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Using ergodicity of chaotic systems for improving the global properties of the delayed feedback
control method
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A modified delayed feedback control algorithm with the improved global properties is proposed. The modi-
fication is based on the ergodic features of chaotic systems. We do not perturb the system until its state
approaches a desired unstable periodic orbit and then we activate the delayed feedback control force. To
evaluate the closeness of the system state to the target orbit, a special algorithm is devised. For continuous-time
systems, it can be implemented by means of a simple low-pass filter. An additional low-pass filter can be used
for selection of the particular orbit from several unstable orbits of the same period.
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Delayed feedback control (DFC) algorithm has been in-
vented in the early 1990s [1] as a simple, robust, and effi-
cient method to stabilize unstable periodic orbits (UPOs) in
chaotic systems. Nowadays it has become one of the most
popular methods in chaos control research [2]. Successful
implementations of the method include quite diverse experi-
mental systems from different fields of science. For the de-
tails of experimental implementations as well as various
modifications of the DFC algorithm, we refer to the recent
review paper [3].

The theory of DFC is rather difficult, since the time-delay
dynamics takes place in infinite-dimensional phase spaces.
The standard tool for discussing the control performance
consists in linear stability analysis [4—7]. But even if such a
local analysis predicts stable states, experimental success is
not guaranteed because the control performance may
strongly depend on initial conditions. The analysis of global
properties of DFC systems, such as basins of attraction of
stabilized orbits, is much more complicated problem. There
exists virtually no systematic investigation of time-delayed
feedback control beyond the linear regime.

Numerical analysis of particular systems shows that the
DFC algorithm can form incredibly complex basins of attrac-
tion [8,9]. Recently, the idea of the transition from sub- to
supercritical bifurcations for the estimation of basins of at-
traction has been proposed [10-12]. However, this approach
is not universal and does not guarantee the correct prediction
for the system parameters far away from the bifurcation
point. The lack of a general theory concerning the global
properties of DFC systems represents a serious drawback of
the method.

To improve the global properties of the DFC algorithm,
several nonlinear modifications have been proposed. A first
heuristic idea has been suggested in the original paper [1]. Tt
has been shown that limiting the size of the control force by
a simple cutoff increases a basin of attraction of the stabi-
lized orbit. This idea has proved itself in a number of chaotic
systems and now it is widely used in experiments. An alter-
native two-step DFC algorithm has been considered in Ref.
[13]. In the first step, this algorithm generates an extraneous
stable periodic orbit close to the target orbit and in the sec-
ond step stabilizes the target. Finally, a nonlinear DFC for
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systems close to a subcritical Hopf bifurcation has been pro-
posed in Ref. [12]. Here the basin of attraction is enlarged by
coupling control forces through the phase of the signal.

Unfortunately, the above-proposed nonlinear DFC
schemes are not universal. In this paper, we seek to improve
the global properties of the DFC algorithm by invoking an
egodicity—the universal feature of chaotic systems. The er-
godicity means the fact that a trajectory of any chaotic sys-
tem visits a neighborhood of each periodic orbit with finite
probability. The idea of using ergodicity in chaos control
research was first formulated in the seminal paper by Ott,
Grebogy, and Yorke (OGY) [14] and has been employed in
their OGY control algorithm. However, a straightforward
implementation of ergodicity in DFC schemes has not been
considered so far. The main motivation of this paper is to fill
this gap and adapt the OGY ideas for DFC algorithm. The
specific point of our problem is that the DFC force increases
the phase dimension of the closed-loop system. As well as in
the OGY algorithm, we do not perturb the system until it
comes in a small neighborhood of the desired orbit. Using a
scalar observable, we develop a technique which allows us to
evaluate a moment when the state of the free time-delay
system approaches the target orbit. At this moment, we acti-
vate the DFC force and stabilize the target. The algorithm
does not require a knowledge of location of the orbit and can
be easily implemented by means of electronic circuits.

We are going to apply our algorithm for continuous-time
chaotic systems. Note that the problem of evaluating the mo-
ment when the state of the free system approaches the target
orbit has to be considered in an infinite-dimensional phase
space, since the DFC force increases the phase dimension of
the closed-loop system to infinity. As a first example, we
consider the Rossler equations [15] subjected to DFC force

X=-y-2z, (1a)
y=x+ay-kD(1), (1b)
z=b+z(x-o). (1c)

Here x, y, z are the dynamic variables of the Rossler system.
The parameters a=0.2, b=0.2, and ¢=5.7 are chosen such
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FIG. 1. The (x,y) projection of two period-3 UPOs embedded in
chaotic attractor of the free (k=0) Rossler system (1) for a=0.2,
b=0.2, and ¢=5.7. The target UPO with the period 7=17.51 is
depicted by solid line. By dashed line is shown another (extraneous)
period-3 UPO with the period 7=17.60.

