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1. Introduction

This paper describes a natural language system START (SynTactic Analysis

using Reversible Transformations). The system analyzes English text and

automatically transforms it into an appropriate representation, the knowledge

base, which incorporates the information found in the text. The user gains

access to information stored in the knowledge base by querying it in English.

The system analyzes the query and decides through a matching process what

information in the knowledge base is relevant to the question. Then it retrieves

this information and formulates its response also in English.

Researchers at MIT, Stanford University, and the Jet Propulsion Labora-

tory, have used the START system for creating knowledge bases from English

text and for information retrieval in domains as diverse as medicine, politics,

space, vision, and commonsense physics. (See, for instance, Winston [1982;

1984; Winston et al., 1983], Doyle [19841, Katz and Brooks [1987], McLaugh-

lin [1987; 1988]). In sections 11, 12, and 13 of this paper we present examples

of actual dialogs with START in several different domains.

2. Understanding Language

Before we provide a detailed description of the START system we should make

clear what we mean by "understanding." What does it mean for a machine

to understand language?

Let us consider a situation where a mother gives instructions or tells a

story to her daughter Jill. Hopefully, this child has "stored" the new informa-

tion/knowledge in her memory. In this case, we say that the child understood

her mother.

How can this be verified?

0 If Jill heard a story, her mother can ask questions relevant to the story. If

after searching her memory, Jill is able to utilize the acquired knowledge

and answer the questions correctly, then she understood the story.

0 Suppose instead of a story Jill heard a set of instructions for a task she

is supposed to perform. If Jill is able to retrieve the knowledge given

by the instructions and accomplish the task, then she understood the

instructions.

We will use these two criteria as "Tring tests" to help us define what it means

for a computer to understand English:
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A. English text is typed into the computer and on the basis of this text

a knowledge base is created. The user queries the knowledge base in

English. If the computer's responses are correct, then we can say the

computer understood the text.

B. A sequence of English commands or instructions is entered in the com-

puter. If the computer carries out appropriate actions in response to

them, then we can say the computer understood the instructions.

Remarkably, START passes these two tests in a variety of situations although

it possesses no explicit theory of meaning.

As suggested by these two criteria, knowledge bases created by START

can either be used in question-answering situations or they can provide input

data for other computer systems. The START knowledge base is employed

by both the language understanding and generating modules. These two

modules also share the same Grammar (see Katz [1980], Katz and Winston

[19821 for a detailed description of the Grammar). Moreover, most of the

definitions, techniques, and constructs of START may be discussed in both

the understanding and the generating mode. As it seems appropriate, we will

use either of the two modes to explain how START works.

3. Kernel Sentences

Most English sentences break up into units that we will call kernel sentences.

For instance, the following aphorism can be broken up into five smaller units:

(1) If the orator wants to persuade people, he must speak the things people

wish to hear.

(S1) The orator, wants $2.

(S2) The orator, persuades people.

(53) Hei must speak the thingsj.

(S4) Peoplek wish S5.

(S5) Peoplek hear the thingsj.

One of the goals of the START system is to identify these smaller units and

to determine how they assemble together in a larger sentence.

Before we can formally define kernel sentences let us examine how START

represents sentence elements internally. The system uses three types of build-

ing blocks for constructing a kernel sentence, the noun-template, the verb-
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template, and the adverb-template:

noun-template (NT) = [prep det mod adj* noun]

verb-template (VT) = [auxl neg aux2 aux3 verb]

adverb-template (AT) = [mod adverb]

Here prep, det, mod, adj, aux, neg are, respectively, abbreviations for preposi-
tion, determiner, modifier, adjective, auxiliary, and negation. The superscript
* indicates that a string of one or more symbols or their conjunction is allowed.

All the elements in the templates are optional. Noun phrases and preposi-
tional phrases in English can be constructed by reading off the slot values in
instantiated noun-templates. In a similar way, verbs and their auxiliaries can
be obtained by reading off slot values in verb-templates. For example, the
well-formed instantiation of the noun-template, NT = [(noun Mary)], where

most elements of the NT are omitted, produces a simple noun phrase Mary,
but the same template with all its elements filled,

NT = [(prep after) (det a) (mod very) (adj long) (noun flight)]

generates a full-fledged prepositional phrase after a very long flight. Similarly,
the verb-template may produce either one main verb, launch, when using VT
= [(verb launch)], or a more complex string like could have been watching:

a. 0VT = [(auxi could) (aux2 have) (aux3 been) (verb watching)]

Templates can be combined to represent a conjunction, for instance, Jessica,

Gabriella and Miriam.

Notice that in our grammar the noun-templates are used for constructing
both noun phrases and prepositional phrases. The existence of languages
with nominal case marking, like Russian, indicates that the idea of having a
prepositional element within a noun-template is not as far-fetched as it may
seem (see Katz and Winston [1982]).

Now let us define a kernel structure as the following sequence of templates:

(2) NT in itial NT subject VT NTobject NT inal

Here NT subj ect and NTobj ect are noun-templates that represent the subject
and the object in the sentence; NT intial and NT'n al represent its initial and

final prepositional phrases; VT is a verb-template.

We should point out that most of the elements in the kernel structure are

optional. Also for simplicity the adverb-templates have been omitted although

they may appear in (2) in a number of places. In addition, transformational

rules, introduced in section 6, are allowed to modify the kernel structure and

change the order of templates.
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A kernel sentence is an English sentence obtained by reading off from left

to right all slot values in all templates in (2). Notice that the kernel structure

contains only one verb-template and can therefore represent only a limited

class of English sentences, without any embedded clauses. However, as we

will see in sections 6 and 7, kernel structures can be recursively combined

in several different ways to account for a large variety of English sentences,

including complex sentences involving embedding.

We define parsing as a process of syntactic analysis which, given an En-

glish kernel sentence as input, produces the corresponding kernel structure as

output.' For example, given the sentence below:

(3) After the launch the commander will give additional instructions to the

astronaut

the pars er produces the following instantiated kernel structure where the order

of templates follows that of (2):

NT
i
nh
itia

l [(prep after) (det the) (noun launch)]

NTubj ec t  [(det the) (noun commander)]

VT [(auxi will) (verb give)]

NTObj ect [(adj additional) (noun instructions)]

NT final [(prep to) (det the) (noun astronaut)]

Many natural language understanding systems restrict themselves to the pars-
ing process just defined and stop there. However, this is clearly not enough

to satisfy our definition of understanding. It is not enough to teach the com-

puter to recognize different syntactic categories and fill in the slots in the

kernel structure. Our goal is to enable the computer to use the knowledge

encoded in the kernel structure; in other words, to index and retrieve this

knowledge efficiently.

