sections with the goal of providing high-quality results for
use in ongoing experimental studies of neutrino oscillations
at GeV energies [11–15]. These studies are presently being
pursued in the MiniBooNE and K2K/T2K experiments [11].
Both of these and also the forthcoming MINOS, NOvA,
and MINERvA [12–15] initiatives involve neutrino energies
of several GeV where a fully relativistic treatment of the
neutrino-nucleus scattering is mandatory, but hard to achieve.
Targets of hydrocarbon or water are involved in the cases of
MiniBooNE and K2K/T2K, and hence 12C and 16O are taken

as the focus in the present work. For the others, iron and lead
will also be considered, and in this regard we note that, to
the degree that scaling of the second kind is reasonably well
satisfied, one can focus on the nuclei where the most reliable
electron scattering data are available and then subsequently
obtain predictions for neutrino reactions not only for those
nuclei, but also for a wide range of targets.

Any reliable calculation for neutrino scattering should first
be tested against electron scattering data. Here, instead of using
a specific model to describe inclusive electron scattering at
relatively high energies in the QE and � regions, as stated
above, we follow a different approach. Using as a basis the
scaling behavior of the electron-nucleus cross section in both
the QE and � peaks, we extract the scaling functions directly
from experimental data and use them to predict the neutrino-
nucleus cross section.

This strategy is motivated by the fact that while relativistic
modeling [16–25] of the nuclear dynamics in studies of high-
energy inclusive lepton scattering is expected to be capable of
getting the basic size and shape of the cross section, so far it
has not been capable of accounting for important details of the
response. Specifically, such modeling has been able to provide
a reasonable representation of the eA inclusive cross section.
Typically at high energies the cross sections obtained using
wide classes of models, including those with relativistic mean-
field dynamics and random-phase approximation (RPA)-type
correlations included, are seen to be very similar to the
results found using the relativistic Fermi gas (RFG) model,
accordingly we will also compare the results obtained using
the scaling approach with those obtained using the RFG model.
At the peaks of the QE or � responses, one finds that the
two approaches differ by about 25% (with mean-field effects
this discrepancy is reduced to perhaps 20%); however, as
we shall see later, the phenomenological scaling approach
requires a long tail, which is largely absent in most modeling.
A possible reason for this disagreement is the absence of
classes of short-range correlation effects in most of the
relativistic modeling. It goes without saying that nonrelativistic
modeling is completely inadequate at the energies of interest
in the present work. At intermediate energies (below those
considered in this study) it is, of course, important to include
effects from final-state interactions and RPA correlations (see
for instance recent work reported in [26,27]) as these can
be significant.

Since most semileptonic scattering processes at similar
kinematics have much the same character, one should expect
that failure at this level will also imply a similar level of
disagreement for predictions made of neutrino reaction cross
sections using the same types of modeling. Clearly, on the
one hand, if all one wants is a rough estimate of neutrino
reaction cross sections at similar energies, then existing
relativistic modeling is probably adequate. On the other hand,
if uncertainties of less than 25% are required [as, for example,
when one wishes to see distortions in the energy distributions
of the detected muons in (νµ, µ−) reactions with nuclei caused
by neutrino oscillations], then one must use existing models
with great caution. As we shall see below, the superscaling
approach being followed in the present work appears to be
capable of reducing the uncertainty to perhaps the 10% level,
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at least when one limits the focus to the QE region and the
region up to inelasticities where the � contribution reaches its
maximum.

The paper is organized the following way. In Sec. II we
begin with a brief discussion of kinematics, since we will
be interested not only in electron-neutrino-induced reactions,
where the lepton masses can safely be ignored, but also in
muon-neutrino-induced reactions where the energies, although
relatively high, are not high enough to safely ignore the muon
mass. In Sec. III we present a summary of the formalism
needed in studies of scaling and superscaling, both for the
QE and � regions. There we give the results of our analysis
of inclusive high-energy inelastic electron scattering data for
carbon and oxygen, using the procedures outlined above, and
thereby validate the scaling functions we use in the rest of
the paper. In Sec. IV we turn to the second theme of the
paper and discuss charge-changing neutrino reactions with
nuclei. We begin by presenting the basic formalism required
in treating electroweak processes, followed by development of
the single-nucleon responses in the QE region (Sec. IV A) and
in the � region (Sec. IV B), now of course with both vector
and axial-vector N → N and N → � currents. Section IV C
then contains a discussion of the formalism involved in
obtaining the cross sections and response functions. Once
these developments are in hand, we proceed in Sec. V with
a presentation of our predictions for charge-changing neutrino
reactions with nuclei. Finally, in Sec. VI we summarize our
work and present our conclusions.

II. LEPTON SCATTERING KINEMATICS

In this section we begin with a brief discussion of the
kinematics involved in studies of lepton scattering from nuclei
including electron scattering and the subject of Sec. IV,
charge-changing neutrino reactions. We start with a general
scattering problem in which an incident beam of leptons
with 4-momentum Kµ = (ε, k) scatters and a lepton with
4-momentum K ′µ = (ε′, k′) emerges. In general, one has

ε =
√

m2 + k2, (1)

ε′ =
√

m′2 + k′2, (2)

where m and m′ are the masses of the incident and outgoing
leptons, respectively. Clearly, for electron scattering m =
m′ = me (usually, but not always, this can be taken to be zero)
and for electron-neutrino-induced charge-changing neutrino
reactions m = mνe

∼= 0, whereas m′ = me (again, essentially
zero). The difficult case is for muon-neutrino-induced charge-
changing neutrino reactions where m = mνµ

∼= 0, whereas
m′ = mµ; the last is clearly not negligible for the kinematics
of interest in the present work.

As usual, one has a 4-momentum transfer Qµ = (ω, q) with

ω = ε − ε′, (3)

q = k − k′, (4)

the energy transfer and 3-momentum transfer, respectively.
The momentum transfer is spacelike: −Q2 = q2 − ω2 > 0.

For convenience we define an average leptonic mass as

M ≡
√

1
2 (m2 + m′2) � 0, (5)

and given an excitation from target rest mass Mi to some final
rest mass Mf � Mi (that is, the final hadronic rest frame total
energy is W = Mf ), we define a sort of excitation energy as

ω0 ≡ 1

2Mi

(
M2

f − M2
i

)
� 0. (6)

Then from energy-momentum conservation one has

ω = ω0 + |Q2|
2Mi

. (7)

Solving Eqs. (3) and (7) together produces expressions for the
scattered lepton’s energy and 3-momentum. Defining

ε1 ≡
√

M2
i + 2Miε + m2 + k2 sin2 θ, (8)

ε2 ≡
√

Mi(ε − ω0) + M2, (9)

where θ is the lepton scattering angle (the angle between k
and k′), it can be shown that

k′ = 1

ε2
1

[
ε2

2 (k cos θ ) + (Mi + ε)
√

ε4
2 − m′2ε2

1

]
, (10)

ε′ = 1

ε2
1

[
ε2

2 (Mi + ε) + (k cos θ )
√

ε4
2 − m′2ε2

1

]
, (11)

where for the results to be real for all scattering angles the
beam energy must be greater than εmin, where

εmin = m′ + ω0 + m′ω0 + (m′2 − m2)/2

Mi − m′ . (12)

Hence, for a given excitation energy ω0 and for given
beam energy and scattering angle, the quantities ε1,2 can be
computed and through them the final lepton’s energy and
3-momentum are fixed. Clearly the 4-momentum transfer is
then given as well.

