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Abstract

Background: As pharmacogenomics data becomes increasingly integral to clinical treatment decisions, appropriate

data storage and sharing protocols need to be adopted. One promising option for secure, high-integrity storage and

sharing is Ethereum smart contracts. Ethereum is a blockchain platform, and smart contracts are immutable pieces of

code running on virtual machines in this platform that can be invoked by a user or another contract (in the blockchain

network). The 2019 iDASH (Integrating Data for Analysis, Anonymization, and Sharing) competition for Secure

Genome Analysis challenged participants to develop time- and space-efficient Ethereum smart contracts for

gene-drug relationship data.

Methods: Here we design a specific smart contract to store and query gene-drug interactions in Ethereum using an

index-based, multi-mapping approach. Our contract stores each pharmacogenomics observation, a gene-variant-drug

triplet with outcome, in a mapping searchable by a unique identifier, allowing for time and space efficient storage and

query. This solution ranked in the top three at the 2019 IDASH competition. We further improve our ”challenge

solution” and develop an alternate ”fastQuery” smart contract, which combines together identical gene-variant-drug

combinations into a single storage entry, leading to significantly better scalability and query efficiency.

Results: On a private, proof-of-authority network, both our challenge and fastQuery solutions exhibit approximately

linear memory and time usage for inserting into and querying small databases (<1,000 entries). For larger databases

(1000 to 10,000 entries), fastQuery maintains this scaling. Furthermore, both solutions can query by a single field

(”0-AND”) or a combination of fields (”1- or 2-AND”). Specifically, the challenge solution can complete a 2-AND query

from a small database (100 entries) in 35ms using 0.1 MB of memory. For the same query, fastQuery has a 2-fold

improvement in time and a 10-fold improvement in memory.

Conclusion: We show that pharmacogenomics data can be stored and queried efficiently using Ethereum

blockchain. Our solutions could potentially be used to store a range of clinical data and extended to other fields

requiring high-integrity data storage and efficient access.
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Background
Pharmacogenomics data, which describes the results of

particular gene-drug interactions, allows researchers and

physicians to predict how specific patients will respond to

a given drug based on the genetic variants they possess.

For example, a patient may be more prone to toxic effects

from a drug because they possess a variant which limits

their ability to clear the drug, and therefore should be pre-

scribed an alternative. TheMayo Clinic likens inclusion of

pharmacogenomics data in a patient’s chart to a "flashing,

genomic medical alert band," implying that this data may

become as commonplace in basic medical care as wrist-

bands indicating a patient’s allergies or fall risk [1]. Given

the growing reliance on this data for medical treatment,

its corruption or loss, whether intentional or accidental,

has the potential to directly impact medical treatments. It

is thus of the essence to develop a robust method for stor-

ing, sharing, and updating pharmacogenomics databases

in a secure, high-integrity fashion.

The importance of securely storing personal genomic

data to protect personal privacy has been widely noted

[2]. Pharmacogenomics data presents similar concerns for

privacy and immutability. For both genomics and pharma-

cogenomics, data integrity is critical, as loss, corruption,

or alteration of the data would have problematic effects

(in the case of genomics, making the wrong diagnosis,

and in pharmacogenomics, prescribing the wrong drug).

Thus, any method for storing and sharing pharmacoge-

nomics data must prevent it from being lost, changed, or

corrupted. A balance between accessibility and privacy is

also key to both kinds of data. Researchers and physicians

must be able to access genomic data without leaking pri-

vate information about their patients. They also must be

able to store and share gene-drug interaction data during

clinical trial phases, while respecting proprietary protocol

(i.e. within a pharmaceutical company) or simply shar-

ing only with other groups contributing to the study (i.e.

within or between academic institutions). These require-

ments invite development of creative solutions in order to

guarantee secure, robust pharmacogenomics databases.