4. From Kernel Structures to T-expressions

Recall that in order to understand her mother, Jill had to perform two im-

portant operations. When listening to the story, Jill had to store (or index)

the new knowledge in her memory. When answering the questions, she had

to search her memory and retrieve the knowledge. These two operations, in-

dexing and retrieving, are crucial in our model of understanding language. In

this section we will describe the indexing procedure of START. The retrieval

task is carried out by a matching procedure described in section 11.

1In sections 6 and 7 this notion of parsing is extended to a wider class of English

sentences. See also sections 12 and 13 for examples from the "real world".
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Suppose we type the following English sentence on a computer terminal:

(4) Jane will meet Paul tomorrow

and the parsing procedure constructs the appropriate kernel structure. Now,
there are many things about this sentence that the computer should remem-

ber: that Jane is the subject of the sentence, Paul is the object, that meet
is the relation between them. There is more to remember: the tense and the
aspect of the sentence, its auxiliaries, its adverbs. Was this sentence embed-

ded in a larger sentence? Does it have a relative clause? Was the verb in
the active or passive form? We certainly want all this information about the
sentence to be stored in the computer's memory. However, we also want to
be able to retrieve this information efficiently.

We could store all these sentence features in one long list. This approach,
however, would not account for the fact that some of the features in a sentence
seem more salient than others. A simple list of features in sentence (4) would
also fail to capture its structural affinity with the following two sentences:

(5) Yesterday Jane could have met Paul.

(6) Paul wasn't met by Jane.

And finally, this approach would turn the matching/retrieval task into a com-
Ike- putational nightmare.

We could try to emphasize the hierarchical nature of the English sentence

by using the kernel structure representation. However, since most elements of

the kernel structure are optional, its shape is too unpredictable to allow the

system to match the kernel structures efficiently.

Our system, START, rearranges the elements of the kernel structure by

tying together the three most salient parameters of a sentence: the subject,

the object, and the relation between them. These are combined into ternary

expressions (T-ezpressions) of the form <subject relation object>. For

example, sentence (4) will yield the T-expression

(7) <Jane meet Paul>

Note that the relation of this T-expression is the infinitive form of the main

verb in the sentence.

Certain other parameters are used to create additional T-expressions in
which prepositions and several special words serve as relations. The remaining

parameters, adverbs and their position, tense, auxiliaries, voice, negation, etc.,

are recorded in a representational structure called history. The history has a

page pertaining to each sentence which yields the given T-expression. When

we index the T-expression in the knowledge base, we cross-reference its three
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components and attach the history H to it: <subject relation object>H.

For example, suppose START is analyzing a text containing sentence (5)

and later sentence (6). The system would produce the T-expression

(8) <Jane meet Paul>H

with a two-page history. One page would contain additional information about

the first sentence, such as the fact that sentence (5) used perfective "have"

and the modal "could", and that it starts with an adverb "yesterday". The

second page would show the use of passive form and negation in sentence

(6). One can thus think of a T-expression as a "digested summary" of the

syntactic structure of a proposition and of its use within an English text.

The T-expression is the cornerstone of the representational hierarchy of

the START system. It is the level of the hierarchy where the understand-

ing and the generating modules meet. The understanding module analyzes

English sentences and creates a set of T-expressious stored in the knowledge

base. Given a set of T-expressions as an input, the generating module pro-

duces English text.

5. Referents for Noun Phrases

S

The subject and the object of T-expression <Jane meet Paul> are proper

names which are taken directly from sentence (4). However, the process is

more complex if, for example, the subject of a sentence is not a proper name

but a complex noun phrase:

(9) Jane's good friend from Boston met Paul.

In sentence (9) the system needs to establish the referent for the head noun,

friend. The system has to come up with a unique name for this noun in case

a different instance of friend appears later in the analyzed text. In order

to do this, START computes the name environment E 1 for this occurrence

of friend. We define E 1 as a list of adjectives (in this case, good), possessive

nouns (Jane 's), prepositional phrases (from Boston), etc. modifying that noun

in the present sentence. Then START associates with this environment a

unique name, say friend-1, which we will call a referent2 for the noun friend

in the environment El. The main T-expression for sentence (9) will therefore

take the form <friend-1 meet Paul>.3

2In calling a unique name a referent we deviate from standard usage, which reserves

the term for an object in the world.
3 The analysis of the subject noun-phrase in sentence (9) will produce three addi-

tional T-expressions (see section 7).
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The analyzed noun, friend, its name environment El, and its referent,

friend-1 are then recorded in the computer's memory. This bookkeeping gives

the system the ability to compute efficiently the referent of a noun given its

name environment. If, for instance, the same noun phrase,

(10) Jane's good friend from Boston

occurs again in a different sentence later in the text, then its name environ-

ment would coincide with E, and hence the same referent, friend-I, would be

retrieved and utilized in the T-expressions constructed for this sentence.

Suppose now that START encounters a new sentence where the noun

friend appears in a slightly different noun phrase like

(11) Tracy's good friend from Pasadena.

The environment E 2 associated with the new noun phrase is different from E1

and is not to be found in the computer memory. This means that there is no

referent readily available for the noun friend in this sentence and the system

needs to generate a new unique name, friend-2, to be associated with E2 .

START recursively employs the procedure just described to find a referent

for every noun in the sentence. Thus, given the noun phrase

(12) The young woman's good friend from the big city

the system first determines the referents of the nouns woman and city. Only

after that, once the computation of its name environment becomes possible,

does the head noun, friend, get its referent.4

Sometimes, however, the information in the name environment is not

sufficient to find referents for noun phrases. For instance, if a noun phrase is

modified by a relative clause (see section 7) the entire knowledge base has to

be consulted in order to determine the appropriate referent.

6. Transformational Rules

The standard kernel structure introduced in section 3,

(2) NTinitial NTaubj ect VT NTobiect NT 'ina

allows the system to generate or parse only a limited variety of English sen-

tences. To account for other kinds of sentences, START employs commutative

transformational rules (see Chomsky [1957], Katz [1980]). For instance, con-

sider how the kernel sentence

4In the remainder of this paper, for reasons of simplicity, we will use the nouns

themselves in T-expressions rather than their referents.
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(13) The probe reached Venus

is modified by several transformational rules, where each transformation is

applied to the outcome of the previous one:

Transformation Sentence

The probe reached Venus.

Question Did the probe reach Venus?

Negation Didn't the probe reach Venus?

Passive Wasn't Venus reached by the probe?

The transformations shown are executed by the generating module of START.
In the understanding mode, the system's goal is to recognize which transfor-

mations were applied. In some cases, for instance, Ntgation, START simply
makes the appropriate additions to the histories of the resulting T-expressions.

In other cases, the system must actually reverse the effect of the transforma-

tion.