III. SCALING AND SUPERSCALING

A. Scaling in the quasielastic peak region

In this subsection we briefly review the structure of the
nuclear responses in the region of the quasielastic peak (QEP).
We begin with the basic relativistic Fermi gas model that
has been used to motivate scaling and superscaling behavior
in this region of kinematics [1–4]. Here a single parameter
characterizes the dynamics, namely, the Fermi momentum
kF . In the present work our goal is to use the electron
scattering cross sections as input, perform a scaling analysis,
and arrive at predictions for the charge-changing neutrino
cross sections. Accordingly the focus is placed on kinematic
regimes where the cross sections (induced by electrons or
neutrinos) are substantial, and from past work it is known that
under such circumstances it is a good approximation to work
only to leading order in an expansion in ηF ≡ kF /mN . Also
ξF ≡

√
1 + η2

F − 1 ∼= η2
F /2 is small.
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The leading-order QE responses (denoted by subscript
zero) may be written, in the non-Pauli-blocked domain, in
the following form [1]:

R
QE
L (κ, λ)0 = 
0

κ2

τ
[(1 + τ ) W2(τ ) − W1(τ )] fRFG(ψ), (13)

R
QE
T (κ, λ)0 = 
0 [2W1(τ )] × fRFG(ψ), (14)

with


0 ≡ N ξF

mNκη3
F

∼= N
2κkF

, (15)

and W1,W2 the structure functions for elastic scattering. As
usual the proton (N = Z) and neutron (N = N ) contributions
should be separately computed with the appropriate form
factors and added together. The latter are linked to the Sachs
form factors through the well-known relations

(1 + τ ) W2(τ ) − W1(τ ) = G2
E(τ ), (16)

2W1(τ ) = 2τG2
M (τ ). (17)

As usual, we employ dimensionless variables λ ≡ ω/2mN ,
κ ≡ q/2mN , and τ ≡ |Q2|/4m2

N = κ2 − λ2. The RFG has the
following universal form for the superscaling function:

fRFG(ψ) = 3
4 (1 − ψ2)θ (1 − ψ2), (18)

that is, when plotted against the scaling variable ψ ,

ψ ≡ 1√
ξF

λ − τ√
(1 + λ)τ + κ

√
τ (1 + τ )

, (19)

a universal behavior is obtained with no dependence left either
on momentum transfer (scaling of the first kind) or on nuclear
species via kF (scaling of the second kind).

In studies of electron scattering scaling, one usually
includes a small energy shift by replacing ω by ω − Eshift

in order to force the maximum of the QE response to occur
for ψ ′ = 0 (see, for example [3–5,28]). This is equivalent
to taking λ → λ′ = λ − λshift with λshift = Eshift/2mN and
correspondingly τ → τ ′ = κ2 − λ′2 in Eq. (19). Often we
shall use the pair of variables (κ,ψ ′) in place of the
original pair (q, ω) to characterize the inclusive scattering
responses—clearly they are functionally related by the above
equations.

Using the guidance provided by the RFG, the procedure
to adopt in order to get the experimental scaling function
F QE(κ,ψ ′) in the QE domain is then clear: Simply divide
the experimental QE cross section by

SQE ≡ σM

[
vLG

QE
L + vT G

QE
T

]
, (20)

where σM is the Mott cross section, vL,vT are the kinematic
factors defined below in Eqs. (74) and (75), and the functions
G

QE
L,T are [2–6]

G
QE
L = κ

2τ

[
ZG2

E,p + NG2
E,n

] + O
(
η2

F

)
, (21)

G
QE
T = τ

κ

[
ZG2

M,p + NG2
M,n

] + O
(
η2

F

)
. (22)

The factors involving κ and τ in Eqs. (21) and (22) arise
partly from the Jacobian of the transformation from λ to
ψ [7] and partly from the explicit calculation leading to

Eqs. (13) and (14). Finally, as in past discussions of scaling of
the second kind, one multiplies F QE(κ,ψ ′) by kF to obtain the
superscaling function f QE(κ,ψ ′).

The nuclear response functions all have the general struc-
ture

[R]QE = 1

kF

f QE(κ,ψ ′)
N
2κ

[R]s.n., (23)

where N is the appropriate nucleon number. In particular, as
stated above, one copy of this expression with proton form
factors and N = Z should be added to another with neutron
form factors and N = N for electron scattering. Here [R]s.n.

is the corresponding single-nucleon response.
In previous work [2–4] we have shown that scaling works

quite well for all nuclei and for energy loss ω < ωQEP, where
ωQEP corresponds to the maximum of the quasielastic peak;
the scaling function F QE(κ,ψ ′) is indeed largely independent
of the momentum transfer as long as q is of the order of 2kF or
larger. Deviations from scaling, which mainly occur at larger
energy loss, are related to contributions beyond quasielastic
scattering such as those from meson exchange currents and �

excitation (see below).
The scaling behavior becomes particularly clear if one stud-

ies the experimental response separated into its longitudinal
(charge) and transverse (magnetic) pieces. The nonscaling
contributions mentioned above mainly occur in the transverse
response. Accordingly, one finds that the experimental longi-
tudinal responses scale much better and to much larger energy
loss. The approach taken in [3,4] therefore has been to use
the experimental longitudinal responses to define the scaling
function f QE(ψ ′).

The total inclusive electron scattering response is then
assumed to be composed of several contributions: (1) the
entire longitudinal contribution appears to superscale and to
be represented by the empirical scaling function f QE(ψ ′);
(2) part of the transverse response arises from quasielastic
knockout of nucleons from the nucleus and is also driven
by the scaling function f QE(ψ ′); however, (3) the transverse
response has additional contributions, at least from MEC
effects with their associated correlations and from inelastic
single-nucleon processes including the excitation of the �.
From our past work we know that typically the effects under
item (3) break the scaling. The contributions from MEC effects
together with their attendant correlations enter roughly at the
10% level [8–10,29–34] and, as we argue later, may be less
important for charge-changing neutrino reactions than they
are for electron scattering. Accordingly we shall ignore these
nonscaling effects in the present work. In future work we hope
to address this issue more directly with continued relativistic
modeling of these contributions. Other effects can enter into
the dynamics and invalidate the picture here (for example, at
low q, the RPA correlation effects can modify the longitudinal
and transverse responses in different ways because of the very
different isospin character of these two channels); however,
again, at the kinematics of interest in the present work these
effects are thought to be relatively small.

The largest nonscaling contribution to the transverse re-
sponse is then believed to be the one arising from inelastic but
impulsive processes, especially via the excitation of the � for
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FIG. 1. Averaged experimental f QE(ψ ′
QE) versus ψ ′

QE in the
quasielastic region together with a phenomenological parametrization
of the data. The integral of the curve has been normalized to unity.

the kinematics of interest in the current study; this provides
the focus for the following subsection.

In [3,4] the intercomparison of the scaling functions for
various nuclei has been performed in terms of the functions
f QE(κ,ψ ′) extracted from F QE(κ,ψ ′) as discussed above.
Excellent scaling of the second kind, i.e., scaling functions
f QE(κ,ψ ′) that closely match for different nuclei, was
observed and, indeed, such second-kind scaling is actually
significantly better realized than is scaling of the first kind.

The combination of scaling of the first and second
kind—superscaling—allows one to determine from the data
a universal scaling function f QE(ψ ′). The scaling function
(and quasielastic cross section) for individual nuclei can then
be recalculated once the Fermi momentum of the nucleus is
known.