Blockchain technology is growing in popularity to solve

secure data storage problems because of its decentraliza-

tion, distributed architecture, and immutability. Decen-

tralization prevents any single user from controlling the

data; distributed architecture eliminates the single point

of failure; and immutability prevents alteration of past

records. Given the requirements for storing pharmacoge-

nomics data discussed above, blockchain technology is

an ideal implementation. Some argue that blockchain

is a technology fad, and is being used to solve prob-

lems that other, simpler technologies could solve, namely

a distributed database [3]. However, according to Kuo

et al. ["Blockchain distributed ledger technologies for

biomedical and healthcare applications," JAMIA, 2017],

blockchain offers features which distributed databases do

not, including decentralized management, an immutable

audit trail, data provenance, robustness and availabil-

ity, and security and privacy. These key benefits make

blockchain better suited for biomedical applications than

other distributed database management systems [4].

A blockchain is a decentralized, distributed, digital

ledger comparable to an append-only list linked by crypto-

graphic hashes [5]. The ledger is shared in a "peer-to-peer"

network; each node in the network keeps a copy of the list

on their computer which syncs to the rest of the network.

Nodes in the network submit transactions, which may

be verified and added to the chain in a new block. Each

block possesses a hash of its contents and the previous

block’s hash. Thus, one cannot alter the record, as even the

smallest alteration will drastically change the downstream

block hashes. The blockchain data structure was first

introduced in 2008 by Satoshi Nakamoto (pseudonym) as

a digital ledger for transactions of Bitcoin, a now infamous

cryptocurrency [5]. However, since this initial application

blockchain technology has evolved into a more versatile

and dynamic technology, now used for tasks ranging from

food distribution tracking to music streaming [6, 7].

Blockchain is increasingly applied to solve real-world

problems because of the transparency, immutability, secu-

rity, privacy, and disintermediation it provides. To achieve

transparency, every transaction on the chain is broadcast

to all other users in the network, who mine and verify

the transactions. Immutability arises because each block

contains the hash of all contents in the previous block,

preventing any changes to past transactions. Security is

achieved through distributed architecture; the transaction

history and data stored on the chain is distributed across

many nodes in the network, so there is no single point of

failure. User privacy is preserved, in a public blockchain

network at least, because users can be anonymous, iden-

tifiable only by their wallet address. This technology also

eliminates the need for a middle man, such as a bank or

a music streaming platform, and allows users to transact

directly with other users because there is no need for trust

in the network [5].

Many of today’s blockchain applications were built

to run in Ethereum. Ethereum is a transaction-based

state machine which logs modifications to its state in a

blockchain. This machine permits development of appli-

cations designed for both public and private blockchains

through ’smart contracts’ [8]. Smart contracts are self-

executable pieces of code which live in the Ethereum

state and trigger transactions when called by a user or

another smart contract [9]. Whereas transactions in other

blockchain environments, such as bitcoin, were limited

in their complexity due to the network state configura-

tion and programming language used, smart contracts

are programmed in turing-complete languages such as
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Solidity, an object-oriented language influenced by

JavaScript, C++, Python, and PowerShell [10]. Smart con-

tracts offer transparency (users can verify who deployed

the program and ensure they are using the correct version

of the program) and immutability (the program cannot be

altered and any new versions of the program are accessi-

ble to all users). A common example of a smart contract

is one which allows citizens to vote securely in an election

[11]. Yet, there is significant potential to use smart con-

tracts to perform transactions in a variety of contexts and

industries.

