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A B S T R A C T
The ‘holy grail’ of trait-based ecology is to predict the fitness of a species in a particular environment based on its 

functional traits, which has become all the more relevant in the light of global change. However, current ecological 
models are ill-equipped for this job: they rely on statistical methods and current observations rather than the mecha-
nisms that determine how functional traits interact with the environment to determine plant fitness, meaning that 
they are unable to predict ecological responses to novel conditions. Here, I advocate the use of a 3D mechanistic 
modelling approach called functional–structural plant (FSP) modelling in combination with evolutionary model-
ling to explore climate change responses in natural plant communities. Gaining a mechanistic understanding of how 
trait–environment interactions drive natural selection in novel environments requires consideration of individual 
plants with multidimensional phenotypes in dynamic environments that include abiotic gradients and biotic interac-
tions, and their combined effect on the different vital rates that determine plant fitness. Evolutionary FSP modelling 
explicitly simulates the trait–environment interactions that drive eco-evolutionary dynamics from individual to com-
munity scales and allows for efficient navigation of the large, complex and dynamic fitness landscapes that emerge 
from considering multidimensional plants in multidimensional environments. Using evolutionary FSP modelling as 
a tool to study climate change responses of plant communities can further our understanding of the mechanistic basis 
of these responses, and in particular, the role of local adaptation, phenotypic plasticity and gene flow.

K E Y W O R D S :  Climate change; ecology & evolution; functional traits; functional-structural plant modelling; local 
adaptation; phenotypic plasticity.

1 .  I N T R O D U C T I O N
The ‘holy grail’ of trait-based ecology is to predict the fitness of a species 
in a particular environment based on its functional traits (Lavorel and 
Garnier 2002), which has become all the more relevant in the light of 
global change (Funk et al. 2017). The persistence of many plant species 
relies on their ability to either adapt to changing conditions in their cur-
rent habitat range, or to track their climatic niche beyond their current 
range and into previously unoccupied habitats. Either way, these plant 
species will face an array of novel abiotic and biotic conditions that 
exert selection pressures not experienced within their current range 
(Franks et al. 2007; Franks and Weis 2008; Lustenhouwer et al. 2018). 
Predicting how plant populations and communities will respond to 

the novel conditions caused by climate change has thus far been chal-
lenging, because the roles of key eco-evolutionary mechanisms such as 
adaptive evolution, phenotypic plasticity and gene flow are still poorly 
understood (Anderson and Song 2020). Furthermore, current eco-
logical models are ill-equipped to predict ecological responses to novel 
conditions due to their reliance on statistical methods and current 
observations (Pagel and Schurr 2012) rather than the mechanisms 
that determine how functional traits interact with the environment, 
thereby determining plant fitness (Williams and Jackson 2007; Angert 
et al. 2011; Alexander et al. 2016; Urban et al. 2016). This calls for the 
development of novel mechanistic modelling approaches designed to 
make predictions and formulate hypotheses on the adaptive value of 
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2 • de Vries

functional traits and life-history strategies in a changing world (Urban 
et al. 2016). Here, I will advocate the utilization of a 3D mechanistic 
modelling approach called functional–structural plant (FSP) model-
ling (Evers et al. 2018; Louarn and Song 2020), in combination with 
evolutionary modelling to explore climate change responses of natu-
ral plant communities. First, I will explain why understanding climate 
change responses of plant communities requires mechanistic model-
ling approaches. Second, I will introduce FSP modelling and discuss 
how FSP models can link individual plants to their (a)biotic environ-
ment to accurately simulate the trait–environment interactions that 
drive climate change responses of individual plants. Thirds, I will dis-
cuss how coupling FSP and evolutionary models allows scaling from 
individuals to communities through mechanistic simulation of demo-
graphic and evolutionary processes. Fourth, I  will discuss how evo-
lutionary FSP modelling can help explore the behaviour of complex 
systems with multidimensional plant phenotypes in multidimensional 
environments. Last, I will highlight the importance of considering the 
spatial and temporal dynamics of these multidimensional environ-
ments, their effects on selection and the role of phenotypic plasticity.

