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Using Evolutionary Algorithms as Instance Selection
for Data Reduction in KDD: An Experimental Study

José Ramon Cano, Francisco Herrera, and Manuel Lozano

Abstract—Evolutionary algorithms are adaptive methods based Data
on natural evolution that may be used for search and optimization. Preprocessing
As data reduction in knowledge discovery in databases (KDDs)
can be viewed as a search problem, it could be solved using evo-

lutionary algorithms (EAS). v
In this paper, we have carried out an empirical study of the per- Data Data Data Data Data Format
formance of four representative EA models in which we have taken Reduction || Cleaning {| Construction || Integration Change

into account two different instance selection perspectives, the pro-
totype selection and the training set selection for data reduction in
KDD. This paper includes a comparison between these algorithms
and other nonevolutionary instance selection algorithms. The re-
sults show that the evolutionary instance selection algorithms con-

Fig. 1. Strategies in data preprocessing.

sistently outperform the nonevolutionary ones, the main advan- Prototype Sampling
tages being: better instance reduction rates, higher classification Selection
accuracy, and models that are easier to interpret.
Index Terms—Data mining (DM), data reduction, evolutionary
algorithms (EASs), instance selection, knowledge discovery.
Methods
22:2};022 based on Evolutive Random
|. INTRODUCTION NN Rules Ordered Algorithms Sampling
’ Removal

DVANCES in digital and computer technology that have
led to the huge expansion of the Internet means tn%. 2. PS algorithms.
massive amounts of information and collection of data have
to be processed. Scientific research, ranging from astronomy ) o )
to human natural genome, faces the same problem of how td719- 1 shows the different strategies in the data preprocessing
deal with vast amounts of information. Raw data is rarely us@fase
directly and manual analysis simply cannot keep up with theO_Uf attgntion is focused on data reduction, which can be
fast growth of data. Knowledge discovery in databases (KDBfhieved in many ways.
and data mining (DM) can help deal with this problem because ¢ By selecting features [20], we reduce the number of
they aim to turn raw data into nuggets and create special edges. columns in a data set.
The KDD process includes problem comprehension, data ¢ By making the feature values discrete [12], we reduce the
comprehension, data preprocessing, DM, evaluation, and number of possible values of features.
development [1], [8], [29], [34]. The first three processes < By selecting instances [5], [18], [22], we reduce the
(problem and data comprehension, and data preprocessing) number of rows in a data set.

play an essential role in successful DM. This study deals solely with instance selection (IS) [6], [21],

Due to the enormous amounts of data, much of the currenb], [33], [36] by means of evolutionary algorithms (EAs) for
research is based on scaling up DM algorithms. Other reseaggfia reduction in KDD.

has also tackled scaling down data. The main problem of scalingg s a focusing task in the data preparation phase [8] of
down datais how to select the relevant data and then apply a [ |t is one of the effective means of data reduction. IS can
algorithm [21]. This task is carried out in the data preprocessifg)ow different strategies: sampling, boosting, prototype selec-
phase in a KDD process. tion (PS), and active learning. We are going to study the IS from
the PS perspective. The PS algorithms that we have assessed can
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and controlled variation. EAs have been used to solve the a8hieve the maximum classification rate. Fig. 3 shows the way
problem, with promising results [17], [25]. in which a PS algorithm acts.

The aim of this paper is to study the application of some rep-Each PS algorithm is applied to an initial data set in order
resentative EA models for data reduction, and to compare thémobtain a subset of representative data items. We assess the
with nonevolutionary instance selection algorithms (hereaftaccuracy of the subset selected using an 1-NN classifier.
referred to as classical ones). In order to do this, our study is

carried out from a twofold perspective. B. Instance Selection for Training Set Selection (IS-TSS)

1) IS-PS: The analysis of the results obtained when selecting_l_h be situati in which there i hd d
prototypes (instances) for a 1-NN (nearest neighbor) - < ¢ May b€ situations in which there Is too much data an

gorithm. This approach will be denoted as instance seld is data in most cases is not equally useful in the training phase
tion-prototype selection (IS-PS) of a learning algorithm [25]. Instance selection mechanisms

2) IS-TSS: The analysis of the behavior of EAs as instan@gve been tp))ropose(_d to choosfe th: mo.st.sw:jable points :jnbthe
selectors for data reduction, when selecting instancesdtata set to become instances for the training data set used by a

compose the training set that will be used by C4.5 [24 Garnl_ng al%ofrlthm._ Eor ((ajxampIT, n [251’ adgelnstlc Zlgorlth_m
a well-known decision-tree induction algorithm. In thi A) is used for training data selection in radial based function

approach, the selected instances are first used to buna%{FWOfZS-h It K for th licati fanis
decision tree, and then the tree is used to classify new ex- Ig. 4 shows a general framework for the application of an

amples. This approach will be denoted as (instance Selgl\qorit_hm for T_SS' Starting from the d_ata set TR, the_ IS a_lgo-
tion—training set selection (IS-TSS). rithm finds a suitable sef, then a learning or DM algorithm is

The analysis of the behavior of EAs for data reduction i{a%pplleq o evaluate each subset selec_ted (C4'E.’ in our case [2.4])
o . 10 obtain a model from the data set. This model is assessed using
KDD is, in fact, the most important and novel aspect of th

Iﬁ1e test data set TS.
paper.

As with any algorithm, the issue of scalability and the effect
of increasing the size of data on algorithm behavior are alwa§s Overview of Instance Selection Algorithms
present. To address this, we have carried out a number of exgjistorically, IS has been mainly aimed at improving the ef-
periments on IS-PS and IS-TSS with increasing complexity afgiency of the NN classifier. The NN algorithm is one of the
size of data. most venerable algorithms in machine learning. This algorithm
In order to do this, this paper is set out as follows. Igg|cylates the Euclidean distance (possibly weighted) between
Section II, we introduce the main ideas about IS, describing thg instance to be classified and each training-neighboring in-
two processes which IS algorithms take part in, the IS-PS ag@nce. The new instance to be classified is assigned to the class
the IS-TSS, and we also summarize the classical IS algorithmggthe nearest neighboring one. More generally, kH¥N are
In Section lil, we introduce the foundations of EAs and sumssmputed and the new instance is assigned to the most frequent
marize the main features of the models considered in this paRgsss among thesk neighbors. The-NN classifier was also

giving details of how EAs can be applied to the IS problenyidely used and encouraged by early theoretical results related
In Section 1V, we explain the methodology used in the expet jts Bayes error generalization.

ments. Sections V and VI deal with the results and the analysisyowever, from a practical point of view, theNN algorithm

of small and medium data sets, respectively. Section VIl de@sot suitable for dealing with very large sets of data due to the
with the study of the main points of the evolutionary instancgorage requirements it demands and the computational costs
selection approach, including scalability to larger data sefgyolved. In fact, this approach requires the storage of all the

Finally, in Section VIII, we reach our conclusion. instances in memory. Early research in instance selection first
tried to reduce storage size. The algorithms used in this study are
II. INSTANCE SELECTION described in the remainder of the subsection, with the exception

In this section, we describe the two strategies which IS takesEAs, which are described in Section I1I.
part in as presented in this paper, as well as a summary of clasl) Methods Based on NN Rules:
sical IS algorithms. Cnn [15]—Tlt tries to find a consistent subset, which cor-
rectly classifies all of the remaining points in the sample
set. However, this algorithm will not find a minimal con-
The 1-NN classifiers predict the class of a previously un-  sistent subset [33].
seen instance by computing its similarity with a set of stored Enn [31]—Edited NN edits out noisy instances, as well as
instances called prototypes. PS—storing a well-selected, proper close border cases, leaving smoother decision boundaries.
subset of available training instances has been shown to increase It also retains all internal points, which keeps it from re-
classifier accuracy in many domains. At the same time, the use ducing the storage requirements as much as most other re-
of prototypes dramatically decreases both storage and classifi- duction algorithms.
cation-time costs. Renn [31]—The repeated edited NN continues to widen
A PS algorithm is an IS algorithm that attempts to obtain  the gap between classes and smooth the decision boundary,
a subset of the training set that allows the 1-NN classifier to  applyingEnnrepeatedly.

A. Instance Selection for Prototype Selection (IS-PS)
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Training tance to their nearest enemy (nearest instance belonging
Data Set to another class). Instances are then checked for removal
(TR) beginning at the instance furthest from its nearest enemy.
Prototype - . .
Selection Instances This tends to remove instances furthest from the decision
Algorithms Selected (5) boundary first, which in turn increases the chance of re-
taining border points.