Reliable separations of data into their longitudinal and
transverse contributions for A > 4 are available only for a
few nuclei [35]; all of these response functions have been
used to extract the “universal” quasielastic response function
f QE and to obtain a parametrization by a simple function.
Figure 1 shows f QE(ψ ′

QE) averaged over the nuclei employed,
together with the corresponding fit.2 Note that f QE(ψ ′

QE) has
a somewhat asymmetric shape and a tail that extends toward
positive values of ψ ′

QE. In contrast, the RFG [see Eq. (18)]
is symmetric when plotted as in the figure, is limited strictly
to the region −1 � ψ ′

QE � + 1, and has a maximum value of
3/4, whereas the empirical scaling function reaches only to
about 0.6.

One source for the difference could be typical mean-field
dynamics in the initial and final nuclear states involved;
however, for the kinematics of interest in the present work, both
relativistic mean-field theory [17,20,21,23] and relativized
shell-model studies [19] appear to provide only rather modest

2In the figure and henceforth, the QE scaling variable is denoted
ψ ′

QE to distinguish it from the scaling variable used in the � region;
see later discussion.

differences from the RFG predictions. As stated above, non-
relativistic modeling is quite incapable for such kinematics
(see, for instance, [19]).

Another source for the differences seen between the RFG or
mean-field descriptions and the empirically determined scaling
function arises from high-momentum components in realistic
wave functions that may be large enough to produce the results
shown in the figure; although much more work, especially in a
relativistic context, is required to put this on a solid footing. For
the present we limit our approach to phenomenology and take
the scaling function from experiment. It should be emphasized
at this point that much of the inability of typical modeling to
account for the inclusive response at these kinematics appears
to stem directly from the inability of that modeling to account
for the results in the figure. We shall see later that when
the empirical scaling function is used, one obtains a good
representation of measured (e, e′) cross sections and, therefore,
that one’s confidence in proceeding to predictions for neutrino
reaction cross sections must be raised.

Unseparated experimental quasielastic cross sections have
been measured for several nuclei over a large range of
momentum transfer (for a compilation see [4]). These data
have been used to determine the values of kF for the nuclei
considered (in [5] a table with numerical values is given) and
since the evolution of kF with the nuclear mass number is
slow, these values can easily be interpolated for any nucleus
of interest.

As was pointed out earlier, the description of the experi-
mental scaling functions involves, besides the choice of the
proper kF that sets the overall momentum scale, the use of
an energy shift Eshift that in an average way accounts for
the nucleon removal energy. This small correction has been
included in [3,4] in the analysis of the data, and [5] gives a
table with the numerical values for various nuclei.

We should add that in order to obtain f QE from the cross
sections, we had to divide by the single-nucleon cross sections
obtained from e-p and e-n scattering. We used the Höhler
parametrization 8.2 [36]. In the range of q of interest here,
this parametrization agrees with more recent parametrizations
fitted to a somewhat more extensive data set.

B. Scaling in the region of the � peak

Following the framework of [5,37,38], let m∗ be the mass
of a generic nucleon excitation and µ∗ ≡ m∗/mN ; hence
µ∗ = 1 for quasielastic scattering and µ∗ = m�/mN ≡ µ�

for electro-excitation in the � region. Introducing

β∗ ≡ 1
4 (µ2

∗ − 1), (24)

ρ∗ ≡ 1 + β∗/τ, (25)

we generalize the dimensionless scaling variable of the
quasielastic peak as

ψ∗ ≡
[

1

ξF

(
κ

√
ρ2∗ + 1/τ − λρ∗ − 1

)]1/2

×
{+1 λ � λ0

∗,
−1 λ � λ0

∗,
(26)
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which vanishes for

λ = λ0
∗ = 1

2

[√
µ2∗ + 4κ2 − 1

]
, (27)

or, in dimensionful variables, when

ω = ω0
∗ =

√
m2∗ + q2 − mN. (28)

When µ∗ = 1, one recovers the QE answer in Eq. (19), where
β∗ = 0, ρ∗ = 1 and at the peak ω0

QE =√
m2

N+q2−mN . As in
the previous subsection where the QE scaling variable was
discussed, here also we include the small energy shift Eshift

by making the replacement ω → ω′ ≡ ω − Eshift with λ → λ′
and τ → τ ′ as before. Again these replacements are made in
the above equations to yield a generic shifted scaling variable
ψ ′

∗, and specifically for use in the � region the shifted scaling
variable ψ ′

�.
When considering the N → � transition structure func-

tions, we change notation from the general quantities β∗, ρ∗,
ψ∗, etc., to β�, ρ�, ψ�, etc., and in addition introduce

γ� ≡ 1
4 (µ� − 1)2 (29)

and

κ∗
� = 1

µ�

√
τ + (τ + β�)2, (30)

which allow us to define

ν�
1 ≡ (1 + µ�)2 (τ + γ�) (31)

and

ν�
2 ≡ ν�

1
τ

(µ�κ∗
�)2

. (32)

Then the N → � single-baryon responses will read

w�
1 (τ ) = ν�

1

[
G2

M,p(τ ) + 3G2
E,n(τ )

]
, (33)

w�
2 (τ ) = ν�

2

[
G2

M,p(τ ) + 3G2
E,n(τ ) + 4τ

µ2
�

G2
C,�(τ )

]
, (34)

where the magnetic, electric, and Coulomb form factors
(following [38]) are taken to be

GM,p(τ ) = 2.97g�(Q2), (35)

GE,n(τ ) = −0.03g�(Q2), (36)

GC,�(τ ) = −0.15GM,p(τ ), (37)

with

g�(Q2) ≡ GE,p(τ )√
1 + τ

, (38)

and

GE,p(τ ) = 1

[1 + 4.97τ ]2 , (39)

namely the dipole parametrization of the proton (elastic)
electric form factor (see also Sec. IV C).

As for the quasielastic region, in the � domain we ignore
terms of order η2

F . In this approximation (as above, denoted by
the subscript 0) the RFG longitudinal and transverse N → �

responses will read

R�
L (κ, λ)0 = 1

2
0
κ2

τ

[(
1 + τρ2

�

)
w�

2 (τ ) − w�
1 (τ )

]
fRFG(ψ�),

(40)

R�
T (κ, λ)0 = 1

2
0
[
2w�

1 (τ )
] × fRFG(ψ�), (41)

where 
0 is given in Eq. (15). As usual, for electron scattering
one should add the contribution obtained from Eqs. (40)
and (41) computed with N = Z and the p → �+ structure
functions to the one where Eqs. (40) and (41) are computed
withN = N and the n → �0 responses. Since these processes
are purely isovector, clearly this is equivalent to using N = A

with one set of the structure functions.
Again, using the guidance provided by the RFG, this

procedure is easily generalized to the experimental response in
the � region. Here, as long as density-dependent corrections
(i.e., the corrections that go as η2

F ) are ignored as they
were above, one should divide the experimental inclusive
electro-excitation cross section in the � region by

S� ≡ σM

[
vLG�

L + vT G�
T

]
(42)

to get the scaling function F�(κ, λ). By comparing Eqs. (40)
and (41) with Eqs. (13) and (14) one gets for the functions
G�

L,T the expressions

G�
L = κ

2τ

[
N

{(
1 + τρ2

�

)
w�

2 (τ ) − w�
1 (τ )

}] + O
(
η2

F

)
,

(43)

G�
T = 1

κ

[
N

{
w�

1 (τ )
}] + O

(
η2

F

)
. (44)

Note that in Eq. (44) one has w�
1 (τ ), whereas in Eq. (22) the

factor τ in W1(τ ) = τG2
M (τ ) has been taken out in front. As

before, one should take the results for reactions with protons
with the appropriate form factors and with N = Z and add
them to the results for reactions with neutrons again with the
appropriate form factors, but now with N = N . Finally, to get
the superscaling function f �(κ, λ) one multiplies F�(κ, λ)
by kF .