For the 2019 iDASH competition, we aimed to develop

an Ethereum smart contract for storing and querying

pharmacogenomics data with time and memory effi-

ciency. While blockchain technology offers several useful

features, it is notoriously inefficient and slow when it

comes to storing and querying data [5]. Thus, it is chal-

lenging to use for everyday applications. Additionally,

development and deployment of smart contracts requires

command of the Solidity programming language, which

has many eccentricities, and working with the contin-

uously evolving Ethereum API. However, we addressed

these design and logistical challenges, and presented an

index-based, multi-mapping data structure in a Solidity

smart contract to store the data. Specifically, we store each

pharmacogenomics observation in a mapping searchable

by a unique integer identifier. We then keep three addi-

tional mappings which store the unique identifiers by gene

name, variant number, and drug name, respectively. This

design allowed for time and memory efficient data inser-

tion and querying by one to three fields. For the sake of

scalability, we developed an alternate solution referred to

as fastQuery. In this solution, we store the data for each

unique gene-variant-drug combination as a single entry

in storage. This eliminated the need to pool data from

multiple locations in storage during query. This fastQuery

solution exhibited significantly increased time efficiency

for querying by one to three fields.

Methods
In this study we designed a time/space efficient data

structure and algorithms to store and query pharmacoge-

nomics within a smart contract in a private Ethereum

blockchain. The data was stored on a small blockchain

network with only four nodes. Each data point was

inserted to our smart contract as a single transaction. All

data had to be stored on-chain. No off-chain data storage

was allowed.

Blockchain technology explained

Here we provide a primer on blockchain technology for

those unfamiliar with the basics. For a more rigorous

treatment of this material, the reader should consult the

bitcoin white paper and the ethereum yellow paper [5, 8].

As outlined earlier, a blockchain is a secure data struc-

ture shared in a peer-to-peer network [Fig. 1a-b]. The

chain is made up of blocks of data forward-linked by

hashes. Each block in the chain contains a header and a

list of valid transactions. The header includes several fields

relevant to both the integrity of the data structure (e.g.

the timestamp), and the parameters of the network (e.g.

mining parameters). These fields include the block times-

tamp, block number, mining parameters, and the hash of

the previous block’s contents (which links one block to the

next). Users or nodes can submit transactions whichmod-

ify the state of the network, for example by sending value

from one user address to another, or storing a value within

a smart contract (discussed further below).

The network consensus mechanism determines which

user in the network will append the transactions to the

chain as a new block. This is a critical process; if it were

to fail, the validity of the added block would be com-

promised. The most prominent consensus mechanisms

include proof of work, proof of stake, and proof of author-

ity. In a proof of work (PoW) network, nodes "mine"

blocks; that is, they exert computational energy to iden-

tify values which, when added to the incoming block‘s

contents, yields a block hash below that of a set network

parameter referred to as the difficulty. The difficulty is a

network-wide parameter which can be varied in order to

regulate the rate of block formation. The proof of work

mechanism is critical to public cryptocurrency blockchain

networks such as Bitcoin because it sets a cost for modify-

ing the blockchain, thereby deterring bad actors from cor-

rupting the chain [5].Many have criticized the PoWmech-

anism for being unsustainable in the long run because of

the large amounts of energy required to perform compu-

tational mining [12]. To address this criticism, the proof

of stake mechanism has been proposed [13]. With proof

of stake, a network algorithm determines which node will

add the block to the chain based on the node’s stake, a

combination of parameters including their account bal-

ance [14]. The PoS mechanism does not require heavy

computation, thereby reducing the energy usage in the

network. These consensus mechanisms are essential for a

public blockchain network where anyone in the world can

run a node and potentially modify the chain. However, in a

private, permissioned network, these mechanisms can be

replaced with a simple proof of authority mechanism [5].

PoA is a modified version of PoS with identity as the only

’stake’ [14].We tested our smart contracts on a private test

network using proof of authority.

Ethereum blockchain and smart contracts

A broad view of Ethereum might divide the world into

three parts: blockchain, network trie roots, and trie data

structures [Fig. 1b]. The blockchain logs the network’s

state at specific times, after transactions have altered the
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Fig. 1 Ethereum blockchain and smart contracts. a A blockchain network consists of a decentralized, distributed digital ledger shared in a

peer-to-peer fashion. The network schematic shown here contains four nodes (computers), each syncing a copy of the chain. The network is

decentralized (there is no central point of control) and distributed (the chain is stored in multiple physical locations). b A blockchain can be

visualized as a string of blocks linked by cryptographic hashes. That is, each block’s contents include the hash of the previous block’s contents.