T Nearost Drop3 [32]—Drop3 uses a noise filtering pass before

Test Data »( Neighbour sorting the instances in training date (TR) Figs. 3 and

Set (TS) Classifier 4. This is done using the rule: Any instance incorrectly

classified by itst-NN is removed.
Fig. 3. IS-PS strategy. 3) Methods Based on Random Sampling:

Rmhc(s)[30]—First, it randomly selects a subsgtfrom
TR which contains a fixed number of instancegs =

Training Prototype -~ %|TR]). In each iteration, the algorithm interchanges an
Data Set Selection Selected (5) instance fromS with another from TR-S. The change is
(TR) Algorithms elected ( L o
maintained if it offers better accuracy.
Ennrs(s) [33]—Similar to Rmhc, it randomly selects a
Data subsetS from TR, which contains a fixed number of in-
A’,‘g;‘:}?ﬁn stancess (s = %|TR|) but in each iteration the algorithm
(C4.5) interchanges all instances frashwith instances from TR.
The change is maintained if it offers better accuracy.
Test Data R Model
Set (TS) 7| Obtained [ll. EVOLUTIONARY INSTANCE SELECTION ALGORITHMS

_ Most of the success of EAs is due to their ability to exploit
Fig. 4. IS-TSS strategy. the information accumulated about an initially unknown search
space. This is their key feature, particularly in large, complex,

RN [13]—The reduced NN rule searches in Cnn's Consia_nd poorly understood search spaces, where classical search

- ) o ﬁ)O|S (enumerative, heuristic, etc.) are inappropriate. In such
tent set, the minimal subset which correctly classifies al . " :
cases, they offer a valid approach to problems requiring effi-

the learning instances. However, this approach is efficie{ﬂ nt and effective search techniques
i anq only if Cr]lnhs c:lonS|§tent set cr?ntt]a!ns the Im|n|ma In this section, we first describe the EAs used in this study,
consistent set of the learning set, which is not always tl}%d then present the key points of their application to our

case. i i . problem, as well as the representation and the fitness function.
Vsm|[23]—It removes an instance if most of iksnearest

neighbors £60%) classify it correctly or incorrectly.
Multiedit [9]—It is a modification over Enn algorithm that . o
guarantees the statistical independence in the prototyp&As [3] are stochastic search methods that mimic the

A. Evolutionary Algorithms (EAS)

selected. metaphor of natural biological evolution. All EAs rely on the
Mcs[7]—Mcs system (model class selection system) tengéncept of apopulation of individuals (representing search
to avoid noise. points in the space of potential solutions to a given problem),

which undergo probabilistic operators such asutation

Shrink [18]—It is similar to the Rnn. It retains border . : -1
points but unlike Rnn, this algorithm is sensitive to nois selection and (sometimesjecombinationto evolve toward

Ib2 [18]—Itis similar to Cnn but using a different selection'ncre"?ls"?gly better f|tne'ss va]ueg of the |pd|V|duaIs. .ﬁtmess
strategy. of an individual reflects its objective function value with respect
Ib3 [2]—It outperforms Ib2 introducing thacceptablan- ';o 2rg?(;??ﬂ?;gbjcicst'yr?nfgn;tt.'(;): .tgtgetr?gt"g'zeg'tz zemetZtr:Z?
stance concept to carry out the selection. P ntroduces innovation 1 poputation by g
o . . . ating variations of individuals and the recombination operator
Icf [6]: It tries to select the instances which classify mor? . . . )
ically performs an information exchange between different
prototypes correctly. Icf uses coverage and reachable cofls. . : ; )
. individuals from a population. The selection operator imposes
cepts to carry out the selection. o . .
_ a driving force on the process of evolution by preferring better
2) Methods Based on Ordered Removal: individuals to survive and reproduce when the members of the
Dropl [32]—Essentially, this rule tests to see if removingiext generation are selected.
an instance would degrade leave-one-out cross-validatiorNext, we describe the four models of EAs that will be used
generalization accuracy, which is an estimate of the tri¢this paper as evolutionary instance selection algorithms. The
generalization ability of the resulting classifier. first two are the classical GA models; the generational one and
Drop2 [32]—Drop2 changes the order of removal of inthe steady-state one. The third one, heterogenious recombina-
stances. It initially sorts the instances in TR by the digion and cataclysmic mutation (CHC), is a classical model that
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introduces different features to obtain a tradeoff between expfdacement). A widely used combination is to replace the worst
ration and exploitation, and the fourth one is a specific EA amdividual only if the new individual is better (this is the one we
proach, designed for binary search spaces. have adopted in this paper).

1) Generational Genetic Algorithm (GGA)The basic idea  3) CHC Adaptive Search AlgorithmDuring each genera-
in GGA [14], [16] is to maintain gopulationof chromosomes tion the CHC [10] develops the following steps.
which represent plausible solutions to the particular problem 1y |t yses a parent population of sizéto generate an inter-
that evolves over successive iteratioger{eration} through a mediate population o¥ individuals, which are randomly
process of competition and controlled variation. Each chromo-  paired and used to generatepotential offspring.
some in the population has an associated fitness to determingy Then, a survival competition is held where the bast

which chromosomes are to be used to form new ones in the ~ chromosomes from the parent and offspring populations
competition process. This is calledlection The new ones are are selected to form the next generation.

created using genetic operators suchrassovelndmutation CHC also impl ts af f het binati
The classical model of GAs is the GGA, which consists of threg . also Implements a form of heterogeneous recombination
using HUX, a special recombination operator. HUX exchanges

operations: . o _ half of the bits that differ between parents, where the bit position
1) evaluation of individual fitness; . . to be exchanged is randomly determined. CHC also employs

2) formation of a gene pool (intermediate population) method of incest prevention. Before applying HUX to two
through selection mechanism; parents, the Hamming distance between them is measured. Only

3) recombination through crossover and mutation operatofgese parents who differ from each other by some number of bits
The selection mechanism produces a new populdtign with  (mating threshold) are mated. The initial threshold is sé&t/dt
copies of chromosomes iR(¢ — 1). The number of copies re- whereL is the length of the chromosomes. If no offspring are
ceived for each chromosome depends on its fithess; chronmmserted into the new population then the threshold is reduced
somes with higher fitness usually have a greater chance of cbg-one.
tributing copies taP(¢). Then, the crossover and mutation op- No mutation is applied during the recombination phase. In-
erators are applied t&(t). stead, when the population converges or the search stops making

Crossover takes two individuals called parents and produgeegress (i.e., the difference threshold has dropped to zero and
two new individuals called the offspring by swapping parts afo new offspring are being generated which are better than any
the parents. In its simplest form, the operator works by eriembers of the parent population) the population is reinitialized
changing substrings after a randomly selected crossover poiatintroduce new diversity to the search. The chromosome rep-
The crossover operator is not usually applied to all pairs of chn@senting the best solution found over the course of the search
mosomes in the new population. A random choice is made,used as a template to reseed the population. Reseeding of
where the likelihood of crossover being applied depends the population is accomplished by randomly changing 35% of
probability defined by &rossover rate the bits in the template chromosome to form each of the other

Mutation serves to prevent premature loss of population d¥ — 1 new chromosomes in the population. The search is then
versity by randomly sampling new points in the search spadesumed.

Mutation rates are kept small, however, otherwise the proces#) Population-Based Incremental Learning (PBILPBIL
degenerates into a random search. In the case of bit strings, fdli-is a specific EA designed for binary search spaces. The
tation is applied by flipping one or more random bits in a stringBIL algorithm attempts to explicitly maintain statistics about
with a probability equal to thenutation rate the search space to decide where to sample next.

Termination may be triggered by reaching a maximum The object of the algorithm is to create a real valued prob-
number of generations or by finding an acceptable solution bility vector V,,, which, when sampled, reveals high quality
some criterion. solution vectors with high probability. For example, if a good

2) Steady-State Genetic Algorithm (SGA) SGAs [35], solution can be encoded as a string of alternating Os and 1s, a
usually only one or two offspring are produced in each gengessible finalV,, would be 0.01, 0.99, 0.01, 0.99, etc. Initially,
ation. Parents are selected to produce offspring and then athe values ol/, are set at 0.5. Sampling from this vector yields
placement/deletion strategy defines which member of the pogandom solution vectors because the probability of generating a
lation will be replaced by the new offspring. The basic algorithrh or 0 is equal. As the search progresses, the valu€s gfad-

steps of SGA are the following. ually shift to represent high evaluation solution vectors through
1) Select two parents from the populatifn the following process.
2) Create an offspring using crossover and mutation. 1) A number of solution vectord\camplef are generated
3) Evaluate the offspring with the fitness function. based upon the probabilities specifiediin
4) Select an individual ir?, which may be replaced by the 2) V,, is pushed toward the generated solution vector with

offspring. the highest evaluatioSbest

5) Decide if this individual will be replaced.