2 .  U N D E R S TA N D I N G  C L I M AT E  C H A N G E 
R E S P O N S E S  R E Q U I R E S  M E C H A N I S T I C 

M O D E L L I N G  A P P R O A C H E S
Climate change responses of plant communities are not dominated 
by any one trait or environmental factor, but rather, are the product of 
interactions between multiple traits, abiotic factors, biotic interactions 
and demographic processes (McGill et al. 2006; Laughlin and Messier 
2015). Plant communities are complex mixtures of different species 
that represent a range of functional strategies. In turn, each species 
within a community has functional trait variation, which affects the 
different vital rates that determine the fitness of that species (Laughlin 
et al. 2020). While functional traits are a great tool to describe variation 
in functional strategies on the species and community levels (Wright 
et al. 2004; Díaz et al. 2016), they have proven to be poor predictors 
of ecosystem functioning (van der Plas et al. 2020). This indicates that 
species level functional trait variation may fail to capture the granular-
ity required to accurately link traits to vital rates, and that traits taken 
out of the context of the individual lack predictive power (Yang et al. 
2018). This is highlighted by two observations: first, the fact that multi-
ple functional strategies can coexist in a given environment challenges 
the idea that traits can predict ecosystem level responses in a detailed 
way (Adler et al. 2014). Second, functional trait variation on the spe-
cies level is often the result of multiple populations that have adapted 
to their local environmental conditions, showing that functional trait 
variation needs to be considered in the context of the local environ-
ment. This population level variation is important to consider in the 
context of climate change, as it can either improve or impede a spe-
cies’ ability to track their environmental niche or adapt to local envi-
ronmental change (Atkins and Travis 2010; Anderson and Song 2020; 
Anderson and Wadgymar 2020). Observed patterns of local adapta-
tion along environmental gradients suggest that populations at the spe-
cies’ cold range edge are generally adapted to abiotic conditions, while 
populations at the warm range edge are generally adapted to biotic 
interactions (Griffith and Watson 2005; Hargreaves et al. 2014). These 
observations are in accordance with ecological theory, which suggests 

that the selection pressures exerted by abiotic conditions play a larger 
role in environments that are abiotically stressful, while biotic interac-
tions play a larger role in more benign environments (Louthan et al. 
2015; Briscoe Runquist et al. 2020). However, how abiotic and biotic 
selection pressures interact to shape locally adapted phenotypes is not 
clear-cut (Briscoe Runquist et  al. 2020; Hargreaves et  al. 2020), yet 
these interactions are key to understanding climate change impacts on 
plant communities (HilleRisLambers et  al. 2013). Therefore, under-
standing how plant communities respond to the novel conditions 
resulting from climate change requires a focus on the mechanisms 
that link the functional traits to fitness on the level of individual plants 
through interactions with their abiotic and biotic environment.

3 .  F S P  M O D E L L I N G :  L I N K I N G  T H E  P L A N T 
TO  T H E I R  ( A ) B I O T I C  E N V I R O N M E N T

Perhaps the most important mechanism that links plant form and 
function to plant fitness in relation to its local (a)biotic environment 
is the acquisition of, and competition for resources such as light, water 
and nutrients, which shape plant communities through niche dif-
ferentiation and competitive exclusion (Kunstler et  al. 2016; Levine 
et al. 2017; Adler et al. 2018). Plant community structure is expected 
to change as a result of climate change, either through changes in the 
interactions between competitors that currently coexist, or through 
the introduction of novel competitors. This leads to major changes 
in the identity and strength of competitive interactions, as well as the 
environmental context in which these interactions occur (Alexander 
et al. 2015). Predicting how these changes in competitive interactions 
may affect future plant communities requires modelling approaches 
to simulate the mechanisms of resource acquisition and competition, 
and their effects on demographic processes (Alexander et  al. 2016). 
Competitive interactions are strong drivers of selection, because traits 
that favour resource acquisition may allow pre-emptive access to that 
resource (i.e. a tall plant shades a short plant but not vice versa; Falster 
and Westoby 2003), and may lead to competitive asymmetry (i.e. a 
tall plant acquires a disproportionate share of resources compared to a 
small plant; Weiner 1990; McNickle and Dybzinski 2013). Integrating 
these mechanisms is key to understanding climate change responses 
of plant communities, but requires both a high spatial resolution that 
captures plant architecture and resource heterogeneity on the subindi-
vidual-level, as well as a community-level perspective that captures 
relative trait values of individually distinct plants.