Blocks also contain data about the state of the network stored in a trie root. The state trie data structure in Ethereum stores information for user and

smart contract accounts. c The code for a particular smart contract is housed at an address in network storage, and also maintains its own storage

(for storing variables, for example). Here we show a flowchart depicting the insertion and query algorithms in our challenge solution smart contract

state. The state of the network is stored in merkle patri-

cia trees each of which possess a top hash. Blocks in the

chain store these top hash values, but do not store all the

data in the blockchain network (it would be far too large).

The state data is stored in a database layer using leveldb

[15, 16]. User account data and smart contract data

(including the code and the actual data inserted via the

code) are stored in these trie data structures, which are

synced by "full" and "archival" nodes only (nodes which

require significantly more computational power and stor-

age) [16]. These nodes are integral to the health of the

network. However, the Ethereum protocol also contains a

"light" node option, in which only the block headers are

synced [9].

Ethereum can handle a wide range of transactions

via smart contracts, self-executable turing-complete pro-

grams which run in the Ethereum Virtual Machine (EVM)

and maintain state in their own storage [8]. The EVM has

a stack-based architecture, and can either store things on

the stack (e.g. bytecode operations), in memory (e.g. tem-

porary variables within functions), or in storage (e.g. per-

manent variables holding database entries). Each smart

contract can read and write to its own storage only. In

order to discourage developers from writing inefficient

or unwieldy smart contracts, there is a ’gas’ cost associ-

ated with each storage and retrieval command. Just as

blockchain users have an address, a smart contract’s state

resides at a particular unique address in the global state of

the Ethereum network, which users can call. If a user does

not have enough gas, the contract call and corresponding

transaction cannot be completed. Smart contracts pro-

vide an opportunity to develop applications with complex

functionality in a blockchain network. We leveraged the

flexibility of smart contract programming to create a chal-

lenge solution and alternate fastQuery solution that insert

pharmacogenomics data in a custom way in contract

storage to maximize storage and query efficiency.

Network configuration

We developed and tested our solutions in Truffle v5.1.18,

a command line tool for Ethereum, which provided us

with a built-in JavaScript test environment. Within this

network, we tested insertion and querying with up to

10,000 entries in the database. Our setup constituted a

“development network”, which was separate from the pub-

lic Ethereum network. This private configuration allowed

us to develop and test our contracts extensively, with-

out having to deploy a new contract each time. While

network configuration can drastically affect performance

in a Proof-of-Work scheme, it has minimal effects in a

Proof-of-Authority scheme. Schaffer et al. demonstrate

that increasing the number of nodes in a private, Proof-of-

Authority Ethereum network does not significantly affect

performance [17].
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Chain initialization

Chain initialization in Truffle is automated, and only

requires setting basic parameters such as gas limit and

network name in a config file. We used the default

gas limit and price values for the development network

(4712388 and 100 gwei, respectively). Together, gas limit

and price values determine themaximum amount of Ether

one can spend on transaction costs (one can spend no

more than gas price * gas limit). In a proof of work scheme,

the gas price also affects transaction speed, as miners will

mine transactions with a more profitable gas price [18].

See [8] for a detailed explanation of the gas price and gas

limit parameters.

Challenge solution: an index-based, multi-mapping smart

contract

Our challenge solution utilizes four storage mappings,

linked to one another by a unique integer ID assigned

to each inserted observation in the database [Fig. 1c].

Mappings are similar to hash tables, and allow efficient

key-value lookup. In the first of the four mappings, which

we call the database, we store the pharmacogenomics data

and assign to each entry a unique ID to serve as the map-

ping key. We store each observation in its own struct, a

composite data type which can hold multiple fields. In

the three other mappings, we use the gene names, variant

numbers, and drug names as keys to an array of relevant

IDs. Thus, given a gene name key, one can retrieve a list

of IDs that can key into the database mapping and return

an observation matching that particular gene name. We

chose this implementation in order to reduce the num-

ber of loops required to check the data in the database

and return matches, and thereby achieve time/memory

efficient querying.