In step 4), the replacement strategy can be chosen (e.g., replace- Vpli] = Vpli] - (1 — LR) 4 Sbest[i] - LR

ment of the worst, the oldest, or a randomly chosen individual).
In step 5), the replacement condition can be chosen (e.g., re- whereLRis thelearning rate which specifies how close
placement if the new individual is better, or unconditional re- the steps are to the best solution.
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3) V, is pushed far away from the worst evaluatiGuorse TABLE |
where Sbestand Sworsediffer. This is accomplished as SVALL Size DATA SETS
follows: Data set Num. Num. Features Num.
Instances Classes
If Sbest[i] <> Sworse[i] then Cleveland 297 13 2
. . . Glass 214 9 6
Vol[i] =V,li] - (1 — Negat_LR) + Sbest]i] - Negat_LR s 150 7 3
LED24Digit 200 24 10
where Negat_LRis the negative learning ratewhich LED7Digit 500 7 10
specifies how far away the steps are from the worst _Lymphography 148 18 4
lution Monk 432 6 2
solution. N _ . Pima 768 8 2
4) After the probability vector is updated, sampling the up- "Wine 178 13 3
dated probability vector produces a new set of solution _Wisconsin 683 9 2

vectors, and the cycle is continued.

aim as mutation in the case of GAs: to inhibit premature convefghereasperc_redis defined as

gence. Mutations affedt, with low probability P, in a random
directionMut_Shif percred = 100 . LRI = 15D
It must be pointed out that there are problems settind.the ITR|
andNegat_LRin PBIL, which affects the convergence and the The objective of the EAs is to maximize the fitness function
quality of solutions. defined, i.e., maximize the classification rate and minimize the
number of instances obtained. In the experiments presented in
B. Evolutionary IS this paper, we have considered the value: 0.5 in the fitness
EAs may be applied to the IS problem, because it can be cdnction, as per a previous experiment in which we found the
sidered as a search problem. In this paper, these EAs have Heest tradeoff between precision and reduction with this value.
calledevolutionary instance selection algorithn&amples of ~ We use 1-NN in both strategies (IS-PS and IS-TSS) to eval-
these algorithms may be found in [17], which deals with the apate the fitness of a chromosome, in order to test the effective-
plication of the GAs to IS-PS, and [25] which deals with th&ess of performing instance selection independently of the ulti-
application of the GAs to IS-TSS. mate classification algorithm to be applied to the test data set.
The objective of this paper is to study the performance of tf¢ote that in the IS-TSS study the classification algorithm to be
four EAs described in the previous section as IS algorithms agPplied to the test set is C4.5, which is very different from the
plied to IS-PS and to IS-TSS for data reduction in KDD, comt-NN algorithm. This mismatch doest not occur in the IS-PS
paring their results with the ones obtained by the algorithms iftudy, where 1-NN is used for both fitness computation and clas-

troduced in Section II-C. sification of the test set.
The application of EAs to these two approaches is accom-
plished by tackling two important issues: the specification of IV. EXPERIMENTAL METHODOLOGY

the representation of the solutions and the definition of the fit- |, this section. we present the methodology used in the

ness function. experiments carried out. The data sets used in our experi-

1) Representationiet us assume a data set denoted TRyants are available from UCI Repository (http:/www.ics.uci.
with m instances. The search space associated with the instag§g/~miearn/m LRepository.html).

selection of TR is constituted by all the subsets of TR. Then, 5 previously mentioned, we have carried out our study of

the chromosomes should represent subsets of TR. This|dSps and IS-TSS problems using two size problems: small and
accomplished by using a binary representation. A Chromosom@ 4iym. We intend to study the behavior of the algorithms when
consists ofm genes (one for each instance in TR) with tWepe gjze of the problem increases. Section IV-A describes the
possible states: 0 and 1. If the gene is 1, then its associaled, sets used (small and medium), Section IV-B introduces the
instance is included in the subset of TR represented by Hgiition of the data sets that were considered for applying the

chromosome. Ifitis O, then this does not occur. algorithms, Section IV-C introduces the parameters associated

2) Fitness Function:Let 5 be a subset of instances of TRith the algorithms, and finally, in Section IV-D the results are
to evaluate and be coded by a chromosome. We define a ﬂFésented in table form.

ness function that combines two values: the classification rate
(clas_ra) associated withS and the percentage of reductiornn. Data Sets

(perc_red of instances of5 with regards to TR 1) Small Size Data SetsSee Table |.

Fitness(S) = a - clas_rat + (1 — a) - perc_red. 2) Medium Size Data SetsSee Table II.

The 1-NN classifier (Section 1I-C) is used for measuring thB: Partitions and Executions

classification rateclas_rat associated wittf. It denotes the  The data sets considered are partitioned usingtéhéold
percentage of correctly classified objects from TR using ¢hly cross-validatiorprocedure. Each initial data sgt is randomly
to find the nearest neighbor. For each objeat S, the nearest divided into ten disjoint sets of equal siZg,...,T7,. We
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TABLE 1l
MEDIUM SiIZE DATA SETS
N Num. Num. Num.
Data set Instances Features Classes
Pen-Based Recognition 10992 16 10
Satimage 6435 36 6
Thyroid 7200 21 3
TABLE 1l
PARAMETERS
Algorithm Parameters
b3 Acept. Level=0.9, Drop Level=0.7
Rmhc 5=90% , Eval=10000
Ennrs 5s=90% , Eval=10000
GGA P,=0.001, P=0.6, Pop=50, Eval=10000
SGA P,=0.001, P=1, Pop=50, Eval=10000
CHC Pop=50, Eval=10000
PBIL LR=0.1, Mut_shift=0.05, P,= 0.02, Pop=50,
Negative LR=0.075, Eval=10000

maintain the original class distribution (before partitioning) CHC (%)
within each set when carrying out the partition process. WePBiL (%)

then conduct ten pairs of training and test seidR (, T'S;),
1+ = 1,...,10. For each paii, the test set['S;, is T;, and the

training set,T'R;, is the union of all of the othef;, j # <.
Ten trials were run for each data set dBchonprobabilistic

algorithm. During theth-trial, the instance selection algorithm

is applied toT'R;, selecting a subset of instances. The selected *
instances are used as a training set by a classification algorithm
(1-NN or C4.5, depending on the experiment), and then the ¢
accuracy of the classification algorithm in the test set is mea-
sured. Using EAs and the classical random algorithms (Rmhc
and Ennrs), we executed each one three times for each parti-
tion, taking the average of the results of these three executions
per partition, therefore, we have 30 trials per data set for each

one of them.

C. Parameters

TABLE IV
AVERAGE RESULTS OFIS-PSFOR SMALL DATA SETS
Execution . 1-NN
Time(sec) 7o Reduction %Ac. Trn | %Ac. Test

1-NN 0.07 68.44 65.73
Cnn (*) 0.01 71.98 49.11 52.18
Dropl(*) 0.23 86.97 68.10 62.74
Drop2 0.20 55.19 67.23 67.16
Drop3(*) 0.15 78.56 86.62 63.80
Enn 0.10 35.07 72.67 66.37
1b2 (*) 0.03 77.80 47.75 51.36
Ief (*) 0.29 75.81 66.08 62.01
Mecs 0.09 16.90 74.56 67.08
Multied 0.24 54.70 61.33 61.06
Renn 0.25 37.43 72.30 65.97
Rnn (*) 1.89 90.38 68.17 65.51
Shrink 0.08 3041 72.05 66.64
Vsm (*) 0.01 74.56 59.89 58.87
1b3 0.06 65.71 60.42 64.67
Rmhe(*) 54.37 90.16 57.02 58.17
Ennrs (*) 09.95 90.16 69.52 64.13
GGA (%) 70.8 87.72 77.12 67.54
SGA (%) 68.6 90.50 77.89 67.65

20.48 96.05 75.86 64.37

432 93.79 72.49 64.63

» The second column contains the average execution time

associated to each algorithm. The algorithms have been
run in a Pentium 4, 2.4 GHz, 256 RAM, 40 Gb HD.

The third column shows the average reduction percentage
from the initial training sets.