With the formalism in hand, we now proceed in a manner
that is analogous to our treatment of the data in the QE region;
however, we are now focusing on the � region. To isolate
the contributions in the � region, we subtract from the total
experimental cross sections (with Coulomb distortion effects
incorporated) the quasielastic cross section recalculated using
the universal f QE(ψ ′

QE) introduced above. That is, we remove
the impulsive longitudinal and transverse contributions that
arise from elastic eN scattering, leaving (at least) MEC effects
with their associated correlations and impulsive contributions
arising from inelastic eN scattering. As discussed earlier, the
MEC effects will be ignored in the present work as they are
believed to provide relatively small corrections, and thus this
yields, at least for ψ ′

� < 0, a response that is largely dominated
by the �. For energy losses beyond the maximum of the �

peak, other resonances and, at the larger values of q, the tail
of deep inelastic scattering contribute. As a consequence of
the different q dependencies of the various contributions, it
has not been possible using the present approach to further
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FIG. 2. (Color) Averaged experimental values of f �(ψ ′
�)

together with a phenomenological fit (whose validity is restricted
to ψ ′

� < 0).

analyze this ψ ′
� > 0 region. The region of validity of f �(ψ ′

�)
therefore will be restricted to ψ ′

� < 0.
As shown by Eqs. (33) and (34), the determination of

f �(κ, λ) involves a division by a combination of the M ,
E, and C contributions with their appropriate q dependence.
For the latter, we employ the parametrizations given in
Eqs. (35)–(37) and used by Amaro et al. [38]. Obviously,
the main contribution is due to the M1 term, the C0 and E2

contributions to the cross sections being minor.
In Fig. 2 we show the resulting f �(ψ ′

�) extracted from
the high-quality world data for inclusive electron scattering
from 12C and 16O in the QE and � regions. These data span
energies extending from 300 MeV to 4 GeV and scattering
angles from 12 to 145 degrees, depending on the beam energy.
For this determination the larger-angle and higher-q data are
of particular importance. At small angles and lower q, the �

contribution is small and often not present in the available
data due to limited coverage in energy loss. As for f QE,
the experimental values of f � have been parametrized by a
simple analytical function. We show in Fig. 2 the averaged
experimental values together with this fit. As pointed out
before, the validity of the fit is restricted to ω values below
the peak, i.e., ψ ′

� < 0.
The data appear to scale reasonably well up to the peak

of the �, namely, the point where ψ ′
�

∼= 0; although clearly
for still higher excitation energies, the scaling is broken by
processes that are not well represented via � dominance.
There is also some excess at large negative ψ ′

� which
breaks the scaling to some degree—this is thought to be
due to contributions from MEC effects and their associated
correlations [8–10,29–34], as discussed above. For reference
we note that for electrons of 1 GeV scattering from 12C,
the quasielastic peak (where ψ ′

QE
∼= 0) occurs at ψ ′

� = −1.8,
−1.2, and −1.0 for θ = 45, 90, and 135 degrees, respectively.
From Fig. 1 we see that f QE peaks at roughly 0.6 and
thus these nonscaling contributions typically occur at the
10–15% level in the total cross section. Below we discuss our
expectations for the uncertainties incurred for our predictions

FIG. 3. Experimental (e, e′) cross section for 12C at an incident
electron energy of 1.5 GeV and a scattering angle of 13.5 degrees,
together with the calculated result obtained using f QE and f �. The
dashed curve is the QE contribution and the solid curve is the total
including the �.

of charge-changing neutrino reactions when we ignore such
effects (see Sec. V).

In passing it is important to note that in the present study
we have simply taken the residual scaling function f � from
experimental data. While similar to f QE it differs in detail:
it is somewhat lower, is shifted slightly, and is more spread
out over a wider range of scaling variable. This is perhaps not
unexpected, since implicit in this approach is the fact that the
� brings with it its own width and shift. Only with a more
microscopic model could one hope to be able to deconvolute
these from the total response and see whether the underlying
scaling function is indeed the basic f QE deduced above.
Such an approach will be pursued in the future, although
it only becomes practical when the MEC contributions are
under control. For the present we limit the analysis to using
two different functions f QE and f �, both deduced from
phenomenological fits to electron scattering data.

With these ingredients, it is then possible to recalculate
for every nucleus, incident electron energy, and scattering
angle the inclusive cross section for ω below the maximum
of the � contribution. To demonstrate this, we show in
Figs. 3–5 the experimental responses together with the calcu-
lated response obtained using the parametrized f QE and f �.
In particular, we have studied the accuracy of the predicted
response using (e, e′) for 12C and 16O and for a variety
of momentum transfers, since these are the most relevant
nuclei for the MiniBooNE and K2K/T2K neutrino oscillation
measurements discussed in the introduction. For the data sets
that do cover the � region, typical deviations are 10% or less.

IV. CHARGE-CHANGING NEUTRINO
REACTION FORMALISM

Among several options available (see, e.g., [20,21,23,39,
40]) we choose to write the charge-changing neutrino cross
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FIG. 4. As for Fig. 3, except for an electron energy of 1.3 GeV
and a scattering angle of 37.5 degrees.

section in the target laboratory frame in the form[
d2σ

d�dk′

]
χ

≡ σ0F2
χ , (45)

where χ = + for neutrino-induced reactions (for exam-
ple, νl + n → l− + p, where l = e, µ, τ ) and χ = − for
antineutrino-induced reactions (for example, νl + p → l+ +
n). In Eq. (45)

σ0 ≡ (G cos θc)2

2π2
[k′ cos θ̃/2]2, (46)

where G = 1.16639 × 10−5 GeV−2 is the Fermi constant, θc

is the Cabibbo angle (cos θc = 0.9741), and the generalized
scattering angle θ̃ reads

tan2 θ̃/2 ≡ |Q2|
v0

, (47)

FIG. 5. Experimental (e, e′) cross section as in Figs. 3 and 4,
but now for 16O at an incident electron energy of 0.88 GeV and a
scattering angle of 32 degrees.

with

v0 ≡ (ε + ε′)2 − q2 = 4εε′ − |Q2|. (48)

Henceforth we shall assume that m = mν = 0, but will always
keep m′ nonzero.

One additional issue arises in computing the neutrino
reaction cross sections having to do with the fact that the
charged leptons in the final state are not plane waves but
are influenced by the Coulomb potential provided by the
nucleus. This implies that the 4-momentum of the scattered
lepton, K ′µ = (ε′, k′), is the local quantity in the sense that the
3-momentum k′ and energy ε′ = √

m′2 + k′2 are determined
using the sequence of steps outlined in Sec. II, culminating
in Eqs. (10) and (11) for these variables. However, the
asymptotic energy momentum is not the same as the local
quantity. Following standard procedures (see, for instance,
[21,41]) the Coulomb interaction can be incorporated, at
least approximately, by shifting from (ε′, k′) to asymptotic
energy-momentum (ε′

∞, k′
∞) such that

k′
∞ = D(k′)k′, (49)

ε′
∞ =

√
m′2 + k′2, (50)

where

D(k′) = 1 − χ
3Zα

2Rk′ , (51)

and R ∼= 1.2A1/3 is the effective charge radius of the nucleus
being studied. Thus, our procedure is to calculate the cross
sections using the kinematics as discussed in Sec. II and then
at the end present the results in terms of the asymptotic energies
and momenta obtained in this approximate manner. The only
remaining issue is that the local calculations must also be
multiplied by the density-of-states factor [D(k′)]−1 to obtain
the results we present in Sec. V.

