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Using Evolutionary Algorithms as Instance Selection
for Data Reduction in KDD: An Experimental Study

José Ramón Cano, Francisco Herrera, and Manuel Lozano

Abstract—Evolutionary algorithms are adaptive methods based
on natural evolution that may be used for search and optimization.
As data reduction in knowledge discovery in databases (KDDs)
can be viewed as a search problem, it could be solved using evo-
lutionary algorithms (EAs).

In this paper, we have carried out an empirical study of the per-
formance of four representative EA models in which we have taken
into account two different instance selection perspectives, the pro-
totype selection and the training set selection for data reduction in
KDD. This paper includes a comparison between these algorithms
and other nonevolutionary instance selection algorithms. The re-
sults show that the evolutionary instance selection algorithms con-
sistently outperform the nonevolutionary ones, the main advan-
tages being: better instance reduction rates, higher classification
accuracy, and models that are easier to interpret.

Index Terms—Data mining (DM), data reduction, evolutionary
algorithms (EAs), instance selection, knowledge discovery.

I. INTRODUCTION

A DVANCES in digital and computer technology that have
led to the huge expansion of the Internet means that

massive amounts of information and collection of data have
to be processed. Scientific research, ranging from astronomy
to human natural genome, faces the same problem of how to
deal with vast amounts of information. Raw data is rarely used
directly and manual analysis simply cannot keep up with the
fast growth of data. Knowledge discovery in databases (KDD)
and data mining (DM) can help deal with this problem because
they aim to turn raw data into nuggets and create special edges.

The KDD process includes problem comprehension, data
comprehension, data preprocessing, DM, evaluation, and
development [1], [8], [29], [34]. The first three processes
(problem and data comprehension, and data preprocessing)
play an essential role in successful DM.

Due to the enormous amounts of data, much of the current
research is based on scaling up DM algorithms. Other research
has also tackled scaling down data. The main problem of scaling
down data is how to select the relevant data and then apply a DM
algorithm [21]. This task is carried out in the data preprocessing
phase in a KDD process.
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Fig. 1. Strategies in data preprocessing.

Fig. 2. PS algorithms.

Fig. 1 shows the different strategies in the data preprocessing
phase.

Our attention is focused on data reduction, which can be
achieved in many ways.

• By selecting features [20], we reduce the number of
columns in a data set.

• By making the feature values discrete [12], we reduce the
number of possible values of features.

• By selecting instances [5], [18], [22], we reduce the
number of rows in a data set.

This study deals solely with instance selection (IS) [6], [21],
[26], [33], [36] by means of evolutionary algorithms (EAs) for
data reduction in KDD.

IS is a focusing task in the data preparation phase [8] of
KDD. It is one of the effective means of data reduction. IS can
follow different strategies: sampling, boosting, prototype selec-
tion (PS), and active learning. We are going to study the IS from
the PS perspective. The PS algorithms that we have assessed can
be classified as shown in Fig. 2. A complete review of these is
presented in Section II-C.

EAs [3] are general-purpose search algorithms that use
principles inspired by natural genetic populations to evolve so-
lutions to problems. The basic idea is to maintain a population
of chromosomes, which represent plausible solutions to the
problem and evolve over time through a process of competition
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and controlled variation. EAs have been used to solve the IS
problem, with promising results [17], [25].

The aim of this paper is to study the application of some rep-
resentative EA models for data reduction, and to compare them
with nonevolutionary instance selection algorithms (hereafter
referred to as classical ones). In order to do this, our study is
carried out from a twofold perspective.

1) IS-PS: The analysis of the results obtained when selecting
prototypes (instances) for a 1-NN (nearest neighbor) al-
gorithm. This approach will be denoted as instance selec-
tion-prototype selection (IS-PS).

2) IS-TSS: The analysis of the behavior of EAs as instance
selectors for data reduction, when selecting instances to
compose the training set that will be used by C4.5 [24],
a well-known decision-tree induction algorithm. In this
approach, the selected instances are first used to build a
decision tree, and then the tree is used to classify new ex-
amples. This approach will be denoted as (instance selec-
tion–training set selection (IS-TSS).

The analysis of the behavior of EAs for data reduction in
KDD is, in fact, the most important and novel aspect of this
paper.

As with any algorithm, the issue of scalability and the effect
of increasing the size of data on algorithm behavior are always
present. To address this, we have carried out a number of ex-
periments on IS-PS and IS-TSS with increasing complexity and
size of data.

In order to do this, this paper is set out as follows. In
Section II, we introduce the main ideas about IS, describing the
two processes which IS algorithms take part in, the IS-PS and
the IS-TSS, and we also summarize the classical IS algorithms.
In Section III, we introduce the foundations of EAs and sum-
marize the main features of the models considered in this paper,
giving details of how EAs can be applied to the IS problem.
In Section IV, we explain the methodology used in the experi-
ments. Sections V and VI deal with the results and the analysis
of small and medium data sets, respectively. Section VII deals
with the study of the main points of the evolutionary instance
selection approach, including scalability to larger data sets.
Finally, in Section VIII, we reach our conclusion.

II. I NSTANCE SELECTION

In this section, we describe the two strategies which IS takes
part in as presented in this paper, as well as a summary of clas-
sical IS algorithms.

A. Instance Selection for Prototype Selection (IS-PS)

The 1-NN classifiers predict the class of a previously un-
seen instance by computing its similarity with a set of stored
instances called prototypes. PS–storing a well-selected, proper
subset of available training instances has been shown to increase
classifier accuracy in many domains. At the same time, the use
of prototypes dramatically decreases both storage and classifi-
cation-time costs.