START uses a set of commutative transformational rules (two trans-

formations are said to commute if they can be applied in either order and

both orderings produce the same result). The fact of their commutativity is
proved in Katz [1980]. Apart from its theoretical interest, the commutativity

of the transformations provides the system with considerable computational
advantages because no attention needs to be paid to the ordering of the trans-
formations or to the so-called interactions between them (cf. Akmajian and

Heny [1975]).

All the examples of English sentences considered so far have been very
simple. We can make them a little more complex by allowing simpler sentences

to be embedded in larger sentences, as shown below:

(14) Jessica wanted the computci to print the message.

(15) For Miriam to ignore the request would anger Jessica.

The transformational rules responsible for sentence embedding form a special

class called connective transformations (see Katz [1980]). Each connective
transformation takes two kernel sentences as input; these correspond to the
matrix clause and the embedded clause in the resulting English sentence. For

example, sentence (14) above consists of a matrix clause, Jessica wanted it,

and an embedded clause, the computer printed the message. We assume that

one of the noun-templates in the kernel structure of the matrix clause always
contains it as a joining point for glueing the two kernels together.

A connective transformation is fully determined by the values of three
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parameters, each referring to a position in the kernel structure of the em-

bedded clause: COMP, NP, and INFL. A different set of values for these

parameters results in a different final shape of the English sentence generated

using connective transformations. The complementizer COMP introduces the

embedded clause; the binary parameter NP indicates whether the subject

of the matrix clause is coreferent with the subject of the embedded clause;

the inflectional element INFL specifies how the verb in the embedded clause

should be inflected. For instance, in sentence (14) the value of COMP is null

(while in (15) its value is for) and the value of INFL is to. The value of the

parameter NP is set to indicate that the subject of the matrix clause, Jessica,

is different from the subject of the embedded clause, the computer.

The positions of these three parameters in the kernel structure and their

actual values are described in Katz [1980]. Table 1 shows examples illustrating

the application of several different connective transformations. 5

Matrix clause Embedded clause Resulting Sentence

It angered Kirk The computer ignored the message That the computer ignored
the message angered-7Kirk

Spock suggests it McCoy is silent Spock suggests that McCoy be silent

Spock watched it Kirk read the message Spock watched Kirk read the message

Kirk asked it The computer repeated the message Kirk asked the computer
S Keto repeat the message

Spock claims it Spock has written the message Spock claims to have written
the message

It shocked Kirk Spock ignored the command Spock's ignoring the command

shocked Kirk
Spock saw it McCoy read the message Spock saw McCoy reading the message

It angered Kirk Kirk read the message Reading the message angered Kirk

Kirk knew it The computer ignored the message Kirk knew whether
the computer ignored the message

Table 1. Examples of applications of connective transformations.

Notice that in each example the element it in the matrix clause indicates

the location where the embedded clause is inserted. The embedded clause is

adjusted according to the values of the parameters COMP, NP, and INFL.

The main verb of the matrix clause plays an important role in both

the execution and recognition of connective transformations. It determines

the shape which its embedded clause may take and specifies the kinds of

connective transformations that may be applied in each particular case. It

5Since this family of transformations is completely defined by the values of param-

eters COMP, NP, and INFL, it can be considered a single connective transfor-

mation whose surface manifestation has several different forms depending on the
values of these parameters.
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is imperative, therefore, that the dictionary entry for any verb which may
appear in a matrix clause (that is, can take a sentential complement) contain

a list of permissible connective transformations.

Now let us examine how START analyzes embedded sentences. Recall
that in section 2 we defined parsing only for kernel sentences. Connective

transformations allow us to extend this notion to a wider class of English
sentences which includes embedded sentences. The process consists of four

steps:

1. The system determines the connective transformation involved.

2. The system reverses the connective transformation and splits the sentence

into kernel sentences.

3. The system parses each kernel sentence separately and produces kernel

structures.

4. The indexing procedure utilizes the lexical material provided by kernel

structures to construct and index corresponding T-expressions.

In order to handle embedded sentences, START allows any T-expression

to take another T-expression as its subject or object. Thus, sentence (16)

leads to right embedding:

(16) Jessica wanted the computer to print the message.

(17) <Jessica want <computer print message>>

while the sentence (18) leads to left embedding:

(18) For Miriam to ignore the request would anger Jessica.

(19) <<Miriam ignore request> anger Jessica>

Connective transformations may be recursively applied without any restric-
tions on the depth of embedding. This means that START can analyze and

generate sentences with arbitrarily complex embedded structures.

7. Complex Noun Phrases and Relative Clauses

We have seen how START analyzes a sentence and produces a T-expression A

which "summarizes" the syntactic structure of the sentence. In this section
we examine sentences with complex noun phrases and show how such noun

phrases result in the construction of several additional T-expressions. Con-

sider sentence (20):

(20) Jane's good friend from Boston met Paul.



A complex noun phrase in English consists of three components: the head

around which the other components cluster, the premodification which in-

cludes all the adjectives and possessive nouns placed before the head, and the

postmodification which comprises all the items placed after the head, including

prepositional phrases, non-finite clauses, and relative clauses (see Quirk and

Greenbaum [1973]). In our example, the head of the noun phrase, friend, is

premodified by Jane 's and good and postmodified by the prepositional phrase

from Boston. As a result, along with the main T-expression, <friend-1 meet

Paul>, the system will construct three additional T-expressions: <friend-1

is good>, <friend-1 related-to Jane>, and <friend-1 from Boston>.

In fact, every adjective or possessive noun in the sentence, as well as every

prepositional phrase or relative clause, will cause new T-expressions to be

built and stored in the knowledge base.

START can handle different types of relative clauses:

(21) The girl who wants to become an astronaut is young.

(22) The planet which Voyager photographed yesterday was shrouded in clouds.

(23) The man we admire walked on the Moon.

(24) The planet the spacecraft flew behind has a strong magnetic field.

(25) The satellite to which the antennas were pointing had an impact crater.

(26) The spacecraft orbiting the Earth photographed its surface.

(27) The satellite launched by NASA handles telecommunications.

(28) The space shuttle whose protective tiles were damaged underwent repairs.

These examples show sentences with full relative clauses, as in (21) or (25),

with reduced relative clauses (26, 27), with subject relative pronoun (21),

object relative pronoun (22), or even without it (23). The relative pronoun

may be governed by case (28) or by a preposition (25). The preposition may

precede (25) or follow (24) its complement. Let us analyze sentence (22),

which involves a full relative clause with an object relative pronoun. First,

the system has to find the relative clause boundaries and identify the location

of the gap (denoted by e) which is coreferent to the head noun phrase:

(29) The planeti [which Voyager photographed e, yesterday] was shrouded in

clouds.