The nuclear-structure-dependent quantity F2
χ may be writ-

ten as

F2
χ = [V̂CCRCC + 2V̂CLRCL + V̂LLRLL + V̂T RT ]

+χ [2V̂T ′RT ′], (52)

that is, as a generalized Rosenbluth decomposition having
charge-charge (CC), charge-longitudinal (CL), longitudinal-
longitudinal (LL) and two types of transverse (T ,T ′) responses.
Next we expand these response functions into their vector and
axial-vector contributions according to

RCC = RV V
CC + RAA

CC, (53)

RCL = RV V
CL + RAA

CL, (54)

RLL = RV V
LL + RAA

LL , (55)

RT = RV V
T + RAA

T , (56)

RT ′ = RV A
T ′ . (57)

The lepton kinematical factors are the following:

V̂CC = 1 − tan2 θ̃/2 · δ2, (58)

V̂CL = ν + 1

ρ ′ tan2 θ̃/2 · δ2, (59)
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V̂LL = ν2 + tan2 θ̃/2

(
1 + 2ν

ρ ′ + ρ · δ2

)
· δ2, (60)

V̂T =
[

1

2
ρ + tan2 θ̃/2

]
− 1

ρ ′ tan2 θ̃/2

×
(

ν + 1

2
ρρ ′ · δ2

)
· δ2, (61)

V̂T ′ =
[

1

ρ ′ tan2 θ̃/2

]
(1 − νρ ′ · δ2). (62)

Here mν has been assumed to be zero, and the entire lepton
mass dependence occurs via the dimensionless parameter

δ ≡ m′√
|Q2|

. (63)

Moreover, in the above we have defined

ν ≡ ω

q
= λ

κ
, (64)

ρ ≡ |Q2|
q2

= τ

κ2
= 1 − ν2, (65)

ρ ′ ≡ q

ε + ε′ , (66)

which turn out to be related as

ρ ′ = tan θ̃/2√
ρ + tan2 θ̃/2

(67)

and lie between zero and unity. In passing we note that, using
the generalized scattering angle in Eq. (47),

|Q2| = 4εε′ sin2 θ̃/2, (68)

v0 = 4εε′ cos2 θ̃/2. (69)

Finally, for use later we define

V̂L ≡ V̂CC − 2νV̂CL + ν2V̂LL. (70)

For comparisons with finite-mass corrections to electron
scattering, see [42].

In the extreme relativistic limit (ERL), namely m′ → 0,
the kinematic factors are obtained by observing that in this
situation θ̃ becomes θ and all of the terms containing δ can be
dropped. One then gets

V̂CC → vCC = 1, (71)

V̂CL → vCL = ν, (72)

V̂LL → vLL = ν2, (73)

V̂L → vL = ρ2, (74)

V̂T → vT = 1
2ρ + tan2 θ/2, (75)

V̂T ′ → vT ′ = tan θ/2
√

ρ + tan2 θ/2, (76)

where the last three kinematic factors coincide with those
employed in electron scattering (spin observables, coincidence
electron scattering, parity-violating electron scattering, etc.).

In the case of the µ = 0 (C) and 3 (L) components of
the vector current, which is assumed to be conserved, it is
possible to collapse the contributions down to a single term.

In particular, one has

RV V
CL = −νRV V

CC , (77)

RV V
LL = ν2RV V

CC . (78)

Since everything of the purely polar-vector type can be related
to a single response, traditionally we call this the longitudinal
contribution, defined by the equation RV V

L ≡ RV V
CC . Expressing

the sum of the (µ, ν) = (0, 0), (0, 3), (3, 0), and (3, 3)
contributions, one then ends up with the single term

V̂CCRV V
CC + 2V̂CLRV V

CL + V̂LLRV V
LL = V̂LRV V

L ≡ XV V
L .

(79)
This collapse into a single expression does not occur for the
AA terms. Indeed there one has

V̂CCRAA
CC + 2V̂CLRAA

CL + V̂LLRAA
LL ≡ XAA

C/L. (80)

To complete the analysis one should add the two contributions
(µ, ν) = (1, 1) and (2, 2), which yield

V̂T

[
RV V

T + RAA
T

] ≡ XT , (81)

and, as well, consider the V/A interference term where
(µ, ν) = (1, 2) and (2, 1),

2V̂T ′RV A
T ′ ≡ XT ′ . (82)

The full response will then be [see Eq. (52)]

F2
χ = XV V

L + XAA
C/L + XT + χXT ′ . (83)

A. Single-nucleon responses in the QE region

The single-nucleon responses in the QE region all begin
with the basic vector and axial-vector currents involving
N → N matrix elements:

j
µ

V = ū(P ′)
[
F1γ

µ + i

2mN

F2σ
µνQν

]
u(P ), (84)

j
µ

A = ū(P ′)
[
GAγ µ + 1

2mN

GP Qµ

]
γ 5u(P ), (85)

with Qµ = P ′µ − P µ. Indeed, in the scaling analyses dis-
cussed in Sec. III A, the former was used together with the
usual relationship between the Dirac/Pauli form factors and
the Sachs form factors, GE = F1 − τF2 and GM = F1 + F2,
to obtain expressions such as those in Eqs. (16) and (17). The
total current is then jµ = j

µ

V − j
µ

A .
In fact, for the purely polar-vector contributions we have

RV V
L = 1

ρ

[
G

(1)
E

]2
(86)

RV V
T = 2τ

[
G

(1)
M

]2
, (87)

which were used above. Here G
(1)
E,M are the nucleon’s EM

isovector form factors. We reemphasize that, as written, these
results contain effects from the motion of the nucleons in the
nucleus up to first-order in ηF and only terms of order η2

F and
beyond have been neglected.
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For the axial-vector current proceeding from Eq. (85) one
has

RAA
CC = ν2

ρ

[
G

′ (1)
A

]2
, (88)

RAA
CL = − ν

ρ

[
G

′ (1)
A

]2
, (89)

RAA
LL = 1

ρ

[
G

′ (1)
A

]2
, (90)

RAA
T = 2(1 + τ )

[
G

(1)
A

]2
, (91)

defining the following combination of axial-vector and in-
duced pseudoscalar form factors

G
′ (1)
A (τ ) = G

(1)
A (τ ) − τG

(1)
P (τ ), (92)

namely, the axial-vector analog of the relationship between
the Dirac, Pauli, and Sachs form factors. It is of importance
to realize that in the ERL [see Eqs. (71)–(73)] XAA

C/L → 0.
Hence this term crucially depends upon the final lepton mass,
yielding for the C/L single-nucleon QE response

XAA
C/L = tan2 θ̃/2

[
G

′ (1)
A

]2 · (1 + δ2)δ2. (93)

Finally the V /A interference term is

RV A
T ′ = 2

√
τ (1 + τ )G(1)

M G
(1)
A . (94)

B. Single-nucleon responses in the � region

In this subsection we consider the elementary reactions

νµp → µ−�++, (95)

νµn → µ−�+, (96)

ν̄µp → µ+�0, (97)

ν̄µn → µ+�−. (98)

The associated currents are [22]

Jµ(q) = T ū(�)
α (p′, s ′)�αµu(p, s), (99)

where the isospin factor T is
√

3 for �++ and �− production
and 1 for �+ and �0 production, u(�)

α (p′, s ′) and u(p, s) are the
Rarita-Schwinger and Dirac spinors for a � and a nucleon with
momenta p′ = p + q and p and spin s ′ and s, respectively. For
the vertex tensor we take [22]

�αµ =
[

CV
3

mN

(gαµq/ − qαγ µ) + CV
4

m2
N

(gαµq · p′ − qαp′µ)

+ CV
5

m2
N

(gαµq · p − qαpµ)

]
γ5 +

[
CA

3

mN

(gαµq/ − qαγ µ)

+ CA
4

m2
N

(gαµq · p′ − qαp′µ) + CA
5 gαµ + CA

6

m2
N

qαqµ

]
.