A PS algorithm is an IS algorithm that attempts to obtain
a subset of the training set that allows the 1-NN classifier to

achieve the maximum classification rate. Fig. 3 shows the way
in which a PS algorithm acts.

Each PS algorithm is applied to an initial data set in order
to obtain a subset of representative data items. We assess the
accuracy of the subset selected using an 1-NN classifier.

B. Instance Selection for Training Set Selection (IS-TSS)

There may be situations in which there is too much data and
this data in most cases is not equally useful in the training phase
of a learning algorithm [25]. Instance selection mechanisms
have been proposed to choose the most suitable points in the
data set to become instances for the training data set used by a
learning algorithm. For example, in [25], a genetic algorithm
(GA) is used for training data selection in radial based function
networks.

Fig. 4 shows a general framework for the application of an IS
algorithm for TSS. Starting from the data set TR, the IS algo-
rithm finds a suitable set, then a learning or DM algorithm is
applied to evaluate each subset selected (C4.5 in our case [24])
to obtain a model from the data set. This model is assessed using
the test data set TS.

C. Overview of Instance Selection Algorithms

Historically, IS has been mainly aimed at improving the ef-
ficiency of the NN classifier. The NN algorithm is one of the
most venerable algorithms in machine learning. This algorithm
calculates the Euclidean distance (possibly weighted) between
an instance to be classified and each training-neighboring in-
stance. The new instance to be classified is assigned to the class
of the nearest neighboring one. More generally, the-NN are
computed and the new instance is assigned to the most frequent
class among these neighbors. The -NN classifier was also
widely used and encouraged by early theoretical results related
to its Bayes error generalization.

However, from a practical point of view, the-NN algorithm
is not suitable for dealing with very large sets of data due to the
storage requirements it demands and the computational costs
involved. In fact, this approach requires the storage of all the
instances in memory. Early research in instance selection first
tried to reduce storage size. The algorithms used in this study are
described in the remainder of the subsection, with the exception
of EAs, which are described in Section III.

1) Methods Based on NN Rules:

Cnn [15]—It tries to find a consistent subset, which cor-
rectly classifies all of the remaining points in the sample
set. However, this algorithm will not find a minimal con-
sistent subset [33].
Enn [31]—Edited NN edits out noisy instances, as well as
close border cases, leaving smoother decision boundaries.
It also retains all internal points, which keeps it from re-
ducing the storage requirements as much as most other re-
duction algorithms.
Renn [31]—The repeated edited NN continues to widen
the gap between classes and smooth the decision boundary,
applyingEnn repeatedly.
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Fig. 3. IS-PS strategy.

Fig. 4. IS-TSS strategy.

Rnn [13]—The reduced NN rule searches in Cnn’s consis-
tent set, the minimal subset which correctly classifies all
the learning instances. However, this approach is efficient
if and only if Cnn’s consistent set contains the minimal
consistent set of the learning set, which is not always the
case.
Vsm [23]—It removes an instance if most of its-nearest
neighbors ( 60%) classify it correctly or incorrectly.
Multiedit [9]—It is a modification over Enn algorithm that
guarantees the statistical independence in the prototype
selected.
Mcs[7]—Mcs system (model class selection system) tends
to avoid noise.
Shrink [18]—It is similar to the Rnn. It retains border
points but unlike Rnn, this algorithm is sensitive to noise.
Ib2 [18]—It is similar to Cnn but using a different selection
strategy.
Ib3 [2]—It outperforms Ib2 introducing theacceptablein-
stance concept to carry out the selection.
Icf [6]: It tries to select the instances which classify more
prototypes correctly. Icf uses coverage and reachable con-
cepts to carry out the selection.

2) Methods Based on Ordered Removal:

Drop1 [32]—Essentially, this rule tests to see if removing
an instance would degrade leave-one-out cross-validation
generalization accuracy, which is an estimate of the true
generalization ability of the resulting classifier.
Drop2 [32]—Drop2 changes the order of removal of in-
stances. It initially sorts the instances in TR by the dis-

tance to their nearest enemy (nearest instance belonging
to another class). Instances are then checked for removal
beginning at the instance furthest from its nearest enemy.
This tends to remove instances furthest from the decision
boundary first, which in turn increases the chance of re-
taining border points.
Drop3 [32]—Drop3 uses a noise filtering pass before
sorting the instances in training date (TR) Figs. 3 and
4. This is done using the rule: Any instance incorrectly
classified by its -NN is removed.

3) Methods Based on Random Sampling:

[30]—First, it randomly selects a subsetfrom
TR which contains a fixed number of instances(

). In each iteration, the algorithm interchanges an
instance from with another from TR-S. The change is
maintained if it offers better accuracy.

[33]—Similar to Rmhc, it randomly selects a
subset from TR, which contains a fixed number of in-
stances ( ) but in each iteration the algorithm
interchanges all instances fromwith instances from TR.
The change is maintained if it offers better accuracy.

III. EVOLUTIONARY INSTANCESELECTION ALGORITHMS

Most of the success of EAs is due to their ability to exploit
the information accumulated about an initially unknown search
space. This is their key feature, particularly in large, complex,
and poorly understood search spaces, where classical search
tools (enumerative, heuristic, etc.) are inappropriate. In such
cases, they offer a valid approach to problems requiring effi-
cient and effective search techniques.