The fourth column contains the accuracy when 1-NN or
C4.5is applied using the training set selected. This column
presents two subcolumns: the first one shows the training
accuracy when using the training set selectgg {rom

the initial set 'R;); the second subcolumn shows the test
accuracy of5; over the test data s@tS;. Each subcolumn
presents the accuracy mean. We study both subcolumns
in an effort to evaluate the existence of overfitting in the
instance selection phase.

Whether either small or medium data sets are evaluated, thehe third, fourth, and fifth columns, the two best results per

parameters used are the same: see Table IIl.

D. Types of Table Results

In the following sections, we will present two types of tables,

each one with the following structure.

1) Complete Results Tabléerhis type of table shows the re-
sults obtained in I1S-PS or IS-TSS by the classical and evolu-
tionary instance selection algorithms, respectively. In order to
observe the level of robustness achieved by all algorithms, the
table presents the average of the results offered by each algo-
rithm in the data sets evaluated (small or medium group of data «

sets). Each column shows (see for example, Table 1V):

» The first column shows the name of the algorithm. As
reduction is one of our main objectives, we observe two
main groups in the algorithm results (one group with a
data reduction higher than 70% and the rest with a lower

reduction). We highlight, with the simbo[*)” the algo-
rithm group that offers the best reduction rates70%).

The highlighted algorithms will be used in the following

table results.

column are shown in bold.
By studying only the first type of table as described before,
two drawbacks can be appreciated.

» The evaluation of just the mean classification accuracy

over all the data sets hides important information because
it is possible that a particular algorithm performs excep-
tionally well on one data set but not as good as the others
on the rest of the data sets. If the mean error of this algo-
rithm over all the data sets is better than the other methods,
it does not necessarily mean that this algorithm is better.
The average classification rate, across many data sets, is
not very meaningful, because each data set represents a
different classification problem, and different data sets
have many different degrees of difficulty. For instance, if

in a data set where the “baseline accuracy” (i.e., the rela-
tive frequency of the majority class) is 60% and an algo-
rithm obtains an accuracy rate of 80%, then a good result
has been obtained, whereas in a data set where the base-
line accuracy is 90%, an algorithm obtaining an accuracy
of 80% is a bad result.
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TABLE V TABLE VI
RANKING AND NUMBER OF BEST RESULTS OFALGORITHMS WHICH HAVE AVERAGE RESULTS OFIS-TSSFOR SMALL DATA SETS
A REDUCTION RATE GREATER THAN 70%
Execution % Reduction C4.5
% Reduction % Ac. test I-NN %Ac. I-NN*0.5 Time(sec) %Ac. Trn %Ac. Test
+%Rd.*0.5 C4.5 0.01 89.53 71.79
Nam | Rnk | Bst | Nam Rnk Bst Nam Rnk Bst Cnn (*) 0.01 71.98 85.45 49.10
CHC [ 13 [ 7 [sG4 3.5 2 | PBIL 2.7 4 Dropl(¥) 0.23 86.97 87.25 53.41
PBIL | 29 | 1 [GGA 4.2 0 |SG4 3.4 1 Drop2 0.2 55.19 83.60 62.33
SGA 51 | o [PBIL 43 5 | cHC 35 4 Drop3(¥) 0.15 78.56 86.79 55.52
Rnn 5.8 0 | Ennrs 5.4 0 Rnn 4.6 0 Enn 0.1 35.07 95.66 68.29
Rmhc 5.8 1 | Rnn 5.6 1 Ennsr 53 1 Ib2 (*) 0.03 77.80 84.71 51.22
Dropl | 6.6 | 1 |CHC 6.6 1 [GaG4 5.5 0 Ief (%) 029 7581 94.59 64.02
Ennrs | 6.8 | 0 |Dropl | 7.2 1 Rmhe 7.5 0 Mes 0.09 16.90 90.70 71.82
b2 73 10 [Drop3 | 72 0 | Dropl | 76 0 Multied 0.24 54.70 99.83 60.25
GGA [ 78 | 0 [ief 8.4 0 |Drop3 [ 8.1 0 Renn 0.25 37.43 9727 68.40
Cnn 9.7 | 0 [Rmhc | 86 0 |ief 10.1 0 Rnn (¥) 1.89 90.38 92.34 62.03
Drop3 | 98 | 0 | Vsm 9.4 0 |2 10.5 0 Shrink 0.08 30.41 96.12 69.26
Icf 11 0 Cnn 10.1 0 Vsm 10.6 0 Vsm (*) 0.01 74.56 90.31 63.25
vsm | 11.1] 0 [Ib2 10.5 0 [ Cnn 116 | 0 1h3 0.06 65.71 79.18 6522
Rmhe(*) 54.37 90.27 89.13 64.70
Ennrs(*) 69.95 90.27 91.31 62.04
*
To avoid these drawbacks, we have included a second type o ggj ((*)) Zgg gg;é = ggiz
table showing rankings and the number of data sets in which'cge i+ 2048 96.05 2049 5361
each algorithm obtained the best results. The best result in th¢PBIL () 432 93.79 93.25 67.44
second type of table eliminates the first drawback. The average
ranking does not use the absolute value of the algorithms’ ac- TABLE ViI

H : : : NKING AND NUMBER OF BEST RESULTS OFALGORITHMS WHICH HAVE
curacy, qnly its relative value among the comp.etllng algonthméq" A REDUCTION RATE GREATER THAN 70%
that clarifies the results offered, thus also avoiding the second

drawt;}ac;(.” . i by %Reduction %Ac. test C4.5 o/ﬁ/“'lf(;’f; g.s
. . _ oRd.*0.
In the following, the contents of this second type of table are———r— et ———T =TT T Rk T Bt
described in depth. CHC |13 | 7 |8GA | 47 | 1 |PBIL | 24 3
2) Table With Ranking of Algorithms With Data Reduction PBIL | 2.9 | 1| |PBIL | 49 2 |SG4 43 1
Rates Greater Than 70%tn this type of table, we have used 5¢4_| 5.1 | 0 |/ef 3 1| Ennrs | 47 1
h Its off db h al ithm in the dat t luat Rnn 5.8 0 | Ennrs 5.3 0 Rnn 4.8 0
the results o ered by each algorithm in the data sets evaluateg, . |55 [ 1 [rmhc | 55 > TrRmic | 23 3
(small or medium) to carry out a classification. We have pre-Dropi | 66 | 1 | GGA 55 2 | Ga4 5.9 1
sented the results using the following criterion: The algorithms £unrs | 68 | 0 | Ran 6.1 I _|CHC 6.1 1
. : . . Ib2 7.3 0 | Vsm 7.2 0 Dropl 8.5 0
0 p
with a reductlpn rate greater than 70-/0, are placed in desgendlr o 78 T 0 [ Dropl | 83 77 < 0
order according to the results obtained. The best algorithm i, 97 | 0 | Drop3 | 87 0 1 Vsm 93 0
ranked first, etc. The average ranking of the algorithm is pre Drop3 | 9.8 | 0 |Ib2 9.9 0 |Drop3 | 99 0
sented as a measure varying between 1 and the number of al¢Z<. 1 10 |CHC ] 99 | 0 /b2 105 ] 0
ying = Vsm 11.1{ 0 | Cnn 10 0 Cnn 11.3 0

rithms compared. An example of this type of table is Table V.
The columns of this type of table are described as follows.
« The first column shows classification using the reduction '€ following conclusions about the evolutionary instance
rate as the sole objective. This column is divided into thr&!€ction algorithms for PS studying Tables IV and V can be
subcolumns: the first one (Nam) contains the name of yade.
algorithm ranked in order, the second one (Rnk) presents * The EAs present the best reduction rates, maintaining the
its average ranking, and the third subcolumn (Bst) shows highest test accuracy rates in Table IV.

the number of data sets that have ranked that algorithm as* N Table V, we can see that the EAs offer the best results in
the best. reduction, being the bestin eight out of ten data sets. In test

« The second column offers the same information as the first  2¢CUracy, E.AS behave in the same way, obtaining the best
one but with test accuracy as the sole objective. results in eight data sets. Evaluating the balance between

e The third column presents the same information as the test accuracy and reduction percentages, EAs obtain the

. L L best result.
previous columns, but in this case the objective isa50-50. .~ _
combination of reduction and test accuracy. q’?ns indicates that EAs offer the best results in IS-PS.