To this end, I propose the use of FSP modelling, which is a mecha-
nistic modelling approach that simulates the performance of individ-
ual plants through an explicit representation of plant structure in a 3D 
environment in combination with functional responses to that environ-
ment. Functional–structural plant modelling is a versatile toolbox that 
can integrate scales ranging from gene to community levels, represent 
a wide range of systems and answer a wide variety of questions (Evers 
et al. 2018; Louarn and Song 2020). Functional–structural plant mod-
elling is an excellent tool to simulate climate change responses of plant 
communities because of their ability to simulate a high level of spatial 
detail, which allows simulation of the mechanisms that underly inter-
actions between traits and the (a)biotic environment and from which 
relationships between traits and fitness emerge. Functional–structural 
plant models have widely adopted the carbon economy as the basis 
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to simulate the link between plant form and function and plant fit-
ness in relation to the (a)biotic environment (Sterck and Schieving 
2007; Evers et  al. 2010; Gauthier et  al. 2020). The carbon economy 
encompasses the assimilation of carbon through photosynthesis, the 
allocation of these assimilates to drive plant growth and development 
and the loss of these assimilates through respiration, tissue death or 
exudation. The carbon economy is strongly dependent on the abiotic 
environment, as both photosynthesis and plant development are tem-
perature-dependent processes, and because photosynthesis requires 
the acquisition of light, CO2, water and nutrients. Implementation of 
the carbon economy allows FSP models to explore how changes in key 
climatic variables such as increased temperatures, elevated CO2 levels 
and altered water availability affect plant growth and development. To 
describe plant form and function, FSP models may take a trait-based 
approach that integrates a large variety of morphological, physiological 
and phenological plant traits, such as leaf shape (Schmidt and Kahlen 
2018), plant height (Renton et al. 2005), leaf insertion angle (de Wit 
et al. 2012), root insertion angle (Postma et al. 2014), defence expres-
sion (de Vries et al. 2019) and flowering time (de Vries et al. 2018), 
among many others. Functional–structural plant modelling is then 
able to link these traits to the abiotic environment, including nutri-
ents (Dunbabin et al. 2004), water (Braghiere et al. 2020), light (Hitz 
et al. 2019) and temperature (Chen et al. 2014). Functional–structural 
plant models can capture the heterogeneity in resource availability, 
plant morphology and plant functional responses in a high level of spa-
tial detail, thereby accurately simulating how these climatic variables 
drive plant growth and development, and mediate competitive inter-
actions. Thus far, FSP models have mostly considered the acquisition 
and competition for different above- and below-ground resources in 
isolation (Postma and Lynch 2012; Evers and Bastiaans 2016; Bongers 
et al. 2018; de Vries et al. 2018), but recent developments have seen 
the integration of the two resource systems in whole-plant models that 
simulate both shoot and root architectures (Drouet and Pagès 2007; 
Louarn and Faverjon 2018; Zhou et al. 2020; de Vries et al. 2021). Such 
a whole-plant approach is imperative to simulating plant community 
dynamics, because competition for multiple resources drives niche dif-
ferentiation and shapes different functional strategies (Kunstler et al. 
2016; Levine et al. 2017; Adler et al. 2018). This highlights how the 
carbon economy is not only the foundational mechanism that links 
the plant to their abiotic environment, but also the link through which 
interactions between the plant and their biotic environment play out.

Functional–structural plant modelling is an excellent tool to simu-
late plants in a broad ecological context, and has been used to study a 
myriad of biotic interaction such as plant–plant (Bongers et al. 2014; 
Evers and Bastiaans 2016; Faverjon et al. 2019), plant–herbivore (de 
Vries et  al. 2018), plant–pathogen (Robert et  al. 2008; Garin et  al. 
2014; Streit et  al. 2017) or plant–mycorrhizal interactions (Schnepf 
et al. 2016; de Vries et al. 2021). However, these biotic interactions are 
mostly simulated in isolation, and models that simulate interactions 
between biotic agents have only seen recent development (Douma 
et  al. 2019; de Vries et  al. 2021). These interactions between biotic 
agents are known play an important role in shaping climate change 
responses of plant communities (HilleRisLambers et  al. 2013; Post 
2013), which calls for the integration of multiple biotic interactions 
into FSP models designed to simulate climate change responses of 

plant communities. Similarly, FSP models that focus on natural sys-
tems are often used to simulate single plant species rather than diverse 
mixed-species communities, which have received only recent atten-
tion (Faverjon et al. 2019; Bongers 2020). Simulation of mixed-spe-
cies plant communities is required to link variation in physiological, 
phenological and morphological traits to plant community structure 
(Zakharova et  al. 2019), which is a strong driver of the competitive 
interactions among plants (Alexander et al. 2016; Adler et al. 2018), 
as well as interactions between plants and pollinators (Sargent and 
Ackerly 2008), soil microbes (Hodge and Fitter 2013), pests (Agrawal 
et al. 2006) and pathogens (Mordecai 2011). This calls for an increased 
focus on the development of FSP modelling tools designed to simulate 
mixed-species plant communities going forward.