Then the relative clause is "removed" from the sentence, the gap is filled with

its antecedent and the modified clause is processed independently. As a result,

the sentence (22) will be split into the following two sentences:

(30) Voyager photographed the planeti yesterday.

(31) The planeti was shrouded in clouds.

To indicate that these two sentences go together in a relative clause relation-
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ship (cf. Woods [19851), the history of the T-expression of the main clause
(31) is provided with a pointer to the T-expression of the relative clause (30).

Relative clauses do not need to be simple kernel sentences (see exam-
ple (21), for instance). In fact, any two sentences that may be analyzed by

START, with arbitrarily complex embedded structures, can be combined into
main and relative clauses of a larger sentence as long as they have a common
noun phrase (see the sample passage in section 12). Moreover, several relative
clauses may be recursively embedded inside one another.

8. Lexical Ambiguity

Every word in the sample sentences discussed so far was assumed to belong to
a unique part of speech. Thus, Jill, friend, and man are nouns, read, write, and
tell are verbs, and old and good are adjectives. This assumption however is not

always correct. Most words in English can receive several alternative category
assignments (that is, can serve as different parts of speech); the particular
choice depends on the context. For instance, in the following sentence from a

detective story

(32) The gangsters can supply uniform alibis
0

the word can is used as a modal auxiliary, but it could also serve as a noun;
the word supply is a verb, but it could also be a noun or a modifier in a noun-

noun modification sequence; the word uniform is an adjective that could be
used as a noun in a different context. Sentence (32) will be analyzed correctly
only if the system selects the right category assignments for each word; any
other assignment will result in an error.

Lexical entries in START (see section 10) are allowed to specify more

than one category assignment. The system is equipped with a mechanism for
category disambiguation which uses error feedback from the parser (including
context information and type of error) to efficiently resolve ambiguities. As a

result, along with sentence (32), START is able to process successfully another

sentence from the same detective story:

(33) But the policeman found the uniform in the supply can.

Notice that each of the three ambiguous words in sentence (33) is a different

part of speech from what it was in (32).

9. Forward and Backward S-rules

In sections 4 and 6 we showed how START builds T-expressions using the
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pattern <subject relation object> at every level of embedding. As a con-
sequence, T-expressions closely follow the syntax of analyzed sentences. This
property incidentally is one reason why the language generator is frequently

able to reconstruct the original English sentence almost verbatim. Unfortu-

nately, this property also implies that sentences which have different surface

syntax but are close in meaning will not be considered similar by the system.

An example will clarify this point. Given as input the sentence (34)

START will create an embedded T-expression (35):

(34) Miriam presented Gabriella with a gift

(35) <<Miriam present Gabriella> with gift>

whereas a near paraphrase, sentence (36), will generate T-expression (37):

(36) Miriam presented a gift to Gabriella.

(37) <<Miriam present gift> to Gabriella>

Speakers of English know that sentences (34) and (36) both describe a transfer

of possession. In both sentences, the gift is the transferred object, Gabriella

is the recipient of this object, and Miriam is the agent of the transfer, despite
different syntactic realizations of some of these arguments. It seem natural
that this kind of knowledge be available to a natural language system. How-

ever, the START system, as described so far, does not consider T-expressions

(35) and (37), which are associated with these sentences, to be similar.

The difference in the T-expressions becomes particularly problematic
when START is asked a question. Suppose, for example, that the input text

contains only one present sentence, (38), and the knowledge base contains
only the corresponding T-expression, (39):

(38) Miriam presented Gabriella with a gift.

(39) <<Miriam present Gabriella> with gift>

Now suppose the user asked the following question:

(40) To whom did Miriam present a gift?

Although a speaker of English could easily answer this question after being
told sentence (38), the START system, as described so far, would not be

able to answer it. This question presents a problem for START because T-

expression (41) produced by question (40) will not match T-expression (39).

(41) <<Miriam present gift> to whom>

START is unable to answer such questions because it is unaware of the

interactions between the syntactic and semantic properties of verbs. This
limitation is a serious drawback since interactions similar to the one just
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described pervade the English language and, therefore, cannot be ignored in

the construction of a natural language system.

The present example illustrates that START needs information that al-

lows it to deduce the relationship between alternate realizations of the argu-

ments of verbs. In this instance, we want START to know that whenever A

presents B with C, then A presents C to B. We do this by introducing rules

that make explicit the relationship between alternate realizations of the argu-

ments of verbs. We call such rules S-rules (where S stands for both Syntax

and Semantics). Here is the S-rule that solves the problem caused by the

verb present:

(42) Present S-rule

If <<subject present object1> with object2>

Then <<subject present object2> to objectl>

S-rules are implemented as a rule-based system. Each S-rule is made up of

two parts, an antecedent (the IF-clause) and a consequent (the THEN-clause).

Each clause consists of a set of templates for T-expressions, where the template

elements are filled by variables or constants-; For example, the Present S-rule

contains three variables, subject, object1, object, which are used to represent

the noun phrases in the T-expressions. This rule also contains three constants,

present, with, and to, shown in boldface. The Present S-rule will apply only

to T-expressions which involve the verb present and which meet the additional

structural constraints.

S-rules operate in two modes: forward and backward. When triggered by

certain conditions, S-rules in the forward mode allow the system to intercept

T-expressions produced by the understanding module, transform or augment

them in a way specified by the rule, and then incorporate the result into the

knowledge base. For instance, if the Present S-rule is used in the forward

mode, as soon as its antecedent matches T-expression (43) produced by the

understanding module, it creates a new T-expression (44) and then adds it to

the knowledge base:

(43) <<Miriam present Gabriella> with gift>

(44) <<Miriam present gift> to Gabriella>

Now question (40) can be answered since T-expression (41) associated with

this question matches against T-expression (44). The generating module of

START responds:

(45) Miriam presented a gift to Gabriella.

All additional facts produced by the forward S-rules are instantly entered in
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the knowledge base. The forward mode is especially useful when the informa-

tion processed by START is put into use by another computer system because
in such a situation START ought to provide the interfacing system with as

much data as possible.

In contrast, the backward mode is employed when the user queries the

knowledge base. Often for reasons of computational efficiency, it is advanta-

geous not to incorporate all inferred knowledge into the knowledge base im-

mediately. S-rules in the backward mode trigger only when a request comes in

which cannot be answered directly, initiating a search in the knowledge base

to determine if the answer can be deduced from the available information.

For example, the Present S-rule used in the backward mode does not trigger
when sentence (38) is read and T-expression (39) is produced by START. The

S-rule triggers only when question (40) is asked since this question cannot be

answered directly.