In this section, we first describe the EAs used in this study,
and then present the key points of their application to our
problem, as well as the representation and the fitness function.

A. Evolutionary Algorithms (EAs)

EAs [3] are stochastic search methods that mimic the
metaphor of natural biological evolution. All EAs rely on the
concept of apopulation of individuals (representing search
points in the space of potential solutions to a given problem),
which undergo probabilistic operators such asmutation,
selection, and (sometimes)recombinationto evolve toward
increasingly better fitness values of the individuals. Thefitness
of an individual reflects its objective function value with respect
to a particular objective function to be optimized. The mutation
operator introduces innovation into the population by gener-
ating variations of individuals and the recombination operator
typically performs an information exchange between different
individuals from a population. The selection operator imposes
a driving force on the process of evolution by preferring better
individuals to survive and reproduce when the members of the
next generation are selected.

Next, we describe the four models of EAs that will be used
in this paper as evolutionary instance selection algorithms. The
first two are the classical GA models; the generational one and
the steady-state one. The third one, heterogenious recombina-
tion and cataclysmic mutation (CHC), is a classical model that
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introduces different features to obtain a tradeoff between explo-
ration and exploitation, and the fourth one is a specific EA ap-
proach, designed for binary search spaces.

1) Generational Genetic Algorithm (GGA):The basic idea
in GGA [14], [16] is to maintain apopulationof chromosomes,
which represent plausible solutions to the particular problem
that evolves over successive iterations (generations) through a
process of competition and controlled variation. Each chromo-
some in the population has an associated fitness to determine
which chromosomes are to be used to form new ones in the
competition process. This is calledselection. The new ones are
created using genetic operators such ascrossoverandmutation.
The classical model of GAs is the GGA, which consists of three
operations:

1) evaluation of individual fitness;
2) formation of a gene pool (intermediate population)

through selection mechanism;
3) recombination through crossover and mutation operators.

The selection mechanism produces a new population with
copies of chromosomes in . The number of copies re-
ceived for each chromosome depends on its fitness; chromo-
somes with higher fitness usually have a greater chance of con-
tributing copies to . Then, the crossover and mutation op-
erators are applied to .

Crossover takes two individuals called parents and produces
two new individuals called the offspring by swapping parts of
the parents. In its simplest form, the operator works by ex-
changing substrings after a randomly selected crossover point.
The crossover operator is not usually applied to all pairs of chro-
mosomes in the new population. A random choice is made,
where the likelihood of crossover being applied depends on
probability defined by acrossover rate.

Mutation serves to prevent premature loss of population di-
versity by randomly sampling new points in the search space.
Mutation rates are kept small, however, otherwise the process
degenerates into a random search. In the case of bit strings, mu-
tation is applied by flipping one or more random bits in a string
with a probability equal to themutation rate.

Termination may be triggered by reaching a maximum
number of generations or by finding an acceptable solution by
some criterion.

2) Steady-State Genetic Algorithm (SGA):In SGAs [35],
usually only one or two offspring are produced in each gener-
ation. Parents are selected to produce offspring and then a re-
placement/deletion strategy defines which member of the popu-
lation will be replaced by the new offspring. The basic algorithm
steps of SGA are the following.

1) Select two parents from the population.
2) Create an offspring using crossover and mutation.
3) Evaluate the offspring with the fitness function.
4) Select an individual in , which may be replaced by the

offspring.
5) Decide if this individual will be replaced.

In step 4), the replacement strategy can be chosen (e.g., replace-
ment of the worst, the oldest, or a randomly chosen individual).
In step 5), the replacement condition can be chosen (e.g., re-
placement if the new individual is better, or unconditional re-

placement). A widely used combination is to replace the worst
individual only if the new individual is better (this is the one we
have adopted in this paper).

3) CHC Adaptive Search Algorithm:During each genera-
tion the CHC [10] develops the following steps.

1) It uses a parent population of sizeto generate an inter-
mediate population of individuals, which are randomly
paired and used to generatepotential offspring.

2) Then, a survival competition is held where the best
chromosomes from the parent and offspring populations
are selected to form the next generation.

CHC also implements a form of heterogeneous recombination
using HUX, a special recombination operator. HUX exchanges
half of the bits that differ between parents, where the bit position
to be exchanged is randomly determined. CHC also employs
a method of incest prevention. Before applying HUX to two
parents, the Hamming distance between them is measured. Only
those parents who differ from each other by some number of bits
(mating threshold) are mated. The initial threshold is set at,
where is the length of the chromosomes. If no offspring are
inserted into the new population then the threshold is reduced
by one.

No mutation is applied during the recombination phase. In-
stead, when the population converges or the search stops making
progress (i.e., the difference threshold has dropped to zero and
no new offspring are being generated which are better than any
members of the parent population) the population is reinitialized
to introduce new diversity to the search. The chromosome rep-
resenting the best solution found over the course of the search
is used as a template to reseed the population. Reseeding of
the population is accomplished by randomly changing 35% of
the bits in the template chromosome to form each of the other

new chromosomes in the population. The search is then
resumed.

4) Population-Based Incremental Learning (PBIL):PBIL
[4] is a specific EA designed for binary search spaces. The
PBIL algorithm attempts to explicitly maintain statistics about
the search space to decide where to sample next.

The object of the algorithm is to create a real valued prob-
ability vector , which, when sampled, reveals high quality
solution vectors with high probability. For example, if a good
solution can be encoded as a string of alternating 0s and 1s, a
possible final would be 0.01, 0.99, 0.01, 0.99, etc. Initially,
the values of are set at 0.5. Sampling from this vector yields
random solution vectors because the probability of generating a
1 or 0 is equal. As the search progresses, the values ofgrad-
ually shift to represent high evaluation solution vectors through
the following process.