4 .  C O U P L I N G  F S P  A N D 
E V O LU T I O N A R Y   M O D E L S

Understanding the full scope of the eco-evolutionary dynamics that drive 
climate change responses of plant communities requires explicit consid-
eration of population level processes, both genetic and demographic, that 
drive evolution through selection, genetic drift and gene flow (Lowe et al. 
2017). In particular, gene flow between populations is known to play a 
complex evolutionary role as it can either promote or constrain adapta-
tion (Garant et al. 2007). Low amounts of gene flow ensure that beneficial 
alleles can spread across populations to maintain adaptive genetic varia-
tion (Slatkin 1987; Rieseberg and Burke 2001; Tallmon et al. 2004), while 
large amounts of gene flow can homogenize populations and work against 
the diversifying forces of mutation, genetic drift and directional selection 
that drive local adaptation (Haldane 1930; García-Ramos and Kirkpatrick 
1997, but see Fitzpatrick et al. 2015). Because FSP modelling is a trait- and 
individual-based modelling approach, it can accommodate intraspecific 
trait variation (Zakharova et al. 2019), which is the basis of these eco-evo-
lutionary processes and is therefore key to predict community responses 
to environmental change (Bolnick et al. 2011). To couple FSP and evolu-
tionary models, one or more model parameters have to be made subject to 
selection, gene flow and genetic drift. This requires a definition of fitness 
to drive selection for these parameters, the incorporation of mechanisms 
that link these parameters to fitness and for these parameters to be herit-
able (Fig. 1). These heritable parameters will most commonly constitute 
a selection of functional traits (de Vries et al. 2020), but can also consti-
tute genes or even the shape of a plastic response (Bongers et al. 2019), 
depending on the model. Similarly, plant fitness will most commonly be 
defined as reproduction, but, depending on the model, fitness can include 
male and female fecundity and survival. The combination of FSP and evo-
lutionary modelling allows for the mechanistic simulation of demographic 
and evolutionary processes from which contrasting functional strategies 
along multiple environmental gradients emerge (Bornhofen et al. 2011; de 
Vries et al. 2020). Additionally, this mechanistic approach can simulate co-
evolution between species and selection-driven changes in species interac-
tions as emergent model behaviour, because the underlying mechanisms 
simulated by the FSP model are driven not only by absolute trait values, 
but also by trait values relative to those of neighbouring plants. Integrating 
physiological, demographic and evolutionary processes in the same model 
requires balancing the high temporal and spatial resolution required for 
physiological processes with the large temporal and spatial extend required 
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4 • de Vries

for demographic and evolutionary processes (Fig. 1; Oddou-Muratorio 
et al. 2020; Zhang and DeAngelis 2020). This balancing of resolution and 
extent is also prevalent when comparing the simulation of small, short-lived 
plant species that allow for more spatial and temporal detail, to simulation 
of trees, which require sacrificing spatial and temporal detail to balance the 
increased computational demand inherent to simulating large, long-lived 
plant species. To deal with this constraint, evolutionary FSP models can 
represent a community of plants that stretches across an environmental 
gradient as a series of small, local communities consisting of tens to hun-
dreds of individuals, depending on their size, to infer the selection pressure 
at discrete points along the environmental gradient (Bongers et al. 2019; 
de Vries et  al. 2020). Subsequently, to simulate the larger spatial extent 
required for evolutionary processes such as gene flow, the evolutionary 

FSP models can be designed to simulate several of these small, local com-
munities in parallel, and connect them through a submodel of pollen and 
seed dispersal (Colbach 2009). By striking this balance between the inte-
gration of detailed physiological processes and large-scale demographic 
and evolutionary processes, evolutionary FSP modelling offers a unique 
opportunity to unravel how climate change affects plant communities.