In a more complex situation, S-rules are allcwed to trigger each other

and to ask each other for help. At any given moment hundreds of rules may

be hidden in the computer's memory examining the output flow generated by

START and waiting for their turn to participate in the deduction process. S-

rules fundamentally expand the power of our language understanding system;
* .they open a window into the intricate world of syntax-semantic interactions.

10. The Lexical Component

In order to understand an English sentence, the system needs to have morpho-

logical, syntactic, and semantic information about the words in the sentence.
All the words that the system is aware of, along with information about their
part of speech, inflection, gender, number, etc. are stored in the Lezicon. Vir-

tually every branch of our system resorts to the Lexicon to accomplish its

task. In the understanding mode, the Lexicon is used to recognize embedded

clauses, to construct kernel structures, to build T-expressions. In the generat-

ing mode, the Lexicon is consulted when a noun or verb phrase is built, when

a connective transformation is applied, when a question is answered.

The Lexicon extends the system's abilities for semantic interpretation.

Consider two sentences:

(46) The man wipes the table clean

and

(47) The man eats the fish raw.

We use START's T-expressions to show that although these sentences seem
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to have apparently identical surface syntactic structure, their semantic inter-

pretations are quite different. The first sentence (46) has a causative inter-

pretation:

(48) <<man wipe table> effect <table is clean>>

while the second sentence (47) is depictive:

(49) <<man eat fish> when <fish is raw>>

In order to determine the appropriate interpretation (causative or depictive)
for each sentence the system needs to examine lexical entries of verbs and
adjectives involved in sentences like (46) or (47). The additional information
required to make this decision must be provided by the Lexicon.

Let us examine how lexical information about verbs and verb classes may
be utilized by the S-rules. A verb denotes an action, state, or process involving
one or more participants, which we refer to as the arguments of the verb.

Some verbs may express their arguments in more than one way, sometimes
with slightly different semantic interpretations. Such verbs participate in

argument alternations. (See Atkins, KegI, and Levin [1986], Hale and Keyser

[19861, Levin [19851 for a description of various alternations.) In this section,
we introduce the property-factoring alternation (Van Oosten [1980]). Suppose
we typed the following sentence into the computer:

(50) Paul surprised the audience with his performance.

An English speaker knows that sentence (50) can be paraphrased as:

(51) Paul's performance surprised the audience.

Notice that in (50), the subject brings about the emotional reaction (surprise)
by means of some property expressed in the with phrase. Sentence (51) de-

scribes the same emotional reaction as in (50) but in (51) the property and
its possessor are collapsed into a single noun phrase.

Suppose that after sentence (50) is typed into the computer, we ask:

(52) Did Paul's answer surprise the audience?

While a speaker of English would know that the answer to this question is

Yes, this reply is not obvious to START since T-expressions related to sentence
(50) and question (52) are very different:6

(53) <<Paul surprise audience> with answer>

(54) <answer surprise audience>

Extending the approach taken to the example with the verb present in section
6 To simplify the exposition we do not show the T-expression describing the relation

between the property (answer) and its possessor (Paul).
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9, we could formulate a simple S-rule that could be used to answer question

(52). The Surprise S-rule (55), like the Present S-rule, makes explicit the

relationship between the alternate realizations of the arguments of the verb

surprise:

(55) Surprise S-rule

If <<subject surprise objectl> with object2>

Then <object2 surprise object1>

Formulating a special purpose S-rule which applies only to the verb sur-

prise does not seem, however, to be the best solution to the problem. Surprise

is only one of many verbs which exhibit the property-factoring alternation.

This alternation holds of a large class consisting of over one hundred verbs,

among them:

(56) amuse, anger, annoy, disappoint, embarrass, frighten, please, worry ...

These verbs share a certain semantic property as well: they all denote emo-
tional reactions. For this reason we identify a class of emotional-reaction

verbs and say that the syntactic property of the verb surprise responsible for

the alternations shown in (50) and (51) holds for all verbs that comprise the

emotional-reaction class.7

Now instead of writing a number of verb-specific S-rules, we can write a

single general S-rule which triggers not only on the verb surprise, but on any
verb from the emotional-reaction class:

(57) Property-factoring S-rule

If <<subject verb objectl> with object2>

Then <object2 verb object1>

Provided verb E emotional-reaction class

The revised S-rule contains a PROVIDED-clause which specifies the class of
verbs to which the rule applies, ensuring that it applies to the emotional-

reaction verbs.

When question (52) is asked, the Property-factoring S-rule (used in the

backward mode) will trigger, since the T-expression

(58) <performance surprise audience>

produced by the question matches the THEN-part of the rule, and furthermore,
the verb surprise belongs to the emotional-reaction class. The correct answer

7These verbs have been the subject of extensive study in the linguistic literature
because of these and other characteristic properties that set this class apart. (See
Postal (1971], Pesetsky (1987], Belletti and Rizzi [1986], Grimshaw (to appear],
and many others.)
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to question (52) is deduced when the appropriately instantiated IF-part of

the rule is matched to T-expression (53) found in the knowledge base. Here

is how START responds:

(59) Yes, Paul's performance surprised the audience.

This example shows how the transparent syntax of the S-rules coupled

with the information about verb class membership provided by the Lexicon

facilitates fluent and flexible dialog between the user and the language under-

standing system. (See Katz and Levin [19881 for additional examples.)

Our current Lexicon contains several thousand entries. However, the pro-

cess of lezical acquisition (adding new words to the Lexicon, with all relevant

information about them) is very simple. In fact, introducing a new lexical

item in START amounts to little more than appending it to a list of similar

words, adding a few idiosyncratic features when necessary. Acquisition of S-

rules is equally simple. Adding a new S-rule to the system requires typing in

a set of English sentences (such as sentences (50) and (51)) which capture a

specific instance of the rule. START will analyze the sentences, query the user

for additional information regarding elements of corresponding T-expressions

(ascertaining whether they are matching variables, constants, or predicates),

and then build and generalize the S-rule automatically. All this makes the

system transportable, i.e., easily adaptable to new domains.

11. Answering Questions

In this section we will concentrate on the question-answering machinery in

START. Suppose the system has analyzed and indexed a text containing sen-

tence (60). As a result, the knowledge base contains T-expression (61):

(60) Jessica wanted the computer to print the message.

(61) <Jessica want <computer print message>>H

Suppose now that a user asks:

(62) What did Jessica want the computer to print?

The first step in answering this question is to reverse the effect of the wh-

movement transformation that is used to create English ioh-questions. In

order to accomplish this, START must find the place in sentence (62) that

the wh-word what came from and then insert the wh-word in this position:8

8This situation is very similar to the treatment of relative clauses discussed in

section 7. In fact, the same computational machinery is used to handle these two

phenomena.
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(63) Jessica wanted [the computer to print what].