Challenge solution: insertion Data can be inserted into

a smart contract via one-line commands in a JavaScript

console or from an external script. We wrote an insertion

function within the contract to insert a single observation

for a given gene name-variant number-drug name com-

bination. In our case the observation consists of the gene

name, variant number, drug name, outcome (improved,

unchanged, or deteriorated), suspected gene-outcome

relation (true/false), and serious side effect (true/false).

Upon passing in the observation, the function executes

the following steps, (1) Convert each field of the observa-

tion to the desired data type for storage (e.g. it is more effi-

cient to store strings as bytes32 types in storage); (2) if the

gene name, variant, drug combination does not already

exist in the database, add it to an array holding only the

unique gene name, variant, and drug name combinations;

(3) Use the gene name, variant number, and drug name

to key into their respective mapping and append to the

value array the counter as the ID, where counter is a glob-

ally updated variable; (4) push to the database mapping

a struct with key-value pair: counter-[struct holding the

observation]; (5) increment counter variable by one (see

Algorithm 1).

We store the gene name, variant number, and outcome

fields as bytes32 variables, a fixed-size bytes array that

uses less ’gas’ in Ethereum relative to strings and is com-

patible with basic utilities in Solidity (for example, it is

simpler to check the length of a bytes variable than a string

variable using Solidity).We store the drug name as a string

because many drug names are lengthy and can exceed

the 32-character limit of the bytes32 data type. Booleans

are straightforward in Solidity, and addresses are types to

conveniently store the user or contract addresses on the

blockchain.

Algorithm 1 Challenge Solution - Insertion

1: procedure INSERT(STRING gene, UINT variant,

STRING drug, STRING outcome, BOOL relation, BOOL

sideEffect)

2: entry.push(gene, variant, drug, outcome, relation,

sideEffect)

3: if entry exists in database then

4: uniqueEntries[i].push(gene, variant, drug)

5: geneMapping[gene].push(ID)

6: variantMapping[variant].push(ID)

7: drugMapping[drug].push(ID)

8: database[ID].push(entry)

9: ID++

Challenge solution: query algorithm Our challenge

solution can handle both three-field queries, where the

fields are gene name, variant number, drug name, and

wildcard queries. One can query by any combination of

these three fields, or simply specify gene="*", variant= "*",

drug= "*", which should return the entire contents of the

database. To query, we first check how many fields have

been queried, and for those that were, we use the query

fields to key into the appropriate mapping and return the

value associated with that key– an array of integer IDs

corresponding to the ID of the data in the database map-

ping. If all fields were "*" we use all IDs currently in use

to return the data from the database mapping. Otherwise,

we determine which of the ID-arrays has the minimum

length, and loop through it (since its contents will limit

the results of the set intersection). For each entry in this

minimum-length ID array, for every other field that was

searchedwe loop through that ID array and checkwhether

it matches the ID in the outer loop. At the end of the outer

loop, if the number of matches is equal to the number of
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fields searched, then this integer is used to key into the

database mapping and grab the struct value, which is then

saved to a memory array. We then loop through the array

of unique combinations and for each one pool the structs

in the search results that match that unique combination.

This allows us to output data in a useful way: for a given

gene name, variant number, and drug name, how many

observations are there, what number and percentage of

cases saw serious side effects, what number and percent-

age suspected an interaction between the gene and drug,

and what number and percentage saw an improved, dete-

riorated or unchanged outcome when administered the

drug (see Algorithm 2).