5 .  S I M U L AT I N G  S E L E C T I O N  O F 
M U LT I D I M E N S I O N A L  P H E N O T Y P E S  I N 
M U LT I D I M E N S I O N A L  E N V I R O N M E N T S

Plants exist in complex environments where multiple (a)biotic driv-
ers of selection interact with multiple plant functional traits to deter-
mine the different vital rates that make up plants fitness; growth, 

Figure 1. A visual summary of the processes and scale of evolutionary FSP modelling. The FSP model simulates the morphology, 
physiology and phenology of individually distinct plants in relation to their (a)biotic environment, which shapes individual vital 
rates (growth, reproduction and survival). The FSP model is coupled to the evolutionary model through a) one or more heritable 
parameters (e.g. genes, traits) that serve as input to the FSP model and are subject to selection, gene flow and genetic, and b) the 
fitness components that are the output of the FSP model and drive selection, gene flow and genetic drift. These population level 
processes in turn determine the community-level variation that determine what genotypes are present in the population, as well as 
the biotic interactions that these individuals experience. This coupling requires the model to balance the high spatial and temporal 
resolution required to simulate detailed physiological processes and the large extent required to simulate demographic and 
evolutionary processes that shape populations and communities.
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reproduction and survival (Fig. 1; McGill et  al. 2006; Laughlin and 
Messier 2015; Laughlin et al. 2020). Describing functional differences 
between species therefore requires consideration of multiple trait axes 
that differentiate between species in multiple ecological dimensions 
(Laughlin 2014; Kraft et  al. 2015), and of the interactions between 
these trait axes that give rise to trade-offs, and define functional strate-
gies (Wright et al. 2004; Sterck et al. 2011; Díaz et al. 2016; Züst and 
Agrawal 2017). However, integrating this multidimensionality in both 
the plant phenotypes and their environment leads to an exponentially 
increasing computational demand. This computational demand can 
be drastically reduced by using an evolutionary algorithm to explore 
the behaviour of complex FSP models that integrate multidimensional 
phenotypes and environments. This is achieved by the evolutionary 
model only simulating an evolutionary trajectory from a set of initial 
trait values to an optimal combination of trait values, rather than using 
a full-factorial simulation design to fully explore the fitness landscape 
(a conceptual representation of trait–fitness relationships as a surface 
with peaks and valleys that is described by one or more trait axes, see 
Gavrilets 2010; Svensson and Calsbeek 2012; De Visser and Krug 
2014). The computational benefits of this approach can be exemplified 
by the work of Renton and Poot (2014), who developed an evolution-
ary FSP model that simulated single root systems searching for bedrock 
cracks that would provide access to ground water and ensure their sur-
vival in the dry Australian summer. The model was used to simulate 
selection in a large and complex fitness landscape consisting of 16 trait 
axes, which would require 1016 simulations to explore using a full-facto-
rial simulation design and 10 values for each trait. However, because an 
evolutionary algorithm was used to traverse evolutionary trajectories 
across the fitness landscape (rather than using a full-factorial simula-
tion design), these potential 1016 simulations were reduced to a more 
manageable 800 000 simulations (2000 generations * 100 plants * four 
runs). The work by Renton and Poot (2014) also demonstrates that 
a large fitness landscape may have multiple local optima that will be 
missed when only traversing a single evolutionary trajectory through 
the fitness landscape. To identify the presence and locations of these 
local optima requires multiple, preferably randomly generated, initial 
conditions, both through an initial population of plants with randomly 
generated genotypes and through replication of the evolutionary 
runs. Although the fitness landscape investigated by Renton and Poot 
(2014) was both large and complex (i.e. consisting of many interacting 
trait axes), both the environment and the drivers of selection did not 
change between generations and the plants were simulated in isolation 
rather than in competition with other plants. This resulted in a static fit-
ness landscape that did not change over time, contrasting the dynamic 
fitness landscapes that shape plant communities. Recent years have 
seen the development of three other evolutionary FSP models that 
simulated dynamic fitness landscapes driven by resource competition 
between plants (Yoshinaka et  al. 2018; Bongers et  al. 2019; de Vries 
et  al. 2020), marking the first steps towards simulating selection in a 
dynamic environment.