1) A number of solution vectors (Nsamples) are generated
based upon the probabilities specified in.

2) is pushed toward the generated solution vector with
the highest evaluationSbest

whereLR is thelearning rate, which specifies how close
the steps are to the best solution.
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3) is pushed far away from the worst evaluation,Sworse,
whereSbestandSworsediffer. This is accomplished as
follows:

where Negat_LRis the negative learning rate, which
specifies how far away the steps are from the worst
solution.

4) After the probability vector is updated, sampling the up-
dated probability vector produces a new set of solution
vectors, and the cycle is continued.

Furthermore, PBIL applies mutations to, with an analogous
aim as mutation in the case of GAs: to inhibit premature conver-
gence. Mutations affect with low probability in a random
directionMut_Shif.

It must be pointed out that there are problems setting theLR
andNegat_LRin PBIL, which affects the convergence and the
quality of solutions.

B. Evolutionary IS

EAs may be applied to the IS problem, because it can be con-
sidered as a search problem. In this paper, these EAs have been
calledevolutionary instance selection algorithms. Examples of
these algorithms may be found in [17], which deals with the ap-
plication of the GAs to IS-PS, and [25] which deals with the
application of the GAs to IS-TSS.

The objective of this paper is to study the performance of the
four EAs described in the previous section as IS algorithms ap-
plied to IS-PS and to IS-TSS for data reduction in KDD, com-
paring their results with the ones obtained by the algorithms in-
troduced in Section II-C.

The application of EAs to these two approaches is accom-
plished by tackling two important issues: the specification of
the representation of the solutions and the definition of the fit-
ness function.

1) Representation:Let us assume a data set denoted TR
with instances. The search space associated with the instance
selection of TR is constituted by all the subsets of TR. Then,
the chromosomes should represent subsets of TR. This is
accomplished by using a binary representation. A chromosome
consists of genes (one for each instance in TR) with two
possible states: 0 and 1. If the gene is 1, then its associated
instance is included in the subset of TR represented by the
chromosome. If it is 0, then this does not occur.

2) Fitness Function:Let be a subset of instances of TR
to evaluate and be coded by a chromosome. We define a fit-
ness function that combines two values: the classification rate
(clas_rat) associated with and the percentage of reduction
(perc_red) of instances of with regards to TR

The 1-NN classifier (Section II-C) is used for measuring the
classification rate,clas_rat, associated with . It denotes the
percentage of correctly classified objects from TR using only
to find the nearest neighbor. For each objectin , the nearest

TABLE I
SMALL SIZE DATA SETS

neighbor is searched for amongst those in the set .
Whereas,perc_redis defined as

The objective of the EAs is to maximize the fitness function
defined, i.e., maximize the classification rate and minimize the
number of instances obtained. In the experiments presented in
this paper, we have considered the value in the fitness
function, as per a previous experiment in which we found the
best tradeoff between precision and reduction with this value.

We use 1-NN in both strategies (IS-PS and IS-TSS) to eval-
uate the fitness of a chromosome, in order to test the effective-
ness of performing instance selection independently of the ulti-
mate classification algorithm to be applied to the test data set.
Note that in the IS-TSS study the classification algorithm to be
applied to the test set is C4.5, which is very different from the
1-NN algorithm. This mismatch doest not occur in the IS-PS
study, where 1-NN is used for both fitness computation and clas-
sification of the test set.

IV. EXPERIMENTAL METHODOLOGY

In this section, we present the methodology used in the
experiments carried out. The data sets used in our experi-
ments are available from UCI Repository (http://www.ics.uci.
edu/~mlearn/MLRepository.html).

As previously mentioned, we have carried out our study of
IS-PS and IS-TSS problems using two size problems: small and
medium. We intend to study the behavior of the algorithms when
the size of the problem increases. Section IV-A describes the
data sets used (small and medium), Section IV-B introduces the
partition of the data sets that were considered for applying the
algorithms, Section IV-C introduces the parameters associated
with the algorithms, and finally, in Section IV-D the results are
presented in table form.

A. Data Sets

1) Small Size Data Sets:See Table I.
2) Medium Size Data Sets:See Table II.

B. Partitions and Executions

The data sets considered are partitioned using thetenfold
cross-validationprocedure. Each initial data set, is randomly
divided into ten disjoint sets of equal size . We
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TABLE II
MEDIUM SIZE DATA SETS

TABLE III
PARAMETERS

maintain the original class distribution (before partitioning)
within each set when carrying out the partition process. We
then conduct ten pairs of training and test sets, ( ),

. For each pair, the test set, , is , and the
training set, , is the union of all of the other , .

Ten trials were run for each data set andIS nonprobabilistic
algorithm. During theth-trial, the instance selection algorithm
is applied to , selecting a subset of instances. The selected
instances are used as a training set by a classification algorithm
(1-NN or C4.5, depending on the experiment), and then the
accuracy of the classification algorithm in the test set is mea-
sured. Using EAs and the classical random algorithms (Rmhc
and Ennrs), we executed each one three times for each parti-
tion, taking the average of the results of these three executions
per partition, therefore, we have 30 trials per data set for each
one of them.

C. Parameters

Whether either small or medium data sets are evaluated, the
parameters used are the same: see Table III.