that the system exhibits chaotic behavior. We suppose that
y(#) is an observable and the DFC perturbation kD(¢) is ap-
plied only to the second equation of the Rdssler system.
Here, k is the feedback gain and D(z) denotes the difference
of the observable between the current state and the state de-
layed by the period 7 of UPO

D(t)=y(t) = y(t=17). (2)

Numerical analysis shows that the basins of attraction of the
period-1 and period-2 UPOs of the Rossler system are rather
large. The straightforward application of the original DFC
algorithm (without waiting until the system approaches the
desired orbit) is successful for these orbits at any initial con-
ditions placed on the strange attractor. However, this is not
the case for the period-3 UPOs. The free (k=0) Rossler sys-
tem has two period-3 UPOs with slightly different periods
7=17.51 and 7=17.60. The (x,y) projections of their phase
portraits are shown in Fig. 1. Here we concentrate on the
stabilization of the orbit with the period 7=17.51. In Fig. 1,
this target orbit is depicted by solid line. The original DFC
algorithm is not able to stabilize this orbit for any initial
conditions and thus we need a modification.

The linear analysis of Egs. (1) with the perturbation (2)
shows that the target orbit is stable in the interval of control
gain 0.05 <k <<0.34. The optimal value of the feedback gain,
which leads to the fastest convergence of nearby initial con-
ditions toward the desired orbit, is k,,=0.06. Although the
whole basin of attraction of the stabilized orbit may be very
complex, it necessarily occupies some regions in the vicinity
of the target orbit. This general feature of the basin of attrac-
tion results from linear stability of the orbit. Thus the DFC
algorithm should be successful if the initial conditions are in
fair proximity to the target. On the other hand, due to the
ergodicity, the free system (k=0) should approach the target
orbit as close as desired for any initial conditions placed on
the strange attractor.

Our strategy is as follows. We do not perturb the system
(k=0) when its state is far away from the desired orbit and
activate the control in the form of Eq. (2) with k=k,, when
the state approaches the target UPO. The main problem here
is to define the moment when the state of the free system
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falls in a small neighborhood of the desired orbit. Having a
scalar observable y(f), the standard way to reconstruct the
phase space of the system is to introduce delay coordinates.
Using an (M+1)-dimensional delay-coordinate vector
r(0)=[y(t),y(t=5),...,y(t—M )] with delay &, one can
write inequalities (requirements)

rj(t) —r(t— 7| =|D(t-jébr)| <e, j=0,....M (3)

that guarantee that the state of the system at time ¢ is close to
the periodic orbit of the period 7 in the reconstructed phase
space. These inequalities mean that the absolute value of the
difference |D(¢)| has to be small in M+1 equally spaced
points in the time interval [r—At,f], with Ar=Mét.
Alternatively, we may replace the above M+1 inequalities
(3) by one inequality for the averaged difference,
(1/ M)E%0|D(t— jot)|<e. For continuous-time systems with
an infinite-dimensional phase space, we take the limit
ot—0, M—c. On the assumption that the product
M &t=At is finite, we obtain (1/A7)[_, |D(s)|ds <e. The lat-
ter condition defines the smallness of a moving average of
the difference |D(t) , where At is a window of moving aver-
age. The main advantage of such a condition is that the mov-
ing average can be simply estimated electronically. The sim-
plest moving average filter can be designed as a first-order
low-pass filter.

As a result, we come to the following modification of the
DFC algorithm. To estimate the moving average of the dif-
ference |D(t)|, we introduce an auxiliary variable w that sat-
isfies first-order filter equation

'Tww= |D(t)| -w. (4)

An asymptotic solution of this equation is
1 t
w(t) = —f expl(s — )/7,]|D(s)|ds. (5)
TwJ —

Thus the variable w represents an exponentially weighted
moving average of the difference |D(#)|. The characteristic
window of the moving average is At=r,,. The smallness of
this variable indicates the closeness of the system state to the
target orbit taking into account an infinite-dimensional phase
space.

The control procedure is as follows. We start from initial
conditions placed on the strange attractor of the free Rossler
system and integrate Eqs. (1) and (4) for k=0 as long as
w>g. As soon as the variable w becomes small, w<<eg, we
set k=k,, and continue the integration of the system sub-
jected to DFC. We assume that the control goal is achieved
when w decreases to a given value =3 X 107><¢. We re-
peat this procedure for 10° different initial conditions and
plot in Fig. 2 histograms of time needed to achieve the con-
trol. For suitably chosen filter parameter 7,,=7/7 and fairly
small e<e,=0.33, the algorithm produces 100% success
rate for any initial conditions. For e=¢., the mean time of
control amounts approximately ten periods of UPO.