Algorithm 2 Challenge Solution - Query

1: procedure QUERY(STRING gene, STRING variant,

STRING drug)

2: idList = []

3: results = []

4: genes = []

5: variants = []

6: drugs = []

7: if database is empty then

8: return []

9: else

10: len ← number of fields queried (0, 1, 2, or 3)

11: idList.push(IDs matching the query)

12: if len is 0 then

13: idList.push(all IDs in database)

14: else

15: genes.push(geneMapping[gene])

16: variants.push(variantMapping[variant])

17: drugs.push(drugMapping[drug])

18: idList.push(intersection of IDs in genes,

19: variants, and drugs)

20: for i ≤ length(uniqueEntries in contract storage)

do

21: for j ≤ length(idList) do

22: if idList[j] is ID of ith uniqueEntry

then

23: results.push(database[j])

24: convert results counts to percentages

25: j++

26: i++

27: return results

fastQuery solution: a pooled, index-based, multi-mapping

smart contract

Rather than storing each observation in its own struct, our

alternate, fastQuery solution stores a single struct for each

unique gene-variant-drug relation. We utilize four storage

mappings linked to one another by an ID assigned to each

inserted observation in the database, and an additional

fifth mapping for linking IDs to their unique gene-variant-

drug relation. This alternate design reduces the number

of IDed entries in the database, and prevents indefinite

database growth (there is an infinite number of raw obser-

vations that can be inserted into our challenge solution,

but a finite number of unique gene-variant-drug rela-

tions that exist). We chose this implementation in order

to reduce the length of loops required to check the data

in the database and return matches, and thereby further

improve the query time.

fastQuery solution: insertion We wrote a new insertion

function to insert a single observation for a given gene

name-variant number-drug name combination. Upon

passing in the observation, the function executes the fol-

lowing steps, (1) Convert each field of the observation to

the desired data type for storage; (2) Use the input gene,

variant, and drug as a combination key into the fifth map-

ping, which returns the ID for that unique relation; (3)

Use the ID as a key into the database mapping and check

whether this relation already exists in the database; (4) if

not, fill in the name information from the input data, add

the gene, variant, and drug names as keys in their respec-

tive mappings with the ID as the value, and increment

the global ID counter by 1; (5) increment the total count,

improved count, deteriorated count, suspected relation

count, and side effect count fields of the relation struct in

the database based on the inserted data.We store the vari-

ables as the same data types used in our challenge solution

(see Algorithm 3).

fastQuery solution: query algorithm Our fastQuery

solution can handle both unique and wildcard queries, like

the challenge solution. Yet, with fastQuery, we do not need

Algorithm 3 fastQuery Solution - Insertion

1: procedure INSERT(STRING gene, UINT variant,

STRING drug, STRING outcome, BOOL relation, BOOL

sideEffect)

2: entryIdentity.push(gene, variant, drug)

3: entryData.push(outcome, relation, sideEffect)

4: ID ← idKeeper[gene][variant][drug]

5: if database[ID] exists then

6: idKeeper[gene][variant][drug] ← counter

7: ID ← counter

8: database[ID].push(entryIdentity)

9: genes[gene] ← counter

10: variants[variant] ← counter

11: drugs[drug] ← counter

12: counter++

13: update database[ID] counts based on entryData



Gürsoy et al. BMCMedical Genomics           (2020) 13:74 Page 7 of 11

to iterate through an array of unique gene-variant-drug

combinations because the data are already stored pooled

in these unique relations. Thus, we simply obtain the

matches using the challenge solution, convert the count

data to percentages, and output the search result (see

Algorithm 4 and Additional file 1).