D. Types of Table Results

In the following sections, we will present two types of tables,
each one with the following structure.

1) Complete Results Table:This type of table shows the re-
sults obtained in IS-PS or IS-TSS by the classical and evolu-
tionary instance selection algorithms, respectively. In order to
observe the level of robustness achieved by all algorithms, the
table presents the average of the results offered by each algo-
rithm in the data sets evaluated (small or medium group of data
sets). Each column shows (see for example, Table IV):

• The first column shows the name of the algorithm. As
reduction is one of our main objectives, we observe two
main groups in the algorithm results (one group with a
data reduction higher than 70% and the rest with a lower
reduction). We highlight, with the simbol “ ” the algo-
rithm group that offers the best reduction rates (70%).
The highlighted algorithms will be used in the following
table results.

TABLE IV
AVERAGE RESULTS OFIS-PSFOR SMALL DATA SETS

• The second column contains the average execution time
associated to each algorithm. The algorithms have been
run in a Pentium 4, 2.4 GHz, 256 RAM, 40 Gb HD.

• The third column shows the average reduction percentage
from the initial training sets.

• The fourth column contains the accuracy when 1-NN or
C4.5 is applied using the training set selected. This column
presents two subcolumns: the first one shows the training
accuracy when using the training set selected () from
the initial set ( ); the second subcolumn shows the test
accuracy of over the test data set . Each subcolumn
presents the accuracy mean. We study both subcolumns
in an effort to evaluate the existence of overfitting in the
instance selection phase.

In the third, fourth, and fifth columns, the two best results per
column are shown in bold.

By studying only the first type of table as described before,
two drawbacks can be appreciated.

• The evaluation of just the mean classification accuracy
over all the data sets hides important information because
it is possible that a particular algorithm performs excep-
tionally well on one data set but not as good as the others
on the rest of the data sets. If the mean error of this algo-
rithm over all the data sets is better than the other methods,
it does not necessarily mean that this algorithm is better.

• The average classification rate, across many data sets, is
not very meaningful, because each data set represents a
different classification problem, and different data sets
have many different degrees of difficulty. For instance, if
in a data set where the “baseline accuracy” (i.e., the rela-
tive frequency of the majority class) is 60% and an algo-
rithm obtains an accuracy rate of 80%, then a good result
has been obtained, whereas in a data set where the base-
line accuracy is 90%, an algorithm obtaining an accuracy
of 80% is a bad result.
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TABLE V
RANKING AND NUMBER OF BEST RESULTS OFALGORITHMS WHICH HAVE

A REDUCTION RATE GREATER THAN 70%

To avoid these drawbacks, we have included a second type of
table showing rankings and the number of data sets in which
each algorithm obtained the best results. The best result in the
second type of table eliminates the first drawback. The average
ranking does not use the absolute value of the algorithms’ ac-
curacy, only its relative value among the competing algorithms
that clarifies the results offered, thus also avoiding the second
drawback.

In the following, the contents of this second type of table are
described in depth.

2) Table With Ranking of Algorithms With Data Reduction
Rates Greater Than 70%:In this type of table, we have used
the results offered by each algorithm in the data sets evaluated
(small or medium) to carry out a classification. We have pre-
sented the results using the following criterion: The algorithms,
with a reduction rate greater than 70%, are placed in descending
order according to the results obtained. The best algorithm is
ranked first, etc. The average ranking of the algorithm is pre-
sented as a measure varying between 1 and the number of algo-
rithms compared. An example of this type of table is Table V.

The columns of this type of table are described as follows.

• The first column shows classification using the reduction
rate as the sole objective. This column is divided into three
subcolumns: the first one (Nam) contains the name of the
algorithm ranked in order, the second one (Rnk) presents
its average ranking, and the third subcolumn (Bst) shows
the number of data sets that have ranked that algorithm as
the best.

• The second column offers the same information as the first
one but with test accuracy as the sole objective.

• The third column presents the same information as the
previous columns, but in this case the objective is a 50–50
combination of reduction and test accuracy.

V. SMALL DATA SETS: RESULTS AND ANALYSIS

A. Results and Analysis in IS-PS

Tables IV and V show the results obtained in IS-PS by
the classical and evolutionary instance selection algorithms,
respectively.

TABLE VI
AVERAGE RESULTS OFIS-TSSFOR SMALL DATA SETS

TABLE VII
RANKING AND NUMBER OF BEST RESULTS OFALGORITHMS WHICH HAVE

A REDUCTION RATE GREATER THAN 70%

The following conclusions about the evolutionary instance
selection algorithms for PS studying Tables IV and V can be
made.

• The EAs present the best reduction rates, maintaining the
highest test accuracy rates in Table IV.

• In Table V, we can see that the EAs offer the best results in
reduction, being the best in eight out of ten data sets. In test
accuracy, EAs behave in the same way, obtaining the best
results in eight data sets. Evaluating the balance between
test accuracy and reduction percentages, EAs obtain the
best result.

This indicates that EAs offer the best results in IS-PS.

B. Results and Analysis in IS-TSS

The following conclusions about the evolutionary instance
selection algorithms for TSS studying Tables VI and VII can
be made.

• In Table VI, we can see that EAs only have been outper-
formed in their test accuracy by methods which offer small
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TABLE VIII
AVERAGE RESULTS OFIS-PSFOR MEDIUM DATA SETS

reduction rates. In general, all the algorithms obtained a
training accuracy much larger than the test accuracy, indi-
cating a large amount of overfitting.