B. Results and Analysis in IS-TSS
The following conclusions about the evolutionary instance
A. Results and Analysis in IS-PS selection algorithms for TSS studying Tables VI and VII can
Tables IV and V show the results obtained in I1S-PS bje made.
the classical and evolutionary instance selection algorithms, ¢ In Table VI, we can see that EAs only have been outper-
respectively. formed in their test accuracy by methods which offer small

V. SMALL DATA SETS RESULTS AND ANALYSIS
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TABLE VIII TABLE IX
AVERAGE RESULTS OFIS-PSFOR MEDIUM DATA SETS RANKING AND NUMBER OF BEST RESULTS OFALGORITHMS WHICH HAVE
A REDUCTION RATE GREATER THAN 70%
Execution o, Reduction 1-NN
Time(sec) | %AcTrn | %Ac Test o . o %Ac. I-NN*0.5
TN 16 9219 0118 "o Reduction YoAc. test I-NN +%Rd.*0.5
Cnn (%) 4 97.32 79.33 30.17 Nam | Rok [ Bst | Nam | Ronk | Bst | Nam | Rnk | Bst
Dropl (%) 254 96.72 78.00 76.85 CHC 1 3 | PBIL 2 2 | CHC 1 3
Drop2 (%) 215 89.57 88.62 88.62 1b2 2 0 |Ib3 3 1 Ennrs 4.3 0
Drop3 (%) 338 96.25 89.03 85.44 Dropl | 3.6 | 0 |CHC 33 0 |[Drop3 | 46 0
Enn 139 5.82 95.43 94.39 Cnn 4 0 | Ennrs 4.3 0 Rmhce 5.6 0
b2 (*) 2 97.78 75.24 75.84 Drop3 53 0 | Rmhc 6.3 0 Drop2 | 6.3 0
Icf (%) 386 90.04 76.77 76.68 Rnn 53 0 | Drop2 6.6 0 b3 6.6 0
Mes 101 2.66 95.96 94.38 Rmhe 8.3 0 |[Cnn 8 0 | Dropl 7 0
Multied 1778 13.99 92.43 92.10 Ief 86 | 0 [Drop3 | 83 0 [Cnn 7 0
Renn 489 6.47 95.37 94.30 Drop2 | 9 0 |1b2 83 0 [m2 7.6 0
Rnn (*) 13017 96.88 81.27 81.74 Ennrs 9.3 0 | Rnn 8.6 0 Rnn 7.6 0
Shrink 206 4.89 95.19 94.38 1b3 9.6 | 0 |Dropl | 93 0 [PBIL | 96 0
Vsm 94 1.04 94.16 94.17 PBIL | 116 | 0 |l 96 | 0 |If 10.3 0
163 (%) 9 71.67 91.49 92.61
Rihe (%) 34525 90.02 91.59 91.15
Ennsr (%) 37802 90.02 92.79 92.75
GGA 66157 6253 94.74 9385 TABLE X
SGA 54656 62.91 95.00 93.67 AVERAGE RESULTS OFIS-TSSFOR MEDIUM DATA SETS
CHC (%) 8072 99.29 9331 93.53 _
PBIL (%) 32042 7.3 96.23 94.13 ‘]‘2{‘“““"“ % Reduction C45
ime(sec) %Ac. Trn | %Ac. Test
C4.5 1 98.82 94.07
, , i Cnn (%) 4 97.32 93.68 72.03
reduction rates. In general, all the algorithms obtained a 50,7 (%) 754 96.72 95.19 7840
training accuracy much larger than the test accuracy, indi- Drop2 (%) 215 89.57 95.42 79.04
cating a large amount of overfitting. g”’fﬁ ) ?gg 9568225 3;;2 7533
. . nn . . 93.83
» Table VI shov_v_s thf’;lt EAs are thg best algorithms W_lth re- 5377 5 5778 5306 813
spect to classification accuracy in the test set, offering the 7c7¢% 386 90.04 9785 82.39
best results in five data sets. EAs are again the best algo- Mcs 101 2.06 98.97 93.91
. . . Multiea
rithm when we consider both reduction and test accuracy R;;fffed 1478798 e 33';’ ggg;
rates as the objective, producing the best results in six date 7, 13017 9683 99.16 5950
sets. Shrink 206 4.89 99.23 93.85
« Table VI points out the presence of overfitting in all al- [Vbs;"(*) 3‘2‘ 711'0647 33?)2 32'2;
gorithms evaluated. Unfortunately, the overfitting appears %, % 34505 90.02 9811 91.80
frequently in the learning phase [27]. In particular, the Ennsr (¥ 37802 90.02 97.99 89.73
overfitting is present in our case due to the selection is ggj giégg Zig? Zgg g;gg
done using 1-NNinthe fltnes_s functionin IS—TSS_s_trategy. CHC %) 2072 99.29 3839 e
Hence, the set of selected instances was specifically ad-Psir *) 32942 73.13 98.71 92.72

justed to 1-NN, whereas the algorithm used to classify the
test set was C4.5 as mentioned earlier.

The main conclusion that can be drawn when using small data-rom the analysis of Tables VIl and IX, we would point out
sets is that EAs are very good algorithms for data reductigq following.

having both high reduction rates and accuracy. » The EAs, and particularly the CHC, appear to be the best

proposal when the size of the problem increases. It offers

VI. MEDIUM DATA SETS RESULTS AND ANALYSIS the best reduction rate and one of the best accuracy rates.
The vast majority of the algorithms (with the exception
of Drop3) avoid overfitting when the size of the problem
increases.
Table IX indicates that CHC is the best algorithm to be
applied to I1S-PS. It offers the best ranking in reduction
rates, being the best for all data sets. It presents the best
ranking on balanced objectives, with the best results in all
data sets.
. In these kinds of problems, evolutionary and classical al-
A. Results and Analysis in 1S-PS gorithms have difficulties maintaining high reduction rates

Tables VIII and 1X show the results in a similar way to théogether with high accuracy rates. Classical algorithms with
previous ones for small data sets. high reduction rates are penalized in their accuracy rate.

In this section, we present a similar study for the three
medium size data sets shown in Table Il. We aim to study
the behavior of the algorithms when increasing the size of
the problem by trying to find a scaling up algorithm for
scaling down data. The tables for each data set in IS-PS and
IS-TSS can be found in the Appendix at the end of this paper
(Tables XVI-XXI).
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TABLE XI CHC presents the lowest time amongst EAs due to its ef-

RANKING AND NUMBER OF BEST RESULTS OFALGORITHMS WHICH HAVE  ficjency and reduction capabilities. Its chromosomes select a
A REDUCTION RATE GREATER THAN 70% . N .

small number of instances from the beginning of the evolution,

P o Ac. test C4.5 %Ac. C4.5%0.5 so the fitness function based on 1-NN has to perform a smaller
+%Rd.*0.5 number of operations.
Nam | Rnk | Bst | Nam Rnk | Bst Nam | Rnk | Bst
CHC 1 | 3 |PBIL | 13 2 _|CHC 1 3
12 2 o Jcac [ 26 | 0 [Rmhe | 43 0 B. Scaling Up
Dropl | 3.6 0 | Rmhe 3 1 Ennrs 4.6 0 . . .
Cnn + 10 1 Emrs 2 0 [ Dropl | 5.6 0 To test the effect of increasing the_data set size, we have eval-
Drop3 | 53 | 0 [1b3 4 0 |Drop3 | 6 0 uated a larger data set than the previous ones. We have taken the
ﬁmz g; 8 gf i 6§3 8 /Zd 63 | 0 Adult data set from the UCI repository, which contains 30 132
M’" Y e 56T i ;(3) - instances, 14 attributes, and 2 classes.
Drop | 9 | 0 |Drop3 | 93 | 0 | PBIL 3 0 The algorithms we have studied, both classical and evolu-
Ennrs | 93 | 0 | Can 9.6 0 [Drop2 | 86 0 tionary ones, are affected when the size of the data setincreases.
ﬁ’;” 191~66 8 fl;’;’ }?;’ 8 f;;’ 99? g The main difficulties they have to face are as follows.
= » Efficiency The efficiency of IS algorithms is at least
O(n?), wheren is the size (number of instances) of the
B. Results and Analysis of IS-TSS data set. Most of them present an efficiency order greater

2
We would make the following conclusions about the evolu- thanO(n?).

tionary instance selection algorithms for IS-TSS studying Ta- _ When the size increases, the time needed by each algo-
bles X and XI. rithm also increases.

« ResourcesMost of the algorithms assessed need to have
the complete data set stored in memory to carry out their
execution. If the size of the data were too big, the computer
would need to use the disk as swap memory. This loss of
resources has an adverse effect on efficiency due to the
increased access to the disk.