Algorithm 4 fastQuery Solution - Query

1: procedure QUERY(STRING gene, STRING variant,

STRING drug)

2: idList = []

3: results = []

4: genes = []

5: variants = []

6: drugs = []

7: if database is empty then

8: return []

9: else

10: len ← number of fields queried (0, 1, 2, or 3)

11: idList.push(IDs matching the query)

12: if len is 0 then

13: idList.push(all IDs in database)

14: else

15: genes.push(geneMapping[gene])

16: variants.push(variantMapping[variant])

17: drugs.push(drugMapping[drug])

18: idList.push(intersection of IDs in genes,

19: variants, and drugs)

20: for i ≤ length(idList) do

21: results.push(database[i])

22: convert results counts to percentages

23: i++

24: return results

Results
We present two proof-of-concept solutions for storing

pharmacogenomics data observations: our challenge solu-

tion, which we tested on databases of up to 1,000 entries,

and an alternate fastQuery solution with improved per-

formance, which we tested on databases of up to 10,000

entries. Both solutions were measured for its accu-

racy, time, space, and gas efficiency, and scalability

[Figs. 2 and 3].

Accuracy

The Truffle environment allows testing from custom

JavaScript scripts. Using assertions in JavaScript, we

checked that the query results matched the fields queried

for 100 random queries with zero, one, and two "AND"s.

the challenge and fastQuery solutions.

Time and space efficiency and scalability

Insertion

We measured the time, memory, and disk usage required

to insert increasing amounts of data into contract

storage, where each insertion is a single empirical

observation of a gene-variant-drug interaction ( for

example, gene="CYP3A5", variant=52, drug=pegloticase,

outcome=UNCHANGED, suspected gene-drug-

relation=true, serious side-effect = true) [Fig. 2]. We

measured insertion time when inserting 200 entries at a

time (with 1 s pauses between batches, subtracted from

the reported times). We found that our challenge solution

takes approximately 400 ms to insert 1,000 observations,

with a linear time complexity. We found that the memory

requirement for inserting 1,000 entries is 500 MB per

insertion. We found that disk space usage increases lin-

early with database entries, with approximately 0.92 MB

required to store 1,000 entries.

The fastQuery solution takes approximately 152 ms to

insert 1,000 observations, with a linear time complex-

ity [Fig. 2]. The memory requirement for inserting 1,000

entries into the chain is around 500 MB per insertion.

Disk space usage increases linearly with database entries,

with approximately 1.6MB required to store 1,000 entries.

While the challenge solution could only handle queries for

less than 2,000 inserted entries, we were able to test per-

formance of the fastQuery solution for databases up to

10,000 inserted entries in size.

Querying

We measured the performance of our query algorithm by

testing the time, gas, and memory required to do a three-

field query in a database with an increasing number of

entries for 100 random queries [Fig. 3]. We found that

our challenge solution takes an average of approximately

300 ms to complete a two-AND query from a database

of 1,000 entries with an estimated linear time complexity.

We also measured the memory requirement for a two-

AND query from a database of 100 entries, and found

that it was approximately 0.003 MB per query and linear

with increasing database entries. However, the challenge

solution was not able to perform queries in our network

configuration, on databases larger than 2,000 entries; and

we were not able to measure gas or memory usage for

queries on databases larger than 500 entries, due to the

failure of the Truffle gas measurement function.

Our fastQuery algorithm showed improved query time

[Fig. 3]. We found that it takes approximately 170 ms

to complete a two-AND query from a database of

1,000 entries, and linear time with increasing num-

ber of database entries. For query memory require-

ment, it showed approximately 0.005 MB per query

from a database of 1,000 entries, and increased linearly

with increasing database entries. Importantly, fastQuery



Gürsoy et al. BMCMedical Genomics           (2020) 13:74 Page 8 of 11

Fig. 2 Insertion results. Time, memory, and disk usage of inserting data into our two smart contract solutions. Times were measured in Truffle using

the development network. Both the challenge and fastQuery solutions showed comparable insertion performance

showed improved scalability. We were able to measure

performance of fastQuery for databases of up to 10,000

entries. We found that it takes approximately 790 ms to

complete a two-AND query from a database of 10,000

entries, and 0.01 MB.