• Table VII shows that EAs are the best algorithms with re-
spect to classification accuracy in the test set, offering the
best results in five data sets. EAs are again the best algo-
rithm when we consider both reduction and test accuracy
rates as the objective, producing the best results in six data
sets.

• Table VI points out the presence of overfitting in all al-
gorithms evaluated. Unfortunately, the overfitting appears
frequently in the learning phase [27]. In particular, the
overfitting is present in our case due to the selection is
done using 1-NN in the fitness function in IS-TSS strategy.
Hence, the set of selected instances was specifically ad-
justed to 1-NN, whereas the algorithm used to classify the
test set was C4.5 as mentioned earlier.

The main conclusion that can be drawn when using small data
sets is that EAs are very good algorithms for data reduction
having both high reduction rates and accuracy.

VI. M EDIUM DATA SETS: RESULTS AND ANALYSIS

In this section, we present a similar study for the three
medium size data sets shown in Table II. We aim to study
the behavior of the algorithms when increasing the size of
the problem by trying to find a scaling up algorithm for
scaling down data. The tables for each data set in IS-PS and
IS-TSS can be found in the Appendix at the end of this paper
(Tables XVI–XXI).

A. Results and Analysis in IS-PS

Tables VIII and IX show the results in a similar way to the
previous ones for small data sets.

TABLE IX
RANKING AND NUMBER OF BEST RESULTS OFALGORITHMS WHICH HAVE

A REDUCTION RATE GREATER THAN 70%

TABLE X
AVERAGE RESULTS OFIS-TSSFOR MEDIUM DATA SETS

From the analysis of Tables VIII and IX, we would point out
the following.

• The EAs, and particularly the CHC, appear to be the best
proposal when the size of the problem increases. It offers
the best reduction rate and one of the best accuracy rates.
The vast majority of the algorithms (with the exception
of Drop3) avoid overfitting when the size of the problem
increases.

• Table IX indicates that CHC is the best algorithm to be
applied to IS-PS. It offers the best ranking in reduction
rates, being the best for all data sets. It presents the best
ranking on balanced objectives, with the best results in all
data sets.

In these kinds of problems, evolutionary and classical al-
gorithms have difficulties maintaining high reduction rates
together with high accuracy rates. Classical algorithms with
high reduction rates are penalized in their accuracy rate.
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TABLE XI
RANKING AND NUMBER OF BEST RESULTS OFALGORITHMS WHICH HAVE

A REDUCTION RATE GREATER THAN 70%

B. Results and Analysis of IS-TSS

We would make the following conclusions about the evolu-
tionary instance selection algorithms for IS-TSS studying Ta-
bles X and XI.

• CHC offers the best behavior in IS-TSS. It presents the
best reduction rates and one of the best accuracy rates.
The third column in Table X shows that CHC is the best
algorithm with respect to reduction rate, as per our study.
CHC receives the best result in Table XI covering all
the objectives, and is the best in all data sets in respect
of reduction and when both objectives are taken into
account.

• In IS-TSS, the classical algorithms do not select subsets
that generalize correctly (see Ib2 and Rnn in Table X).

• The two classical GAs do not work correctly for medium
size data sets. We will discuss why this happens in the next
section.

Clearly, when we mine medium-size data sets, the CHC algo-
rithm improves its behavior giving the best results for scaling
down data.

VII. K EY POINTS ON THE USE OFEVOLUTIONARY

ALGORITHMS FORDATA REDUCTION

In this section, we discuss some of the key points on
the evolutionary instance selection: the execution time (Sec-
tion VII-A), the scaling up of algorithms (Section VII-B), an
analysis of why algorithms behave as they do (Section VII-C),
and a final analysis of the simplicity obtained when training
a decision tree algorithm with a small instance selection set
(Section VII-D).

A. Execution Time

The execution time associated to EAs represents a greater cost
than the classical ones, due to the evolution process involved.

However, their application is interesting because non-EAs
that have a short execution time offer small reduction rates or,
if the reduction rates increase, the algorithm shows overfitting.

The best algorithm behavior corresponds to the CHC, whose
time is lower than that of the rest of the EAs, probabilistic ones
and some of the classical IS ones.

CHC presents the lowest time amongst EAs due to its ef-
ficiency and reduction capabilities. Its chromosomes select a
small number of instances from the beginning of the evolution,
so the fitness function based on 1-NN has to perform a smaller
number of operations.

B. Scaling Up

To test the effect of increasing the data set size, we have eval-
uated a larger data set than the previous ones. We have taken the
Adult data set from the UCI repository, which contains 30 132
instances, 14 attributes, and 2 classes.

The algorithms we have studied, both classical and evolu-
tionary ones, are affected when the size of the data set increases.
The main difficulties they have to face are as follows.

• Efficiency: The efficiency of IS algorithms is at least
, where is the size (number of instances) of the

data set. Most of them present an efficiency order greater
than .

When the size increases, the time needed by each algo-
rithm also increases.

• Resources: Most of the algorithms assessed need to have
the complete data set stored in memory to carry out their
execution. If the size of the data were too big, the computer
would need to use the disk as swap memory. This loss of
resources has an adverse effect on efficiency due to the
increased access to the disk.

• Representation: EAs are also affected by representation,
due to the size of their chromosomes. When the size of
these chromosomes is too big, the algorithms experience
convergence difficulties. An example of this can be seen
in Tables X and XI. GAs show convergence difficulties, as
well as costly computational time.

The majority of classic algorithms cannot deal with the size of
the Adult data set. Algorithms that were able to deal with this
are Cnn, Ib2, and Ib3.