(100)

We recall that CVC implies CV
6 = 0 and PCAC yields CA

6 =
CA

5 (µ2
π + 4τ )−1, with µπ = mπ/mN , mπ being the pion mass.

The hadronic tensor

wµν = µ�Tr{Jµ†(q)J ν(q)}, (101)

with µ� = m�/mN as above, can be rewritten in the form

wµν = T 2µ�Tr{Pβα(p′)(γ0�
†αµγ0)
(p)�βν}, (102)

where

Pβα(p′) =
∑
s ′

u
(�)
β (p′, s ′)ū(�)

α (p′, s ′) (103)

= −p/′ + m�

2m�

×
(

gβα−2

3

p′
βp′

α

m2
�

+1

3

p′
βγα − p′

αγβ

m�

−1

3
γβγα

)
(104)

is the Rarita-Schwinger projector, while as usual


(p) = p/ + mN

2mN

(105)

is the nucleon projector.
A lengthy calculation then yields

wµν = w
µν

V V + w
µν

AA + w
µν

V A, (106)

where

w
µν

V V = −w1V

(
gµν + κµκν

τ

)
+ w2V (ηµ + ρ�κµ)(ην + ρ�κν), (107)

w
µν

AA = −w1A

(
gµν + κµκν

τ

)
+ w2A(ηµ + ρ�κµ)(ην + ρ�κν)

−u1A

κµκν

τ
+ u2A(κµην + ηµκν), (108)

and

w
µν

V A = 2iw3ε
αβµνηακβ (109)

are the vector-vector, axial-axial, and vector-axial interference
hadronic tensors, respectively. The functions u1A and u2A

reflect the nonconservation of the axial-vector current and
will be discussed in the Appendix. The functions wi entering
above are obtained by performing the traces in Eq. (101)
and using the on-shell conditions η2 = 1 and η · κ = τρ� =
τ + 1

4 (µ2
� − 1). The results are collected in the Appendix.

C. Nuclear cross sections and response functions

To compute the cross section in Eq. (45), the factor F2
χ in

Eq. (83) is required, and thus the nuclear response functions Ri

are needed. The last can be expressed in terms of the nuclear
tensor Wµν according to

RV V
L = W 00

V V , (110)

RAA
CC = W 00

AA, (111)

RAA
CL = −W 03

AA, (112)

RAA
LL = W 33

AA, (113)

RV V
T = W 11

V V + W 22
V V , (114)

RAA
T = W 11

AA + W 22
AA, (115)

RV A
T ′ = −iW 12

V A. (116)
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Since in the QE domain the nuclear tensor is well known,
we focus here on the � sector, where using Eq. (15) Wµν

reads [38]

[Wµν]� = 3N
8mNη3

F κ

∫ εF

ε0

wµν(ε)θ (εF − ε0)dε

= 1

2

0fRFG(ψ�)Uµν, (117)

where N = Z for reactions on protons, (95) and (97), whereas
N = N for reactions on neutrons, (96) and (98). Again, only
isovector form factors enter into the equation.

As discussed in Sec. III B, the RFG superscaling function
in the � domain is given by

fRFG(ψ�) = 3
4

(
1 − ψ2

�

)
θ
(
1 − ψ2

�

)
(118)

and

Uµν = 1

εF − ε0

∫ εF

ε0

wµν(ε)dε , (119)

where

ε0 = κ

√
ρ2

� + 1/τ − λρ� (120)

represents the minimum energy a nucleon should have in order
to take part in the � electro-excitation process and εF =√

1+η2
F

is the Fermi energy. Note that from Eq. (26), one has

ψ� =
[

1

ξF

(ε0 − 1)

]1/2

×
{

+1 λ � λ0
�,

−1 λ � λ0
�,

(121)

with λ0
� = 1

2 [
√

µ2
� + 4κ2−1] using Eq. (27).

The required components of the Uµν tensor can be explicitly
computed using Eqs. (107)–(109) and performing the integral
in Eq. (117). They turn out to be

U 00
V V = κ2

τ

[−w1V (τ ) + (
1 + τρ2

�

)
w2V (τ ) +D(κ, τ )w2V (τ )

]
,

(122)

U 00
AA = κ2

τ

[−w1A(τ ) + (
1 + τρ2

�

)
w2A(τ ) +D(κ, τ )w2A(τ )

]
− λ2

τ
u1A(τ ) + λ(εF + ε0)u2A(τ ), (123)

U 03
AA =

(
λ

κ

) {
κ2

τ

[−w1A(τ ) + (
1 + τρ2

�

)
w2A(τ )

+D(κ, τ )w2A(τ )
]− κ2

τ
u1A(τ )

+
[
λ2 + κ2

2λ
(εF + ε0) − τρ�

]
u2A(τ )

}
, (124)

U 33
AA =

(
λ

κ

)2
{

κ2

τ

[−w1A(τ ) + (
1 + τρ2

�

)
w2A(τ )

+D(κ, τ )w2A(τ )
] − κ4

τλ2
u1A(τ )

+ κ2

λ2
[λ(εF + ε0) − 2τρ�] u2A(τ )

}
, (125)

for pieces of the tensor having µ or ν equal to 0 or 3; while
for transverse projections one has

U 11
V V + U 22

V V = 2w1V (τ ) + D(κ, τ )w2V (τ ), (126)

U 11
AA + U 22

AA = 2w1A(τ ) + D(κ, τ )w2A(τ ), (127)

U 12
V A = 2i

√
τ
(
1 + τρ2

�

)
[1 + D′(κ, τ )]w3(τ ), (128)

where

D(κ, τ ) = τ

κ2

[
1

3

(
ε2
F + ε0εF + ε2

0

)
+ λρ� (εF + ε0) + λ2ρ2

�

]
− 1 − τρ2

�, (129)

D′(κ, τ ) = 1

κ

√
τ

1 + τρ2
�

[
λρ� + 1

2
(εF + ε0)

]
− 1.

(130)

Thus we are now in a position to assemble the various
factors and provide predictions for the charge-changing
neutrino reaction cross sections. The single-nucleon cross
sections in both the QE and � regions are given above
and, from the scaling analysis presented in Sec. III, we
experimentally determine scaling functions f QE(ψ ′

QE) and
f �(ψ ′

�). As usual, we use scaling variables ψ ′
QE and ψ ′

� in
which we include a small energy shift by replacing ω with
ω − Eshift ≡ ω′, λ → λ′, etc. For charge-changing neutrino
reactions one proceeds to analogous states in the neighboring
nuclei, which are shifted from their positions in the target
nucleus at least by the Coulomb energy. Accordingly, while
having a very small effect, in this work we modify Eshift

from its value as obtained in studies of electron scattering
by these additional amounts. In the case of mass-12 this
means that upon comparing the excitation energy of the analog
of the nitrogen and boron ground states (i.e., the energy
15.110 MeV of the lowest JπT = 1+1 state in carbon),
we should add 16.827 − 15.110 = 1.717 MeV when mak-
ing transitions to nitrogen (neutrino reactions) and subtract
15.110 − 13.880 = 1.230 MeV when making transitions to
boron (antineutrino reactions) from the canonical value of
Eshift = 20 MeV. These are then used in the definitions of
ψ ′ in each case. Note that we use the correct ground state
masses of the three nuclei in establishing the lepton scattering
kinematics discussed in Sec. II.