RepresentationEAs are also affected by representation,
due to the size of their chromosomes. When the size of
these chromosomes is too big, the algorithms experience
convergence difficulties. An example of this can be seen

« The two classical GAs do not work correctly for medium in Tables X and XI. GAs show convergence difficulties, as

size data sets. We will discuss why this happens in the next we_II E-lS costly C(?mputat.lonal time. ) _
section. The majority of classic algorithms cannot deal with the size of

gtg_e Adult data set. Algorithms that were able to deal with this

» CHC offers the best behavior in IS-TSS. It presents the
best reduction rates and one of the best accuracy rates.
The third column in Table X shows that CHC is the best
algorithm with respect to reduction rate, as per our study.
CHC receives the best result in Table XI covering all
the objectives, and is the best in all data sets in respect |
of reduction and when both objectives are taken into
account.

* In IS-TSS, the classical algorithms do not select subsets
that generalize correctly (see Ib2 and Rnn in Table X).

Clearly, when we mine medium-size data sets, the CHC al

rithm improves its behavior giving the best results for scaling® €N 1b2, and Ib3. _ _
down data. EAs were not able to converge to a good solution using chro-

mosomes of that size (in a tenfold cross validation chromosomes
would give a size of 27 118 genes).

To be able to apply EAs to large data sets such as the Adult
one, we have designed a stratified strategy using the CHC. The

In this section, we discuss some of the key points QHC has been selected due to its effectiveness as shown in
the evolutionary instance selection: the execution time (SeSections V and VI. The stratified strategy consists of dividing
tion VII-A), the scaling up of algorithms (Section VII-B), anthe Adult data set into different strata. We decided to use three
analysis of why algorithms behave as they do (Section VII-Gitrata so that the size of each one would be the same as that used
and a final analysis of the simplicity obtained when training, the pen-based recognition data set.

a decision tree algorithm with a small instance selection setThe Adult data set is divided into three disjoint sets of equal

VII. KEY POINTS ON THE USE OF EVOLUTIONARY
ALGORITHMS FORDATA REDUCTION

(Section VII-D). size, Ty, Ty, andT;. We maintain class distribution within each
] ] set in the partitioning process. CHC is applied to e@gtob-
A. Execution Time taining a subset selectefiS;. We then conduct three pairs of

The execution time associated to EAs represents a greater ¢@sning and test sets]'R;, 1'S;), ¢ = 1,2,3. For each pair, the
than the classical ones, due to the evolution process involvedest set,I'S;, isT;, and the training set’R;, is the union of all
However, their application is interesting because non-EAxdthe otherSS;, j # i. We evaluate each paif'R;, T'S;) using
that have a short execution time offer small reduction rates @rNN for IS-PS and C4.5 for IS-TSS.
if the reduction rates increase, the algorithm shows overfitting. Classical algorithms (Cnn, 1b2, and 1b3) are applied to the
The best algorithm behavior corresponds to the CHC, whosemplete Adult data set in a tenfold cross validation procedure.
time is lower than that of the rest of the EAs, probabilistic ones We have included the evaluation of classical algorithms fol-
and some of the classical IS ones. lowing the stratified strategy (we add to their names “Strat”
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TABLE XII 10077 °5° |[class
IS-PSFOR ADULT DATA SET :o"o g | |miris Setosa \
5 - = ] o ° (8) §g°° ‘ * Iris Versicotor
Xxecution o I-NN 0,75 o §, || o s Virginica
Time(sec) | Reduction [ %Ac Trn | %Ac Test . §*eg 8§ %o
I-NN 104 7934 7924 ) IR ‘
Cnn 6 9921 26.40 26.56 8 o " ;i; |
Cnn Strat 2 98.56 43.53 28.92 =h TR ,
Dropl Strat 209 95.00 100.00 24.89 < * 1
Drop2 Strat 182 7131 26.56 63.70 o * ’
Drop3 Strat 145 95.69 54.40 66.88 025
152 5 99.94 25.20 25.14 . n
762 Strat 1 99.88 58.24 25.76 1
153 21 79.42 72.61 74.00 L ]
Ib3 Strat 28 78.22 34.25 72.55 0.00 0,25 0,50 0,75 1,00
Icf Strat 163 87.16 77.68 66.42 Petal Width
CHC Strat 40391 99.82 85.94 81.05
Fig. 5. Original Iris data set.
TABLE XIlI
IS-TSSFORADULT DATA SET 1,00 TS
00, || Bt
N rs oetosa
‘;:‘le'l“e‘g;"c')‘ % Reduction c4.5 e :o § $ §o * Iis Versicalor |
%Ac. Trn | %Ac. Test o 88 §, || ©rs Virginica |
C45 2 88.72 85.40 £ T
Crnn 6 9921 86.04 24.91 £ g
Cnn Strat 2 98.56 84.61 27.30 = 0507 f 3 ¥ .
Dropl Strat 209 95.00 100.00 24.90 s X
Drop2 Strat 182 7131 68.59 85.00 P *
Drop3 Strat 145 95.69 75.18 76.27 025
1b2 5 99.94 87.39 24.93 ..
1b2 Strat 1 99.88 100.00 26.23 I- 1"
753 310 79.42 73.09 §3.80 I
1b3 Strat 28 78.22 7321 84.43 000 T I I
Icf Strat 163 87.16 87.53 §2.00 000 0 080 075 o0
CHC Strat 30391 99.82 97.88 81.93 Petal Width

Fig. 6. Data subset selected by Multiedit.
word with this menaning). This strategy permits the execution
using a smaller data set so we can execute a higher numbegofan Analysis as to Why Algorithms Behave as They Do in

classical algorithms. IS-PS
The results for IS-PS and IS-TSS are presented in Tables XI| ) _ )
and Xl In order to_study the behavior of tr_le class!cal algorithms and
If we analyze Tables XII and XIII, we would point out theEAS, we project the data selected in the Iris data set by each
following. one of the two most discriminative axes—petal length and petal

* Classical algorithms Cnn and Ib2 produce elevated r\év-ldth [19] . o
: e o .~ We have chosen this data set because it is one of the most
duction rates, but they lose classification capability. Their, . o .
. s ; Studied benchmark data sets, itis well known, and it can be used
accuracy rate is reduced significantly (approximately 60% : ) : i
: in a two-dimensional graphical representation.
worse than the reduction rate offered by 1-NN or C4.5). . >
. . . .7 The following algorithms have been selected as representa-
* 1b3 offers an intermediate reduction rate (80%), while |tP : : .
e . : ive in carrying out this study.
classification rate experiments a small reduction. o S )

Stratified strategy reduces the execution time, due to * Multiedit: because it gives higher accuracy and small re-

dataset reduction, but the algorithms maintain their be- ~duction rates among classical algorithms. _

havior. The combination of stratified strategy and CHC * Cnn, Ib2, and Drop2: these are classical algorithms of-

offers the best result in this difficult problem. fering the best reduction rates. .

« CHC Stratified overcomes the Ib3 reduction rates (by ° !P3: due to its balance between reduction and accuracy
20%), maintaining the highest accuracy rate in 1S-PS, fates. _ _ o
with a similar accuracy in IS-TSS for the test sets. » CHC: this is the algorithm offering the best behavior in

CHC with the stratified strategy is the best algorithm evaluated reduction and acc'uracy rates. _

for large size data sets. It offers the best balance between frigs. 5-11 show graphically the selection strategy followed by

duction and accuracy rates. Our CHC with stratified strate@@ch algorithm. _ _

produces the smallest subsets maintaining their classificatiorf\n analysis of these graphs shows the following behavior.
capabilities. However, this algorithm is by far the slowest one, ¢ Multiedit, which is the algorithm with lower reduction
indicating that even with the stratified strategy, processing time rates, tries to maintain the instances situated in the centre
remains a problem when mining large data sets. of the class, removing those in the boundaries.
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Data subset selected by Drop2.
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Fig. 11. Data subset selected by CHC.

« CHC presents a strategy that combines inner and boundary
points. It does not tend to select instances depending on
their a priori position in the search space (inner class or
limit ones). CHC selects the instances that increase the ac-
curacy rates, which means that the most representative in-
stances for the whole data set are selected, independently
of their a priori position.

This is the reason why CHC produces the best balance between
reduction and accuracy rates. CHC is not limited in its selection
by a particular strategy, so it can direct its efforts in reducing the
subset selected without jeopardizing its accuracy rate.