EAs were not able to converge to a good solution using chro-
mosomes of that size (in a tenfold cross validation chromosomes
would give a size of 27 118 genes).

To be able to apply EAs to large data sets such as the Adult
one, we have designed a stratified strategy using the CHC. The
CHC has been selected due to its effectiveness as shown in
Sections V and VI. The stratified strategy consists of dividing
the Adult data set into different strata. We decided to use three
strata so that the size of each one would be the same as that used
in the pen-based recognition data set.

The Adult data set is divided into three disjoint sets of equal
size, , , and . We maintain class distribution within each
set in the partitioning process. CHC is applied to eachob-
taining a subset selected . We then conduct three pairs of
training and test sets, ( , ), ,2,3. For each pair, the
test set, , is , and the training set, , is the union of all
of the other , . We evaluate each pair ( ) using
1-NN for IS-PS and C4.5 for IS-TSS.

Classical algorithms (Cnn, Ib2, and Ib3) are applied to the
complete Adult data set in a tenfold cross validation procedure.

We have included the evaluation of classical algorithms fol-
lowing the stratified strategy (we add to their names “Strat”
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TABLE XII
IS-PSFOR ADULT DATA SET

TABLE XIII
IS-TSSFOR ADULT DATA SET

word with this menaning). This strategy permits the execution
using a smaller data set so we can execute a higher number of
classical algorithms.

The results for IS-PS and IS-TSS are presented in Tables XII
and XIII.

If we analyze Tables XII and XIII, we would point out the
following.

• Classical algorithms Cnn and Ib2 produce elevated re-
duction rates, but they lose classification capability. Their
accuracy rate is reduced significantly (approximately 60%
worse than the reduction rate offered by 1-NN or C4.5).

• Ib3 offers an intermediate reduction rate (80%), while its
classification rate experiments a small reduction.

• Stratified strategy reduces the execution time, due to
dataset reduction, but the algorithms maintain their be-
havior. The combination of stratified strategy and CHC
offers the best result in this difficult problem.

• CHC Stratified overcomes the Ib3 reduction rates (by
20%), maintaining the highest accuracy rate in IS-PS,
with a similar accuracy in IS-TSS for the test sets.

CHC with the stratified strategy is the best algorithm evaluated
for large size data sets. It offers the best balance between re-
duction and accuracy rates. Our CHC with stratified strategy
produces the smallest subsets maintaining their classification
capabilities. However, this algorithm is by far the slowest one,
indicating that even with the stratified strategy, processing time
remains a problem when mining large data sets.

Fig. 5. Original Iris data set.

Fig. 6. Data subset selected by Multiedit.

C. An Analysis as to Why Algorithms Behave as They Do in
IS-PS

In order to study the behavior of the classical algorithms and
EAs, we project the data selected in the Iris data set by each
one of the two most discriminative axes—petal length and petal
width [19].

We have chosen this data set because it is one of the most
studied benchmark data sets, it is well known, and it can be used
in a two-dimensional graphical representation.

The following algorithms have been selected as representa-
tive in carrying out this study.

• Multiedit: because it gives higher accuracy and small re-
duction rates among classical algorithms.

• Cnn, Ib2, and Drop2: these are classical algorithms of-
fering the best reduction rates.

• Ib3: due to its balance between reduction and accuracy
rates.

• CHC: this is the algorithm offering the best behavior in
reduction and accuracy rates.

Figs. 5–11 show graphically the selection strategy followed by
each algorithm.

An analysis of these graphs shows the following behavior.

• Multiedit, which is the algorithm with lower reduction
rates, tries to maintain the instances situated in the centre
of the class, removing those in the boundaries.
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Fig. 7. Data subset selected by Cnn.

Fig. 8. Data subset selected by Ib2.

Fig. 9. Data subset selected by Drop2.

• Ib2, Drop2, and Cnn maintain the instances near the
boundaries. They reduce the subset selected because the
inner instances in the class can be classified using the
boundary ones. The problem is that difficulties appear
when correctly selecting and classifying the instances
near the boundary.

• Ib3 selects more instances from the boundary because
of its balance in reduction-accuracy, aiming to maintain
enough information to increase classification rates in that
zone. Ib3 tries to maintain boundary instances, as can be
seen in Fig. 10.

Fig. 10. Data subset selected by Ib3.

Fig. 11. Data subset selected by CHC.

• CHC presents a strategy that combines inner and boundary
points. It does not tend to select instances depending on
their a priori position in the search space (inner class or
limit ones). CHC selects the instances that increase the ac-
curacy rates, which means that the most representative in-
stances for the whole data set are selected, independently
of their a priori position.

This is the reason why CHC produces the best balance between
reduction and accuracy rates. CHC is not limited in its selection
by a particular strategy, so it can direct its efforts in reducing the
subset selected without jeopardizing its accuracy rate.

D. On the Simplicity of Decision Trees Trained With a Small
Instance Set Selected by EAs in IS-TSS

The presence of noise in data sets is a widely extended
pathology in decision-tree induction [28]. Sources of noise
can be error in measurements, error in data encoding, error
in examples, missing values, etc. Another potential problem
that potentially occurs in the induction of decision trees is the
presence of clashes between examples (same attribute vector
but different class). Both problems produce complex decision
tree, poor comprehensibility, overfitting (decision tree overfits
the data), and low classification accuracy of new data.

Larger decision trees introduce a loss of human inter-
pretability of the models.