Finally, in computing the results to be presented in the next
section the following form factors are employed. For the vector
sector we use the Höhler parametrization 8.2 [36] and for the
axial-vector sector we use

GA
D(τ ) = (

1 + λA
Dτ

)−2
, (131)

G
(1)
A (τ ) = gAGA

D(τ ), (132)

G
(1)
P (τ ) = 1

1/λ′
A + τ

G
(1)
A (τ ), (133)

with λA
D = 3.32 (corresponding to axial-vector mass MA =

1032 MeV), λ′
A = (2mN/mπ )2 = 180, and gA = 1.26.
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FIG. 6. Charge-changing neutrino reactions (νµ, µ−) on 12C for 1 GeV neutrinos and neutrino-muon scattering angles of 45, 90, 135, and
180 degrees. The cross sections are plotted versus the final-state muon momentum k′. The dash-dotted curve gives the QE contribution, the
dashed curve the � contribution, and the solid curve the total. As discussed in the text, results for values of k′ lying below the � peak (higher
excitation energies than that of the �) must be viewed with caution.

V. NEUTRINO CROSS-SECTION PREDICTIONS

The inclusive charge-changing neutrino reaction cross
sections 12C(νµ, µ−) and 12C(ν̄µ, µ+) that result from the
scaling analyses presented above are shown in Figs. 6 and
7, respectively. A neutrino or antineutrino energy of 1 GeV
has been selected as being representative of kinematics where
the scaling approach should be expected to work well and
a selection of scattering angles (between incident neutrino or
antineutrino and produced charged muon) has been made. Note
that since the predictions shown here are given as functions of
the muon momentum k′, the QE peak lies to the right (i.e.,
lower excitation energy) of the � peak (higher excitation
energy). Note that the Coulomb distortion correction from
Eq. (49) has been included here, although for simplicity we
labeled the figures using k′ rather than k′

∞. As discussed
above, the predictions at momenta to the left of the �

peak (excitations lying above the � region) are unreliable
because our scaling approach does not fully account for meson
production, including resonances other than the �, and deep
inelastic scattering processes.

Corresponding angular distributions are shown in Fig. 8 for
kinematics chosen to lie at the peaks of the QE (solid curves)
and � (dashed curves).

One striking feature of the results is the dramatic differences
seen in comparing neutrino and antineutrino cross sections at
backward angles. The latter are typically about two orders of
magnitude smaller than the former under those conditions.
This is because the transverse (vector and axial-vector)
contribution to both the QE and � responses is accidentally
roughly the same in magnitude as the one arising from the
V /A interference for large scattering angles at the chosen
energy. Specifically, for instance in the QE case, one has
XT roughly equal to XT ′ [see Eqs. (81), (82), (87), (91), and
(94)]. For neutrinos, these constructively interfere, whereas for
antineutrinos they tend to cancel and produce much reduced
cross sections. Indeed, the cancellation is so severe that the
VV(CC, CL, and LL) and AA(CC, CL, and LL) terms can yield
significant contributions to the total cross section. In the QE
region these VV terms yield as much as 1/3 of the cross section,
while the AA terms are negligible. In contrast, in the � region
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FIG. 7. As for Fig. 6, but now for antineutrino reactions (ν̄µ, µ+).

the reverse is true, with the AA(CC, CL, and LL) terms even
providing the majority of the cross section at large angles in this
case. Small changes in the model (for example, the inclusion
of MEC) could have very large effects on the predictions for
antineutrinos; hence the results shown in this case, especially
for large scattering angles, should be viewed with caution. The
important observation is that the antineutrino cross sections
are predicted to be strongly suppressed due to the accidental
cancellation.

For neutrinos, where no such strong cancellation occurs, the
cross sections are typically dominated by the VV(T ), AA(T ),
and VA(T ′) contributions. In the QE region the VV(CC, CL,
and LL) pieces contribute only about 5% at 45 degrees and
fall to negligible corrections at backward angles, whereas the
AA(CC, CL, and LL) contributions are negligible for all angles
considered. In the � regions the converse is true: the AA(CC,
CL, and LL) pieces contribute about 5% or less at 45 degrees
and fall to negligible corrections at backward angles, whereas
the VV(CC, CL, and LL) contributions are negligible for all
angles considered.

The fact that the underlying transverse vector and axial-
vector matrix elements are comparable in magnitude for the
kinematics being explored in this work (hence the antineutrino

suppression discussed above) has consequences for the uncer-
tainties expected in the predictions made here for neutrinos.
We recall from our treatment above that effects from MECs
and their associated correlations are not present for these
predictions, since they were ignored in analyzing the electron
scattering cross sections. Note, however, that the error incurred
by this may be less here than for electron scattering: the
transverse contributions to the neutrino reaction cross sections
involve both polar- and axial-vector matrix elements with both
one-body, impulsive contributions (included here) and two-
body MEC/correlation contributions (not included). From past
studies we know that the latter occur primarily in the transverse
channel, but not in the longitudinal channel for electron
scattering at the kinematics of interest here. That is, the vector
MEC/correlation effects occur primarily in the transverse
channel for QE and � kinematics at high energies. In contrast,
because of the factor γ5 that enters in axial-vector currents, the
converse is true for axial-vector contributions; accordingly, to
leading order, one does not expect large corrections of this
type for the axial-vector contributions. As a consequence,
the residual effect seen in Fig. 2 at large negative ψ ′

� and
attributed to MEC effects and their associated correlations,
which amounted to roughly 10–15% of the total cross section
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FIG. 8. Angular distributions for the results in Figs. 6 and 7 at the tops of the QE and � peaks. Since the neutrino or antineutrino energy is
fixed to 1 GeV and the kinematics are chosen to be at ψ ′

QE = 0 and ψ ′
� = 0, the muon momentum k′ must vary with θ .

in that region of inelasticity, measures the uncertainty in
the vector contributions. Since these are only roughly 1/2
of the total for neutrinos, with the axial-vector transverse
contributions accounting for the other half, the overall impact
of the neglected MEC/correlation contributions is likewise
only half as large, namely, providing less than 10% uncertainty
to the neutrino cross-section predictions made here.

For completeness, we show in Fig. 9 a comparison of
a typical neutrino reaction cross section obtained using the
full results with f QE and f � deduced directly from electron
scattering data with the cross section obtained using the RFG.
As noted earlier, modeling done on the basis of mean-field
theory is very similar to the RFG result, since at the relatively
high energies of interest the dynamical effects embodied in
an effective mass are expected to be small (most recent

FIG. 9. (Color online) Neutrino reaction cross sections as in
Fig. 6 for θ = 45 degrees, showing a comparison of the full results
obtained using the empirical scaling functions f QE and f � as
discussed in the text with results obtained using the RFG scaling
function fRFG (heavier lines). The former lie somewhat lower and
extend over a wider range in k′ than the latter.

relativistic mean-field theory studies predict that m∗ reverts
almost to the nucleon mass for the kinematics of interest).
Likewise, relativized shell-model predictions are close to the
RFG predictions; moreover, RPA correlations are expected to
be relatively small for the high energies involved. Thus, the
RFG predictions effectively represent a larger set of models.
Therefore, as can be seen in the figure, all differ significantly
from the scaling predictions. Given the success of the scaling
approach in studies of inclusive electron scattering for the
kinematic region under study we expect that neutrino reaction
cross sections also obtained using scaling ideas to be more
robust than those based directly on existing models.