We emphasize that our modification is very simple. The
closeness of the system state to the target orbit is estimated
from the usual DFC signal (2) by means of the standard
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FIG. 2. Histogram of time needed to achieve control in the
Rossler system for k=k,,=0.06, 7=17.51, and 7,,=7/7. N is the
number of periods 7 needed for stabilization of the target UPO and
P(N) is the number of successful stabilizations with the given time
of control. The parameter & and the mean number (N) of periods
needed to achieve control are: (a) £=0.7, (N)=6.87; (b)
e=¢,=0.33, (N)=9.54; (c) &=0.25, (N)=11.25; (d) &=0.2,
(N)=12.4. In (a), only 79% of initial conditions are successful,
while in (c) and (d) the 100% success rate is obtained.

low-pass filter (4). Thus the modification allows a simple
analog implementation and preserves the main advantages of
the original DFC technique.

As a second example, we consider a nonautonomous
double-well Duffing oscillator subjected to DFC

i=y—kD(0), (6a)

y=—By+ax—yx’+A cos(Qr). (6b)

Here, x, y are the dynamic variables, a=1, y=1 are the
parameters of the double-well potential, 8=0.16 is the slope
coefficient, and A=0.27 and =1 are the amplitude and fre-
quency of the external force, respectively. We suppose that
x(t) is an observable and control perturbation kD(z) with

D(t)=x(t) —=x(t=17) (7)

is applied to the first Eq. (6a).

For the chosen set of parameters, the free (k=0) system
exhibits chaotic motion. The chaotic attractor has embedded
within it three period-1 UPOs, which are depicted in Fig. 3.
All orbits have identical periods coinciding with the period
of external force, 7=27/(). One of the orbits is located at the
origin. It is symmetrical with respect to both x and y axes
and satisfies the so-called odd number limitation [5,6]. This
orbit cannot be stabilized by usual DFC technique. Its stabi-
lization with an unstable DFC controller [7] has been con-
sidered in the recent paper [13]. Two other nonsymmetric
orbits are symmetrically located with respect to the y axis.

Our aim here is to design DFC algorithm capable to select
one of two nonsymmetric UPOs, say the right-hand orbit
shown in Fig. 3, and stabilize it for any initial conditions
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FIG. 3. Three period-1 UPOs embedded in chaotic attractor of
the free (k=0) double-well oscillator (5) for a=1, =0.16, y=1,
A=0.27, and Q=1. All orbits have the same period 7=2. The
target orbit is depicted by solid line.

taken on the strange attractor. Now it is not sufficient to
require the smallness of the moving average of the delayed
difference (7) since it may become small when the system
moves along of any of three UPOs. We need a condition,
which guarantees that the moving average of |D(#)| becomes
small on the particular selected orbit. For this aim, we intro-
duce an additional moving average filter that allows us to
estimate the peculiarities of location of the UPO in the phase
space. Thus our algorithm here is based on two running av-
erage filters
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FIG. 4. Histogram of time needed to achieve control in the
Duffing system for k=k,,=0.8, =2, 7,,=0.17, 7,=7, £,=0.2, and
er=0.025. N is the number of periods 7 needed for stabilization of
the target UPO and P(N) is the number of successful stabilizations
with the given time of control. The parameter ¢ and the mean num-
ber (N) of periods needed to achieve control are: (a) £=0.2,
(N)=33.58; (b) e=¢.=0.1, (N)=60.54; (c) £=0.06, (N)=86.84; (d)
£=0.04, (N)=159.27. In (a), only 77.8% of initial conditions are
successful, while in (c¢) and (d) the 100% success rate is obtained.
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Tww = |D(Z)| -w, (821)

7,0 =sgn(x) —v. (8b)

The control procedure is as follows. First we analyze the free
running system (k=0) by means of the introduced variables
w and v. We simultaneously check two conditions w(r) <e
and v () > 1-g,. As soon as the both conditions are satisfied,
we activate the control by setting k=k,, and stabilize the
target orbit. The first condition w<e here is equivalent to
that introduced in the previous example. It controls the
smallness of the running average of the difference |D(7)| es-
timated by the filter (8a). The second condition v>1-g,
selects the right-hand nonsymmetric UPO. This is achieved
by means of the additional running average filter (8b). The
function sgn(x) is the signum function equal to —1 for
x<0 and equal to 1 for x>0. The filter variable v(r) reaches
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the value close to 1 if x(¢) is positive in the characteristic
time interval [7—7,,¢]. Since the target orbit is located in the
region x>0, the second condition v>1-g, with a small
g,>>0 can be satisfied only for the target orbit.

The linear stability analysis shows that the target orbit is
stable for 0.5<k<2.52. The optimal value of the control
gain is k,,=0.8. In Fig. 4, we show the statistics of success-
ful stabilizations obtained from 10 initial conditions ran-
domly chosen on the strange attractor of the free system. For
suitably chosen values of the parameters 7,,=0.17, 7,=7, and
£,=0.2 and sufficiently small € <g,.=0.1, the algorithm suc-
cessfully selects and stabilizes the target orbit for any initial
conditions. Here, the mean time of control is considerably
longer than that for the Rossler system. For e=¢,, it is equal
approximately to 60 periods of UPO. Such a long transient
dynamics is related with the coexistence of three UPOs of
the same period and the necessity to select one of them.
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