Next, the START system leads sentence (63) through the same flow of control

as any other declarative sentence and produces the following T-expression

which serves as a pattern used to query the knowledge base:

(64) <Jessica want <computer print what>>

Treating what as a matching variable, the system attempts to determine

whether there is anything in the knowledge base that matches (64). In this

case, it finds the T-expression

(61) <Jessica want <computer print message>>H

The language generation system could then take this T-expression with its

associated history and produce the English response to question (62):

(65) Jessica wanted the computer to print the message.

The matching process treats other types of English questions, including Yes/No-

questions, when-questions, where-questions, why-questions, etc. in a similar

fashion.

In this example we implicitly assumed that the tense and the aspect of

question (62) were identical to the tense and aspect of sentence (60) in the

text. We also assumed that sentence (60) was used in the text only once and

that it was not embedded in another sentence. All these assumptions need

not necessarily hold, however. For instance, one might ask:

(66) Does Jessica want the computer to print the message?

or

(67) Did the computer print the message?

A person answering these questions in the context of (60) would probably say

"I don't know" since sentence (60) just states that Jessica wanted a certain

action to happen at one time in the past. Sentence (60) does not imply that

Jessica wants this action to happen in the present nor does it imply that thL.

action actually happened.

To illustrate a different case, suppose that it is known from the text that

(68) The telescope is orbiting the Earth.

Now someone may ask the following questions:

(69) Has the telescope been orbiting the Earth?

(70) Can the telescope orbit the Earth?

In spite of the fact that in the original sentence (68) the auxiliaries and the

form of the main verb are different from those in questions (69) and (70), a
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person would most likely answer Yes in both cases. Somehow people know

when they can or cannot answer such questions.

What about computers, then? Although clearly world knowledge plays

an important role here, the text itself may often provide sufficient data to

determine whether the information in the system's knowledge base implies

a definitive answer to the question. Matching the embedded T-expressions

described earlier is only a "rough" first step in answering a question; some

further reasoning is required in order to determine the proper response.

One way of thinking about the problem is to divide the question-answering

task into two parts: (1) finding relevant information within the knowledge

base, and (2) determining the implications of this information. Finding rele-

vant information in this case means retrieving the appropriate T-expression,

either through matching alone or with the help of S-rules. The second subtask

requires a more subtle analysis of the histories attached to the T-expressions

returned by the matcher. Given a question and a matching T-expression, the

system must use the information contained in the histories to calculate the

most accurate, helpful response possible.

Let us consider an example. Suppose that the analyzed text contains

sentence (71) and later sentence (72):

(71) Miriam will be reading the book.

(72) Miriam was reading the book.

The T-expression

(73) <Miriam read book>

will thus have a two-page history. Now we ask:

(74) Has Miriam been reading the book?

Recall that when START analyzes a question, it reverses the effect of

the movement transformation that is used to create English questions and

converts it into T-expression form, like any other sentence. We will call the

question in the assertional form the Q-assertion, so that

(75) Miriam has been reading the book

is the Q-assertion for question (74). The task for the system is then to de-

termine whether the known statements, (71) and (72), individually, imply

Q-assertion (75).

The information from histories that START must use to calculate the im-
plications falls roughly into three categories. Ties to embedded or embedding

T-expressions (if any) give the proposition's intrasentential contezt. Tense
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and aspect place the proposition in a certain time frame. Modals, including

negation as a special instance, show the mood of the proposition.

Accordingly, START employs an ordered set of filters, one for each type

of information. A kernel sentence may receive one of three labels, YES, NO, or

UNKNOWN, as it passes through the filter set. The UNKNOWN label is further

broken down to show which filter assigned it, so that this information can be

used in responding to the question in the most helpful way.

The embedding filter must be applied first. Thus, the sentence "Miriam

read the book" which is embedded in (76) is labeled UNKNOWN(embedding):

(76) Gabriella thinks that Miriam read the book.

A sentence that is not labeled UNKNOWN by the embedding filter is passed

to the tense-aspect filter. This filter determines whether the time interval

referred to by the kernel sentence overlaps with that given by the question.

If they do not overlap, the sentence is labeled UNKNOWN(time). For ex-

ample, in attempting to answer the question "Has Miriam been reading the

book," this filter would label the sentence "Miriam will be reading the book"

UNKNOWN(time). The sentence "Miriam was reading the book" would pass

through the time-aspect filter, to be considered by the modal filter. The modal

filter compares the modals (including negation) used in the kernel sentence

and in the question. Each combination results in one of the three labels YES,

NO, or UNKNOWN(modals). (In Gaulding and Katz 119881 the operation of

the tense-aspect and modal filters is discussed in more detail.)

If a sentence has internal embeddings, the reasoning process is repeated

for each T-expression involved, producing a decision at each level of embed-

ding. These decisions are then arbitrated in the following manner. If at

any point the time frame referred to is inappropriate, or the modal com-

bination is inconclusive, the entire sentence is labeled UNKNOWN(time) or

UNKNOWN(modals). Otherwise the "logical combination" of affirmative and

negative responses is calculated, and the overall sentence is labeled with the

result. For example, suppose the system had indexed the sentence

(77) Gabriella wishes that Miriam had read the book

and were asked

(78) Does Gabriella wish that Miriam will be reading the book?

The outer clause would receive the label YES but the inner clause would not
pass the tense-aspect filter, and as a result the entire sentence would be rela-
beled UNKNOWN (time). Although this solution gives correct answers for many

internal-embedding situations, it seems that the general case requires more

complex reasoning (see Gaulding and Katz [19881 for possible approaches).

, ,,,.. .... =.. -- ,m u rl IluiH N i iiJ
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Once a final label has been calculated for each sentence contained in

the history, START arbitrates the resulting combination of YES's, NO's, or

UNKNOWN's and decides upon the final response. Because the overall goal

is to be as informative as possible, the response does not consist merely of a
6"yes", "no", or "unknown". All the sentences corresponding to the matching

T-expression are generated for the user, and the explanations are given when

necessary.

The following interaction illustrates that the system's final responses,

made on the basis of this analysis, echo people's judgments in answering such
questions. Note that inputs to START are given to the prompt " ="

u'--) ED EXPECTS TO LIKE ROCK MUSIC, BUT HE DOES NOT LIKE IT NOW.

-. MOM HOPES ED WILL NOT LIKE IT.

-") WILL ED LIKE ROCK MUSIC?

I don't know. However, I do have some information:

ED EXPECTS TO LIKE ROCK MUSIC.

MOM HOPES THAT ED WILL NOT LIKE ROCK MUSIC.

(The proposition 'ED LIKES ROCK MUSIC' was embedded within these sentences.)

ED DOESN'T LIKE ROCK MUSIC NOW.

(This sentence did not refer to the time interval about which you asked.)