572 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 7, NO. 6, DECEMBER 2003

TABLE XIV
COMPARISON OF THENUMBER OF RULES IN THE DECISION TREE FOR

MEDIUM SIZE DATA SETS

TABLE XV
COMPARISON OF THENUMBER OF RULES IN THE DECISION TREE FOR

ADULT DATA SET

Pruning is the common approach to avoid the problem of
overfitting noisy data. The basic idea is to incorporate a bias to-
ward more general and simpler theories in order to avoid overly
specific theories that try to find explanations for noisy examples.
The two different ways [11] to deal with this are the following.

• Prepruning: Stop growing the tree when there is not
enough data to make reliable decisions, or when the
examples are acceptably homogeneous.

• Postpruning: Grow the full decision tree and then remove
nodes for which there is not sufficient evidence.

The drawback of prepruning is that it is very difficult to know
when to stop growing the tree.

Classical strategies based on post-pruning tend to underprune
or overprune the decision tree.

We have applied EAs in the IS-TSS problem as seen in
Sections V-B and VI-B, obtaining greater reduction and
accuracy rates. In Table XIV, we show the number of rules
offered by the decision tree obtained after CHC execution over
the medium size data sets. This is compared with the decision
tree obtained after applying C4.5 to the complete medium data
sets. The number of rules extracted from a decision tree is the
number of leaves in the tree, since each path ffom the root to a
leaf correspond to a classification rule.

In the first column of Table XIV, the name of the algorithm
is stated and the remaining ones give the average number of
rules after the evaluation of both algorithms in a tenfold cross
validation process over each one of the medium data sets.

In the Appendix (Tables XXII and XXIII), we can find both
decision trees generated using the complete Thyroid data set and
the subset selected by CHC.

We have also assessed the effect that the CHC with stratified
strategy has on the number of rules discovered in the Adult data
set. This effect is shown in the next table:

An analysis of Tables XIV and XV give the following con-
clusions.

• Table XIV shows the reduction that CHC gives in the
model of a decision tree generated by the subset selected.
As we can see, the number of rules associated to decision
trees are significantly reduced, with a more interpretable
model.

• Table XV corroborates the results that we have studied in
Table XIV. The application of CHC in its classical or strat-
ified version significantly reduces the size of the decision
tree.

Briefly summarizing this subsection, we conclude that when the
CHC is applied to IS-TSS problems it produces a small model
with a high accuracy rate. This small model size increases its
speed in classification, reducing its storage necessities, and in-
creasing its human interpretability.

VIII. C ONCLUSION

This paper addressed the analysis of the evolutionary in-
stance selection algorithms and their use in data reduction in
KDD.

An experimental study was carried out to compare the results
of four EA models together with the classical IS ones from a
twofold perspective, the PS and the TSS, over different kinds of
data sets. The main conclusions reached are as follows.

• EAs outperform the classical algorithms, simultaneously
offering two main advantages: better data reduction per-
centages and higher classification accuracy.

• The CHC is the most appropriate EA, according to the
algorithms that we have compared. It offers the best be-
havior in IS-PS and IS-TSS when we increase the size of
the data set. In addition, it is the fastest EA algorithm ac-
cording to the study presented in this paper.

• The CHC algorithm significantly reduces the size of the
decision tree trained from the selected instances, by com-
parison with a decision tree trained from all instances. This
characteristic produces decision trees that are easier to in-
terpret.

• In medium and larger size data sets, classical algorithms
do not present balanced behavior. If the algorithm reduces
the size then its accuracy rate is poor. When accuracy
increases there is no reduction. The stratified version of
CHC offers the best results when the data set size increases
too much.

Therefore, as a final concluding remark, we consider EAs to
be a good mechanism for data reduction in KDD, and in par-
ticular the CHC algorithm. It has become a powerful tool to
obtain small selected training sets and therefore, scaling down
data. CHC can select the most representative instances inde-
pendently of their position in the search space, satisfying both
the objectives of high accuracy and reduction rates. The main
limitation of CHC is its long processing time, as mentioned
earlier, which makes it difficult to apply this algorithm to very
large data sets.

Finally, we would say that future research could be directed
toward the study of the behavior of the evolutionary instance
selection algorithms on databases with a large number of in-
stances analyzing the scaling up to bigger data sets. One di-
rection of study that we suggest is the stratified evolutionary
model in order to carry out the evaluation of the largest data
sets, searching for hybrid strategies between classical and evo-
lutionary instance selection algorithms.



CANO et al.: USING EVOLUTIONARY ALGORITHMS AS INSTANCE SELECTION FOR DATA REDUCTION IN KDD: AN EXPERIMENTAL STUDY 573

APPENDIX

TABLES FOR EACH DATA SET IN IS-PSAND IS-TSS
(TABLES XVI–XXI)

TABLE XVI
IS-PS AVERAGE RESULTS FORPEN-BASED RECOGNITION

TABLE XVII
IS-PS AVERAGE RESULTS FORSATIMAGE

TABLE XVIII
IS-PS AVERAGE RESULTS FORTHYROID

TABLE XIX
IS-TSS AVERAGE RESULTS FORPEN-BASED RECOGNITION
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TABLE XX
IS-TSS AVERAGE RESULTS FORSATIMAGE

TABLE XXI
IS-TSS AVERAGE RESULTS FORTHYROID

TABLE XXII
DECISION TREE FOR THETHYROID DATA SET

TABLE XXIII
DECISION TREE FOR THESUBSET OBTAINED USING CHC OVER

THYROID DATA SET
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