D. On the Simplicity of Decision Trees Trained With a Small
Instance Set Selected by EAs in IS-TSS

* 1b2, Drop2, and Cnn maintain the instances near theThe presence of noise in data sets is a widely extended
boundaries. They reduce the subset selected becauseptitbology in decision-tree induction [28]. Sources of noise
inner instances in the class can be classified using tban be error in measurements, error in data encoding, error
boundary ones. The problem is that difficulties appedm examples, missing values, etc. Another potential problem

when correctly selecting and classifying the instancélat potentially occurs in the induction of decision trees is the
near the boundary.

presence of clashes between examples (same attribute vector
Ib3 selects more instances from the boundary becausd different class). Both problems produce complex decision

of its balance in reduction-accuracy, aiming to maintaitiee, poor comprehensibility, overfitting (decision tree overfits
enough information to increase classification rates in thtite data), and low classification accuracy of new data.

zone. b3 tries to maintain boundary instances, as can bd.arger decision trees introduce a loss of human inter-
seen in Fig. 10.

pretability of the models.
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TABLE XIV
COMPARISON OF THENUMBER OF RULES IN THE DECISION TREE FOR
MEDIUM SiZE DATA SETS

» Table XV corroborates the results that we have studied in
Table XIV. The application of CHC in its classical or strat-
ified version significantly reduces the size of the decision

Pen-Ba's.ed Satimage Thyroid tree.
Recognition i .. . .
C4.5 192.1 277.5 279 Briefly summarizing this subsection, we conclude that when the
CHC 24.4 13.8 7.1 CHC is applied to IS-TSS problems it produces a small model
with a high accuracy rate. This small model size increases its
speed in classification, reducing its storage necessities, and in-
TABLE XV creasing its human interpretability.

COMPARISON OF THENUMBER OF RULES IN THE DECISION TREE FOR
ADULT DATA SET

VIIl. CONCLUSION

Adult
C4.5 3274 This paper addressed the analysis of the evolutionary in-
CHC Estrat 16.3 stance selection algorithms and their use in data reduction in

KDD.
L . An experimental study was carried out to compare the results
Pruning is the common approach to avoid the problem 8¥ b y b

- . s . . . four EA models together with the classical IS ones from a
overfitting noisy data. The basic idea is to incorporate a bias to- . . .
: o . ofold perspective, the PS and the TSS, over different kinds of
ward more general and simpler theories in order to avoid over . .
ta sets. The main conclusions reached are as follows.

specific theories that try to find explanations for noisy examples. ) . i
The two different ways [11] to deal with this are the following. * EAS outperform the classical algorithms, simultaneously
offering two main advantages: better data reduction per-

centages and higher classification accuracy.

The CHC is the most appropriate EA, according to the
algorithms that we have compared. It offers the best be-
havior in IS-PS and IS-TSS when we increase the size of
the data set. In addition, it is the fastest EA algorithm ac-

* Prepruning: Stop growing the tree when there is not
enough data to make reliable decisions, or when the
examples are acceptably homogeneous.

 Postpruning: Grow the full decision tree and then remove
nodes for which there is not sufficient evidence.

The drawback of prepruning is that it is very difficult to know

when to stop growing the tree. .

Classical strategies based on post-pruning tend to underprune
or overprune the decision tree.

We have applied EAs in the IS-TSS problem as seen in
Sections V-B and VI-B, obtaining greater reduction and
accuracy rates. In Table XIV, we show the number of rules «
offered by the decision tree obtained after CHC execution over
the medium size data sets. This is compared with the decision
tree obtained after applying C4.5 to the complete medium data
sets. The number of rules extracted from a decision tree is the
number of leaves in the tree, since each path ffom the root to a
leaf correspond to a classification rule.

cording to the study presented in this paper.

The CHC algorithm significantly reduces the size of the
decision tree trained from the selected instances, by com-
parison with a decision tree trained from all instances. This
characteristic produces decision trees that are easier to in-
terpret.

In medium and larger size data sets, classical algorithms
do not present balanced behavior. If the algorithm reduces
the size then its accuracy rate is poor. When accuracy
increases there is no reduction. The stratified version of
CHC offers the best results when the data set size increases
too much.

Therefore, as a final concluding remark, we consider EAs to

. In the first column of Tgble X1V, th.e name of the algorithm,g 5 good mechanism for data reduction in KDD, and in par-
is stated and the remaining ones give the average number;gfiar the CHC algorithm. It has become a powerful tool to

rules after the evaluation of both algorithms in a tenfold croggyain small selected training sets and therefore, scaling down
validation process over each one of the medium data sets. yata CHC can select the most representative instances inde-
In the Appendix (Tables XXII and XXill), we can find both nendently of their position in the search space, satisfying both
decision trees generated using the complete Thyroid data Saﬁ{édobjectives of high accuracy and reduction rates. The main
the subset selected by CHC. limitation of CHC s its long processing time, as mentioned
We have also assessed the effect that the CHC with stratifigghlier, which makes it difficult to apply this algorithm to very
strategy has on the number of rules discovered in the Adult d?é?ge data sets.
set. This effect is shown in the next table: Finally, we would say that future research could be directed
An analysis of Tables XIV and XV give the following con-oward the study of the behavior of the evolutionary instance
clusions. selection algorithms on databases with a large number of in-
» Table XIV shows the reduction that CHC gives in thatances analyzing the scaling up to bigger data sets. One di-
model of a decision tree generated by the subset selectexttion of study that we suggest is the stratified evolutionary
As we can see, the number of rules associated to decisiondel in order to carry out the evaluation of the largest data
trees are significantly reduced, with a more interpretabgets, searching for hybrid strategies between classical and evo-
model. lutionary instance selection algorithms.
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APPENDIX

TABLES FOR EACH DATA SET IN IS-PSAND IS-TSS
(TABLES XVI-XXI)

TABLE XVI
IS-PS AVERAGE RESULTS FORPEN-BASED RECOGNITION

Execution . I-NN

Time(sec) % Reduction %Ac Trn | %Ac Test
1-NN 66 99.36 99.39
Cnn (%) 4 98.04 84.85 85.69
Dropl (*) 374 98.45 86.23 86.02
Drop2 (%) 318 97.69 91.03 91.03
Drop3 (%) 391 98.07 90.33 90.05
Enn 269 0.64 99.40 99.31
1b2 (%) 2 98.49 74.20 75.04
Ief (*) 537 92.42 §89.79 89.51
Mes 141 0.36 99.54 99.40
Multied 4274 6.47 97.78 97.64
Renn 579 0.66 99.40 99.31
Rnn (*) 33168 97.52 77.97 79.03
Shrink 277 0.64 99.39 99.31
Vsm 107 0.00 99.36 99.39
ID3 (*) 9 96.42 96.73 98.00
Rmhe (*) 69802 90.02 97.43 97.19
Ennsr (*) 75988 90.02 98.50 98.01
GGA 149281 61.47 99.22 98.82
SGA 103102 61.77 99.35 99.00
CHC (%) 18845 98.99 96.29 98.94
PBIL (*) 83923 73.59 99.77 99.05

TABLE XVII

IS-PS A/ERAGE RESULTS FORSATIMAGE

Execution . 1-NN

Time(sec) | 7° Reduction e T vAc Test
1-NN 36 90.33 90.41
Cnn (*) 5 95.93 60.63 61.96
Dropl (*) 206 93.66 84.29 81.68
Drop2 (*) 183 83.49 83.45 83.45
Drop3 (*) 301 93.25 87.93 81.03
Enn 79 9.67 92.11 90.10
1b2 (%) 3 96.75 59.00 59.59
Ief (%) 378 84.53 70.18 70.18
Mes 92 431 93.29 90.32
Multied 836 24.82 86.83 86.08
Renn 490 11.05 92.10 89.87
Rnn (*) 4042 95.15 73.26 73.68
Shrink 184 8.86 91.59 90.07
Vsm 99 0.00 90.33 90.41
1b3 (*) 22 84.66 84.51 86.45
Rmhe (*) 15879 90.02 86.13 85.29
Ennsr (*) 16075 90.02 88.08 88.29
GGA 20245 63.07 91.22 89.94
SGA 21512 63.35 91.76 89.32
CHC (*) 2479 99.06 89.45 89.67
PBIL (*) 6917 72.19 93.75 90.48