12. A Dialogue with START

The following is a slightly shortened and modified passage from the Testing
Reading SkilLs chapter of the book How to Prepare for the Graduate Record

Examination (Brownstein and Weiner (1985]), as entered into the computer:

The e'tablishment of the Third Reich influenced events in American

history by starting a chain of events which culminated in war. The

complete destruction of democracy, the persecution of Jews, the cru-

elty of the Nazis, and the plans of Germany for the conquest of the

world caused great indignation in the United States. While speaking

out against Hitler's atrocities, the American people generally favored

isolationist policies and neutrality. The Neutrality Act of 1935 pro-

hibited trade with any belligerent nation. In 1937 the President was

empowered to declare an arms embargo in wars between nations at

his discretion.
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American opinion changed after President Roosevelt's speech at Chi-

cago in which he severely criticized Hitler's policies. Germany's

seizure of Austria and the Munich Pact also aroused the American

people. The conquest of Czechoslovakia in 1939 was another rude

awakening to the menace of the Third Reich. The United States at-

tempted to maintain neutrality in spite of sympathy for the European

democracies. The Neutrality Act of 1939 repealed the arms embargo

and permitted exports of arms to belligerent nations. In 1940 a strong

national defense program was begun and a draft act was passed to

strengihen the military services. In 1941 Japan launched the un-

provoked attack on the United States at Pearl Harbor. Immediately

thereafter, Germany declared war on the United States.

The understanding module of START analyzes this text and indexes the
knowledge contained within it into a knowledge base. The user is then able

to interact with the system in English. Shown below is an actual dialogue

with START. The user asks questions and the computer answers them. Note

that the English sentences generated by START may differ from the original

text. Any stylistic deficiencies are the responsibility of START and not of this

B' author.

The astute reader will observe that in addition to syntactic analysis,

indexing, matching, retrieving the information, and generating English sen-

tences, the START system was quietly performing additional tasks, such as:

resolving lexical ambiguities (e.g., the word attack was used as a verb and

as a noun); working with synonyms (begin-start, permit-allow, etc.); employ-

ing S-rules (e.g., in answering the question about Japan attacking the USA);

and providing further information (in parentheses) when the correct answer

could not be found due to embedding, or disagreements in time intervals or

modality.

Querying the GRE Knowledge Base

What did Germany's plans cause?

Germany's plans for the world's conquest caused great indignation in the

United States.

Did the American people favor neutrality?

Yes-The American people generally favored neutrality while speaking out
- - against Hitler's atrocities.
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What did the Neutrality Acts do?

1935's Neutrality Act prohibited the trade with any belligerent nation.

1939's Neutrality Act repealed the arms embargo.

1939's Neutrality Act permitted the arms' exports to the belligerent nations.

Who declared the Arms embargo?

I don't know. However, I do have some information:

The President was empowered to declare the arms embargo in the wars between

the nations at his discretion in 1937.

(The proposition 'The President declares the arms embargo' was embedded

within this sentence.)

When did the American opinion change?

The American opinion changed after President Roosevelt's speech at Chicago

in which President Roosevelt severely criticized Hitler's policies.

Who criticized Hitler's policies?

President Roosevelt severely criticized Hitler's policies in his speech.

Who maintained neutrality?

I don't know. However, I do have some information:

The United States attempted to maintain neutrality in spite
of the sympathy for the European democracies.

(The proposition 'The United States maintains neutrality' was embedded

within this sentence.)

Were exports of arms allowed?

Yes-1939's Neutrality Act permitted the arms' exports to the belligerent

nations.

To which nations did the Neutrality Act permit exports?

1939's Neutrality Act permitted the arms' exports to the belligerent nations.

Why was the draft act passed?

The draft act was passed in order to strengthen the military services.

Will a national defense program be started!

I don't know. However, I do have some information:

The strong national defense program was begun in 1940.

(This sentence did not refer to the time interval about which you asked.)

Did Japan attack the USA?

Yes-Japan launched the unprovoked attack on the United States at Pearl

Harbor in 1941.

... ... . . ,,,,,,- ,,,m ~wam mmmm a l a a I n --mm i i
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13. Spacecraft Sequencing

In this section we demonstrate the application of the START system in a real-

world situation: interplanetary exploration. The scientists and engineers who

plan to perform experiments aboard an interplanetary spacecraft compete for

a limited amount of time and resources. Their requests are coordinated and

integrated into a sequence of activities for the spacecraft through a spacecraft

sequencing process. This process programs involves designing, scheduling and

programming the onboard activities, as well as controlling its functions. It

is a complex, tedious, and time consuming process which is carried out by

a team of experts called the Sequence Team. In order to perform this task,

the Sequence Team uses a set of computer programs, the Mission Sequence

Software (MSS). These programs do everything from simulating the geometry

of the encounter to detailed constraint checking of the proposed sequence and

actual command simulation and generation. Unfortunately, this software is

very difficult to use. Producing MSS which is more "user friendly" could

reduce the cost of a mission dramatically.

In Katz and Brooks [1987] we have identified three possible roles that

t- the START system could play in improving the MSS performance. First,
START could function as a translator from English conceptual descriptions

of activities into inputs for the MSS, providing the long-needed link between

early design work and integration of the sequence. Secondly, START could

act as an interface between a user and the various components of the MSS

during integration, allowing, but not requiring, the user to operate the MSS

by means of English commands instead of the cryptic operands used presently.

And finally, START could be employed as a query tool. The researchers could

ask questions in English about the spacecraft or the state of its submodules

and the system would analyze the query, retrieve the relevant information

from the knowledge base and formulate its response also in English.

The Mars Observer Mission plans to use small modular sequence com-

ponents called Sequence Segments. These segments, which are based on the

geography of Mars, will be used during mission operations to build the se-

quences of activities to be executed onboard. Shown below is a sample of the

types of observations which will be specified in a typical segment. This doc-

ument is automatically transformed by the START system into a knowledge

base which incorporates the information found in the text. Following that, we

show how the user obtains the information about the events which are taking

place in the sequence by querying the knowledge base in English.
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MOC, VIMS, TES, and PMIRR are all scientific instruments on the Mars

Observer spacecraft (MO). IR is an abbreviation for Infra-red. All other capi-
talized words (ALBA PATERA, ASCRAEUS MONS, TANTALUS FOSSAE, etc.) are

names of targets on the planet's surface.

Mars Observer Sequence Segment

(as entered in the computer)

00:04:20 ASCRAEUS MONS is at Nadir.

00:04:35 MOC takes 5 pictures of ASCRAEUS MONS.

00:04:35 TES performs experiment number 16 on ASCRAEUS MONS.

00:04:35 PMIRR performs IR study of ASCRAEUS MONS.