Effect of varying "ANDs" in query

We investigated whether the time and memory efficiency

of our two solutions varied with the number of "AND"s

in a query [Fig. 3]. We checked whether for a database

of 1,000 entries, changing the number of fields queried

affects the time and memory requirement. We found that

for one- and two-AND queries in the challenge solution, it

takes an average of approximately 250 ms to query from a

1,000-entry database, while a 0-AND query takes an aver-

age of approximately 585 ms to do the same. We found

memory usage per query to be comparable, regardless of

the number of ANDs in the query.

For the fastQuery solution, we found that for one- and

two-AND queries take an average of approximately 165

ms to query from a 1,000-entry database, while a 0-AND

query takes an average of approximately 570 ms to do

the same [Fig. 3]. Memory was approximately 0.005MB

per query for a 2-AND query, 0.006MB for a 1-AND

query, and 0.01 MB for a 0-AND query in a database

of 1,000 entries. One- and two-AND queries take an
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Fig. 3 Query results. Time, memory, and gas usage of querying data from our two smart contract solutions. Comparison of query performance for

zero-, one-, and two- AND queries. Times were measured in Truffle using the development network. fastQuery exhibited significantly improved

query times and scalability for all queries

average of approximately 750 ms to query from a 10,000-

entry database, while a 0-AND query takes an average of

approximately 2.5 s to do the same. Memory was approx-

imately 0.011MB per query for a 2-AND query, 0.016MB

for a 1-AND query, and 0.028 MB for a 0-AND query in a

database of 10,000 entries.

Discussion
High-integrity, secure data maintenance is a major con-

cern in biomedical research. In the case of pharmacoge-

nomics, the data collected from clinical trials directly

impacts medical treatment decisions. The integrity and

security of the data is therefore critical, as loss or

corruption will lead to misguided medical care. The 2019

IDASH Secure Genome Analysis competition proposed

using smart contracts in a private Ethereum blockchain

[19]. Such solutions would protect the data from loss in

a single point of failure scenario and from accidental or

intentional corruption. It also has broader implications,

showing the potential for applying blockchain technology

to solve real-world problems beyond cryptocurrency.

In this study, we presented two proof-of-concept solu-

tion to store pharmacogenomics data using the Ethereum

blockchain platform. Both solutions addresses the need

for security and accessibility in sharing these data, but

also the practical need for time and memory efficiency
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for use in the real world. We showed that blockchain

technology can not only offer security and immutabil-

ity, but also efficiency and practicality. Although we were

able to develop two efficient solutions as Ethereum smart

contracts, development in Ethereum is far from easy. Set-

ting up a private blockchain in Ethereum requires expert

knowledge in the platform, and deploying the contract is

a complex process. This process can be condensed into an

external script, which reduces the need for expertise to use

the platform. However there are still issues with bugs in

Ethereum software such as in web3.js, the JavaScript API

for Ethereum. We were able to overcome these software

issues, but acknowledge the need for more stability in this

platform before researchers begin using it for a shared

database.

Conclusion
In summary, we presented a challenge solution for storing

and querying pharmacogenomics data on the Ethereum

blockchain in a smart contract and an alternate fast-

Query solution with significantly improved query time

and scalability. Our challenge solution made use of mul-

tiple mappings linked by unique integer identifiers. This

design was advantageous, as it allowed querying by direct

access to mappings (essentially hash tables), rather than

by iterating through the entire database. Our fastQuery

solution introduced pooled data storage, which further

reduced query time by eliminating the need to check for

unique gene-variant-drug combinations in the database

when querying. Both solutions work well with scalable

time andmemory requirements up to 1,000 queries. How-

ever, although our challenge solution successfully stored

the data, it required high amounts of gas in order to per-

form queries in a chain with more than 1,000 entries. Our

fastQuery solution was successful up to 10,000 entries

with scalable time, memory and gas requirements. Our

algorithms had to be designed with Solidity’s constraints

in mind, such as the number of local variables permit-

ted in a function, the ’gas’ limit, and other peculiarities

to Ethereum development. Our solutions demonstrate

the potential for blockchain technology in the medical

research community, but could be applied to a variety of

other store and query problems.
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