TABLE XVIII

IS-PS AVJERAGE RESULTS FORTHYROID

Execution . I-NN

Time(sec) | 0 Reduction o | YoAc Test
1-NN 36 92.87 92.74
Cnn (*) 3 98.00 92.50 92.86
Dropl (*) 182 98.06 63.47 62.86
Drop2 (*) 143 87.54 91.37 91.37
Drop3 (*) 322 97.44 88.82 85.24
Enn 68 7.15 94.78 93.76
1b2 (%) 2 98.11 92.53 92.89
Icf (*) 244 93.17 70.34 70.35
Mes 71 3.30 95.05 93.42
Multied 224 10.69 92.67 92.59
Renn 399 7.69 94.62 93.71
Rnn (%) 1841 97.98 92.58 92.51
Shrink 156 5.18 94.58 93.76
Vsm 76 3.12 92.80 92.71
1b3 94 33.93 93.22 93.38
Rmhe (*) 17895 90.03 91.22 90.98
Ennsr (*) 21342 90.03 91.78 91.95
GGA 28945 63.05 93.78 92.79
SGA 39354 63.60 93.90 92.69
CHC (%) 2891 99.83 94.20 91.98
PBIL (*) 7985 73.61 95.17 92.86

TABLE XIX
IS-TSS AVJERAGE RESULTS FORPEN-BASED RECOGNITION
E?ri\celgleoc')l % Reduction 4.5
%Ac. Trn | %Ac. Test

C4.5 1 99.27 96.46
Cnn (*) 4 98.04 90.54 64.32
Dropl (*) 374 98.45 92.31 65.52
Drop2 (*) 318 97.69 93.28 67.89
Drop3 (*) 391 98.07 91.18 61.00
Enn 269 0.64 99.40 96.41
Ib2 (*) 2 98.49 88.18 56.32
Ief (*) 537 92.42 97.45 73.97
Mecs 141 0.36 99.28 96.26
Multied 4274 6.47 99.58 94.80
Renn 579 0.66 99.40 96.37
Rnn (*) 33168 97.52 98.42 67.09
Shrink 277 0.64 99.39 96.39
Vsm 107 0.00 99.27 96.43
1b3 (*) 9 96.42 91.74 79.63
Rmhc (*) 69802 90.02 98.19 91.40
Ennrs (*) 75988 90.02 97.71 90.40
GGA 149281 61.47 98.91 94.78
SGA 103102 61.77 98.62 94.56
CHC (*) 18845 98.99 98.51 92.33
PBIL (*) 83923 73.59 99.06 94.85
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TABLE XX TABLE XXII
IS-TSS A/ERAGE RESULTS FORSATIMAGE DECISION TREE FOR THETHYROID DATA SET
Execution | , . C4.5 attribute#17 <= 0.005 : 3 (5782.0/1.4)
Time(sec) 7 Reduction o o attribute#17 > 0.005 :
oAc. Trn | %Ac. Test | attribute#21 <=0.064 :
C4.5 1 9758 86.71 | | attribute#8 <=0 :
Cnn (*) 5 95.93 91.69 54.83 | | attribute#17 <=0.017:
Dropl(¥) 206 93.66 94.39 73.08 | | attribute#20 <=0.095: 1 (9.0/1.3)
Drop2 (%) 183 83.49 94.17 70.76 | | atiribute#20 > 0.095 :
Drop3 (%) 301 93.25 0526 67.46 | | | attribute#18 >0.023:3 (6.0/1.2)
Enn 79 9.67 08.45 86.40 | | | attribute#18 <=0.023:
1b2 (%) 3 96.75 9226 51.63 P attr?bute#l7>0.009: 1(6.0/2.3)
(%) 378 84.53 96.96 7523 1| ] attribute#] 7 <= 0.009 :
7 ) 731 9787 2651 || |1 | attribute#18<=0.01:1(3.0/2.1)
Mudtied 836 2482 99.72 8438 11| | attribute#18>0.01:3 (3.0/1.1)
Renn 290 11.05 9858 86.77 | attribute#17 > 0017
m | | attribute#9<=0:
gl’l”ffi’:k) 4108442 985;65 gzg; ;‘22‘8’ | || attribute#18 <=0.024: 1 (122.0/1.4)
: : : | | | attribute#18>0.024:
Vsm 99 0.00 97.58 86.71 || || attribute#20 <= 0.095 : 3 (2.0/1.0)
163 (%) 22 84.66 9331 75.41 ||| | attribute#20>0.095: 1 (3.0/1.1)
Rmhe (%) 15879 90.02 96.63 85.30 | | attribute#9>0 :
Ennrs (%) 16075 90.02 96.66 80.00 | | | attribute#l <=0.65: 1 (4.0/1.2)
GGA 20245 63.07 97.40 84.16 | | | attribute#l >0.65: 3 (2.0/1.0)
SGA 21512 63.35 9748 85.01 attribute#8 > 0 :
CHC (%) 2479 99.06 96.75 84.28 | attribute#20 <=0.131:1(5.0/2.3)
PBIL (%) 6917 72.19 97.28 84.29 | attribute#20>0.131:3 (3.0/1.1)

?

\

\

[

l

|

|

|

|

|

|

|

\

)

\

l

k

[

\

l

attribute#21 > 0.064 :

| attribute#3 >0:3 (107.0/1.4)

| attribute#3 <=0 :
TABLE XXI | | attribute#19>0.15:3 (25.0/1.3)
IS-TSS A/ERAGE RESULTS FORTHYROID | attribute#19 <= 0.15 :
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

attribute#17 <= 0.006 :

|
1
\
\
|
l
i
|
|
|
|
l
|
\
\
\
\
\
\
l
\
!
\
l
i
!
|
|
|
|
|
|
|
|
l
|
|
|
|
|
|
|
|
|

|
I
Execution | , . C4.5 | | | attribute#2 <=0 :3 (56.0/28.1)
Time(sec) 7 Reduction veAc. Trn | %Ac. Test | | | attribute#2 >0 :
ot oo | ] || attribute#19>0.088 : 3 (12.0/2.5)
C4.5 1 99.61 99.03 | | ]| attribute#19 <=0.088 :
Cnn (%) 3 98.00 98.80 96.95 [ ]| || attribute#l <=0.59:3 (4.0/2.2)
Dropl (%) 182 98.06 98.88 96.60 |11 | | attribute#l>0.59:2 (4.0/1.2)
Drop2 (*) 143 87.54 98.81 98.48 || attribute#17 >0.006 :
Drop3 (%) 322 97.44 98.97 97.52 [ attrlbgte#19<= 0.061 :
Enn 68 7.15 99.92 98.67 '] 1] attribute#18 <=0.019: 2 (7.0/1.3)
Ib2 (%) P 98.11 08.73 06.45 1] zﬁtrlbute#lS > 0.01.‘) :3(6.0/1.2)
1ef (%) 244 93.17 99.14 97.97 ||| atribute#19>0.061 -
Mes 71 330 99.76 98.97 | 111 attribute#18 <=0.03 :
- | | | || attribute#8 <=0 :2 (288.0/2.6)
Multied 224 10.69 100.00 92.64 :
| || || attribute#8>0:3 (9.0/1.3)
Renn 399 7.69 99.94 98.36 || 1| attribute#18 > 0.03
R (%) 1841 97.98 19090;)020 222(7) || ||| attribute#20<=0.113: 3 (5.0/1.2)
Shrink 156 >.18 ' ' | | | | | attribue#20>0.113:2 (6.0/1.2)
Vsm 76 3.12 99.66 99.06
1b3 94 33.93 99.78 98.96
Rmhe (¥) 17895 90.03 99.52 98.70
Ennrs (%) 21342 90.03 99.59 98.80
GGA 28945 63.05 99.85 98.85
SGA 39354 63.60 99.05 98.09
CHC (%) 2891 99.83 99.61 98.85 TABLE XXIII
PBIL (*) 7985 73.61 99.78 99.02 DECISION TREE FOR THESUBSET OBTAINED USING CHC OVER

THYROID DATA SET

attribute#21 <= 0.062 :

| attribute#17 <=0.006: 3 (13.0/1.3)

| attribute#17 > 0.006 : 1 (40.0/3.8)
attribute#21 > 0.002 :

attribute#17 <=0.005 : 3 (982.0/1.4)
attribute#17 > 0.005 :

attribute#3 >0 : 3 (21.0/1.3)
attribute#3 <=0 :

| attribute#19 >0.144 : 3 (5.0/1.2)

| attribute#19 <=0.144 :

| | attribute#19 <=0.06:3 (3.0/1.1)
| | attribute#19>0.06:

| | | attribute#17 >0.007 : 2 (40.0/2.6)
I

[

| |

| attribute#17 <=0.007 :
| | attribute#20 <=0.099 : 2 (3.0/1.1)

I
|
|
[
|
|
I
|
|
|
| | | attribute#20>0.099 : 3 (4.0/1.2)
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