00:04:35 VIMS takes 1 picture of ASCRAEUS MONS.

00:08:20 Entering CERAUNIUS FOSSAE region from south side.
00:10:25 PMIRR performs IR study of CERAUNIUS FOSSAE.

00:12:30 Exiting CERAUNIUS FOSSAE region from north side.

00:14:30 Entering TANTALUS FOSSAE region from south side.

00:14:35 MOC takes 4 pictures of TANTALUS FOSSAE.

00:16:40 +40-deg latitude crossing pulse occurs northbound.
00:17:00 Entering ALBA PATERA region from south-east side.

00:17:00 Exiting TANTALUS FOSSAE region from north side.

00:18:40 Entering ALBA FOSSAE region from south side.

00:18:40 Exiting ALBA PATERA region from north-east side. _

00:18:45 Take 5 pictures of ALBA FOSSAE with MOC.

00:20:40 Entering VASTITAS BOREALIS region from south side.

00:20:40 Exiting ALBA FOSSAE region from north side.
00:22:55 Take 2 pictures of VASTITAS BOREALIS with MOC.

00:22:55 VIMS takes 1 picture of VASTITAS BOREALIS region.

00:27:05 +65-deg latitude crossing pulse occurs northbound.

00:29:10 MOC takes 3 pictures of the north-polar region.

00:29:10 Take 1 picture of north-polar region using VIMS.

00:31:15 PMIRR begins continuous IR study of north-polar region.

00:33:20 TES begins study of north-polar region.

00:34:10 Entering north-polar region.

00:37:30 +90-deg latitude crossing pulse occurs.
00:37:30 MOC takes 6 pictures of the North Pole.

00:37:30 PMIRR performs internal experiment # 21 on North Pole.

00:37:30 TES does internal experiment #11 on North Pole.
00:37:30 VIMS executes internal experiment number 1 on North Pole.

00:41:40 TES ends study of north-polar region.

00:43:45 Exiting VASTITAS BOREALIS region from north side.
00:43:45 Exiting north-polar region.

00:43:45 PMIRR ends study of north-polar region.

00:47:55 +65-deg latitude crossing pulse occurs southbound. 6
00:52:05 Entering UTOPIA PLANITIA from north side.

00:54:10 Use MOC to take 2 pictures of VASTITAS BOREALIS.
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*- 00:54:10 VIMS takes 1 picture of VASTITAS BOREALIS.

00:58:20 +40-deg latitude crossing pulse occurs southbound.

01:00:25 Entering NILOSYRTIS MENSAE from north side.

01:00:25 Exiting UTOPIA PLANITIA from south side.

01:01:15 Take 1 picture of NILOSYRTIS MENSAE using MOC.

01:01:15 Take 1 picture of NILOSYRTIS MENSAE with VIMS.

01:04:35 Entering NILI FOSSAE region from north side.
01:04:35 Exiting NILOSYRTIS MENSAE from south side.

01:06:40 Entering SYRTIS MAJOR PLANITIA region from north side.

01:06:40 Exiting NILI FOSSAE region from south side.

01:06:40 PMIRR begins IR study of SYRTIS MAJOR PLANITIA.

01:06:40 VIMS takes 1 picture of NILI FOSSAE.

Querying the Mars Observer Knowledge Base

(actual dialog with START)

How many pictures of ASCRAEUS MONS does MOC take?

At 00:04:35, MOC takes 5 pictures of ASCRAEUS MONS.

When does PMIRR begin continuous IR study of north-polar region?
t°

At 00:31:15, PMIRR begins the north-polar region's continuous IR study.

When does VIMS take pictures of VASTITAS BOREALIS region?

At 00:54:10, VIMS takes 1 picture of VASTITAS BOREALIS.

At 00:22:55, VIMS takes 1 picture of VASTITAS BOREALIS.

Which instruments take pictures of ASCRAEUS MONS?

At 00:04:35, MOC takes 5 pictures of ASCRAEUS MONS.

At 00:04:35, VIMS takes 1 picture of ASCRAEUS MONS.

When does PMIRR execute the experiment #21 on North Pole?

At 00:37:30, PMIRR performs experiment2l on North Pole.

What does PMIRR do between 00:10:00 and 00:50:00?

At 00:10:25, PMIRR performs CERAUNIUS FOSSAE'S IR study.

At 00:31:15, PMIRR begins the north-polar region's continuous IR study.

At 00:37:30, PMIRR performs experiment2l.

At 00:43:45, PMIRR ends the north-polar region's continuous IR study.
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When do latitude crossing pulses occur?

At 00:58:20, the +40-deg latitude crossing pulse occurs southbound.

At 00:16:40, the +40-deg latitude crossing pulse occurs northbound.

At 00:47:55, the +65-deg latitude crossing pulse occurs southbound.

At 00:27:05, the +65-deg latitude crossing pulse occurs northbound.

At 00:37:30, the +90-deg latitude crossing pulse occurs.

Does Mars Observer enter the NILI FOSSAE region?

Yes---At 01:04:35, spacecraft enters NILI FOSSAE from the north side.

From which side does MO exit the regions?

At 00:12:30, spacecraft exits CERAUNIUS FOSSAE from the north side.
At 00:17:00, spacecraft exits TANTALUS FOSSAE from the north side.

At 00:18:40, spacecraft exits ALBA PATERA from the north-east side.

At 00:20:40, spacecraft exits ALBA FOSSAE from the north side.
At 00:43:45, spacecraft exits VASTITAS BOREALIS from the north side.

At 01:00:25, spacecraft exits UTOPIA PLANITIA from the south side.

At 01:04:35, spacecraft exits NILOSYRTIS MENSAE from the south side.
At 01:06:40, spacecraft exits NILI FOSSAE from the south side.

Which targets does VIMS look at? -. -

At 01:06:40, VIMS takes 1 picture of NILI FOSSAE.

At 01:01:15, VIMS takes 1 picture of NILOSYRTIS MENSAE.

At 00:29:10, VIMS takes 1 picture of the north-polar region.

At 00:54:10, VIMS takes 1 picture of VASTITAS BOREALIS.
At 00:22:55, VIMS takes 1 picture of VASTITAS BOREALIS.

At 00:04:35, VIMS takes 1 picture of ASCRAEUS MONS.

How many pictures does MOC take after 00:20:00?

At 00:22:55, MOC takes 2 pictures of VASTITAS BOREALIS.

At 00:29:10, MOC takes 3 pictures of the north-polar region.

At 00:37:30, MOC takes 6 pictures of North Pole.
At 00:54:10, MOC takes 2 pictures of VASTITAS BOREALIS.

At 01:01:15, MOC takes 1 picture of NILOSYRTIS MENSAE.

Total number of pictures is 14.
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