VI. CONCLUSIONS

We begin by summarizing the approach followed in the
present study.

The first step is to explore the scaling behavior of inclusive
electron scattering for relatively high energies (several hundred
MeV to a few GeV) in the kinematic region extending from the
scaling region that lies below the QE peak, through the QE peak
region, and up to the peak where � excitation is the dominant
process. Upon examining the longitudinal contribution, one
finds superscaling; i.e., it is possible to find a scaling function
f QE which, when plotted versus an appropriate scaling variable
ψ ′

QE, is seen to superscale. This means that the results are
independent of both the momentum transfer (scaling of the first
kind) and the particular nuclear species (scaling of the second
kind). The assumption is made that this universal scaling
function embodies the basic nuclear dynamics in the problem.
Implicit in this, and borne out by modeling, is the observation
that apparently MEC effects with their associated correlations
and inelastic processes such as � excitation are not large
contributors to the longitudinal response.

The second step is to use the universal scaling function
f QE to obtain that part of the transverse response that is
due to impulsive processes, namely, those that arise only
from elastic eN scattering from nucleons in the nucleus.
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Upon subtracting this contribution from the total transverse
response, one finds a residual which is assumed to be due
to the MEC/correlation effects and to inelastic eN scattering
from nucleons in the nucleus. From modeling we know that
such effects are predominantly transverse and hence they
naturally occur in this channel but are not very important in
the longitudinal channel. Moreover, again from modeling the
various processes, we expect that the MEC/correlation effects
are relatively small corrections for the kinematics of interest
and accordingly attribute most of the residual to impulsive,
inelastic eN scattering, especially to contributions which arise
from N → � transitions. When the residual is analyzed in
terms of an appropriate scaling function f � by dividing the
residual response by the elementary N → � cross section
and plotted versus an appropriate scaling variable ψ ′

� which
incorporates the kinematics of the inelastic transition, we
again find a reasonably successful new kind of scaling, at
least for kinematics where the concept is expected to work.
Specifically, this success is only found for excitations up to
the peak of the region where the � dominates, but not beyond.
This is not unexpected, since the approach taken in the present
work has been tailored to only work when the � provides
the basic driving process. Also, deviations are seen in the
region where the QE and � responses overlap, and there one
does expect corrections from MEC effects and their associated
correlations, while small, nevertheless to be necessary for a
fully successful representation of the total response. A check
is made by reassembling the complete inclusive (e, e′) cross
section for the kinematic region of interest, typically finding
errors of 10% or less.

Thus, the first goal of this work has been met: we found
a very good representation of inclusive electron scattering at
relatively high energies for the region of excitation extending
up to the peak of the �. It should be noted that direct modeling
(i.e., relativistic modeling, since nonrelativistic approaches
are known to fail badly for the kinematics of interest) yields
electron scattering cross sections that are valid only at about
the 25% level or worse, while here our goal has been to use
the scaling approach to do better.

The second major objective in this study has been to predict
charge-changing neutrino and antineutrino cross sections for
the same range of kinematics. Using the scaling approach in
reverse, we take the empirically determined scaling functions
f QE and f � together with the appropriate N → N and
N → � charge-changing weak interaction cross sections to
obtain the inclusive νA and ν̄A cross sections for the case of
12C. Given the above statements of where the approach taken
in the present work should be valid, we believe that these
predictions should be the best currently available for few-GeV
neutrino reactions in the kinematic region that includes the
full QE response and the � response up to its maximum. From
our analyses of MEC contributions and how they enter in
the relevant vector and axial-vector responses, we expect that
corrections from such processes account for only about 10%
of the total cross section. Note that while our focus has been
on the case of carbon, we know from our previous studies
of second-kind scaling that it is straightforward to produce
predictions for other nuclei as well. In particular, while only
selected predictions are given in the present work, further

results at different kinematics and for other nuclei may be
obtained by contacting our collaboration.

Finally, we mention our intentions for future work. The
most straightforward project will be to extend the scaling
approach to obtain predictions for neutral current neutrino
and antineutrino scattering from nuclei for similar kinematics;
studies of this type are currently in progress. Also, given
recent work on inelastic eN processes and their role in eA

inclusive cross sections undertaken by the same collaboration,
our intent is to explore a more microscopic model for all of
these reactions. While this project is relatively straightforward
as well, what is lacking before it can be realized is a completion
of our ongoing studies of MEC effects, together with the
correlations they require because of gauge invariance; studies
of this type are also in progress. Finally, there is the issue
of explaining the specific nature of the scaling functions
themselves. While there are indications that contributions
from high Fourier components in the nuclear ground state
are probably responsible for the detailed nature of these
functions, a fully satisfactory relativistic treatment of them
is presently lacking. Until one becomes available it appears
that the best approach is to take the scaling functions directly
from experiment, as we have done in the present work.
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APPENDIX

Performing the traces in Eq. (101) one get

w1V =
(T 2

3

)
1

4µ2
�

[4τ + (µ� − 1)2]
{[

16τ 2 + 8τ (µ� + 1)

+ (µ� + 1)2(3µ2
� + 1

)]
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�

[(
1 + 4τ − µ2

�
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1− 4τ −µ2

�
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1+ 4τ −2µ� −3µ2

�
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1 + 4τ − µ2
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)
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4 + (
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�
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CV
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]}
, (A1)

w2V =
(T 2

3
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4τ
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�

{(
1 + 4τ + 3µ2

�

)
CV 2

3

+ [4τ + (µ� − 1)2]
[
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�
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CV

4 + CV
5

)2 + 4τCV 2
5

]
+µ�

[(
1 + 4τ − 4µ� + 3µ2

�

)
× (

CV
4 + CV

5

) + 8τCV
5

]
CV

3

}
, (A2)
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for the vector contributions, whereas they yield

w1A =
(T 2

3

)
1

4µ2
�

[4τ + (µ� + 1)2]
{[
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(T 2

3

)
4τ

µ2
�

{(
1 + 4τ + 3µ2

�

)
CA2

3

+[4τ + (µ� + 1)2]

(
µ2

�CA2
4 + CA2

5

4τ

)

+µ�

[(
1 + 4τ + 4µ� + 3µ2

�

)
CA

4 + 2 CA
5

]
CA

3

}
,

(A4)

u1A =−
(T 2
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1
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5 − 4τCA
6
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u2A =
(T 2
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1
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for the axial-vector contributions and

w3 =
(T 2
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for the interference pieces. Since the axial-vector current is
not conserved, w1 and w2 are not sufficient to set up the AA

hadronic tensor: hence, two extra functions u1A and u2A, which
vanish if CA

5 = 4τCA
6 , come out from the traces.

For the empirical functions entering above we take [22]

CV
3 (τ ) = 2.05

(1 + |Q2|/0.54GeV 2)2
, (A8)

CV
4 (τ ) = −CV

3

µ�

, (A9)

CV
5 (τ ) = 0, (A10)

CA
3 (τ ) = 0, (A11)
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×
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1 + |Q2|
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, (A12)

CA
5 (τ ) = 1.2
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×
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, (A13)

CA
6 (τ ) = CA

5 (τ )
m2

N

m2
π + |Q2| = CA

5

4τ + µ2
π

, (A14)

which, inserted into Eqs. (A2)–(A7), lead to

w1V =
(T 2

3
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for the vector contributions,
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for the axial-vector contributions; and

w3 =
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CV
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4τ − µ2

� + 1
)
CA
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for the V /A interference.
One finds that u1A and u2A (which arise from PCAC) are

negligible, whereas the other functions are all significant. The
latter are seen to fall strongly with increasing q.
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