6 .  P H E N O T Y P I C  P L A S T I C I T Y  A N D 
S E L E C T I O N  I N  A   D Y N A M I C  E N V I R O N M E N T
Plants live in dynamic environments where both abiotic conditions 
and biotic interactions vary over temporal and spatial scales, and 

climate change is expected to increase the strength and frequency of 
environmental variation, and in particular the frequency of distur-
bances such as heat waves, droughts, pathogens or insect pests (Seidl 
et al. 2017). Plant populations can be seen as the combined results of 
selection pressures exerted by the environment over large temporal 
and spatial scales, as these environmental dynamics determine the 
dynamics of the fitness landscape (MacColl 2011). Therefore, a phe-
notype observed in a natural system is not necessarily optimized for 
the local environment in which it is observed, but rather optimized 
for the broader context of the temporal and spatial variation of the 
environment in which the plant occurs (Laughlin and Messier 2015). 
One way in which plants can adapt to this variation is through active 
plastic responses to environmental cues that aim to maximize their 
fitness in dynamic environments (Sultan 2000; Morel-Journel et  al. 
2020). However, a plastic response will not necessarily allow the plant 
to express the optimal phenotype in all possible environments that the 
plant might encounter (Bongers et al. 2019; Douma et al. 2019). Thus, 
plastic responses allow plants to scale between two extreme strategies: 
a Jack-of-all trades that is able to maintain fitness in unfavourable envi-
ronments, versus a master-of-some that is able to maximize fitness in 
favourable environments (Richards et al. 2006). These strategies high-
light that we must be cautious in assuming that a plant is expressing 
the optimal phenotype for the environment it is currently observed 
in, but rather consider the plant within the broader context of spatial 
and temporal variation in the environment. Understanding the role of 
phenotypic plasticity in a broad environmental context is essential to 
accurately predict plant population responses to climate change, both 
in the short and the long term (Nicotra et  al. 2010; Valladares et  al. 
2014; Henn et al. 2018). Phenotypic plasticity is in itself a complex tar-
get of selection, and can play an important role in shaping evolutionary 
processes (Crispo 2008). On the one hand, phenotypic plasticity can 
dampen natural selection by allowing phenotypic divergence between 
populations without promoting genetic divergence. On the other hand, 
phenotypic plasticity may promote natural selection by allowing plant 
populations to adapt to, and persist in novel environments. However, 
phenotypic plasticity is often neglected in research on plant popula-
tion responses to climate change (Matesanz and Ramírez-Valiente 
2019), potentially because accurately measuring phenotypic plastic-
ity requires elaborate experimental set-ups (Arnold et al. 2019). As a 
result, many outstanding questions regarding the role of phenotypic 
plasticity in plant population responses to climate change remain.

Functional–structural plant modelling has proven to be an 
excellent tool to evaluate the adaptive value of phenotypic plas-
ticity (Bongers et  al. 2019). In FSP models, phenotypic plasticity 
can be mechanistically represented as a dose–response curve that 
describes the expression of a trait in response to a particular envi-
ronmental cue (Evers et al. 2007). The calibration of these response 
curves relies on experimental studies to elucidate the different com-
ponents of the plastic response, such as the type of response curve 
(Poorter et  al. 2010), the different cues involved in the response 
(Pierik et al. 2013), as well as the location of signal perception and 
integration (Pantazopoulou et al. 2017). When such detailed exper-
imental data are available, the shape of the response curve can be 
implemented in an evolutionary FSP model as a functional trait that 
is subject to selection by the (a)biotic environment (Bongers et al. 
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6 • de Vries

2018), and used to study how environmental variation drives selec-
tion for plastic responses. This goes beyond what is possible with 
experimental methods and is an important step towards under-
standing the role of phenotypic plasticity in the response of plant 
communities to the novel conditions caused by climate change. In 
particular, FSP models can shed light on the role of active plastic 
responses to cues that indicate environmental heterogeneity and 
mediate traits that vary on subindividual levels. Some examples that 
are relevant in the light of climate change include shade-avoidance 
responses to light cues that mediate novel or changing competitive 
interactions, plasticity in root and leaf traits in response to tem-
poral and spatial heterogeneity in the availability of nutrients and 
water, phenological responses to temperature changes and defence 
responses to herbivore or pathogen attack (Nicotra et al. 2010).

7 .  C O N C LU S I O N S
Understanding climate change responses of plant communities 
requires consideration of functional trait variation at the individual 
level in relation to the local (a)biotic environment. These trait–envi-
ronment interactions determine the individual vital rates that drive 
population level eco-evolutionary dynamics, which ultimately shape 
plant communities. Here, I have outlined how evolutionary FSP mod-
elling can help understand climate change responses of plant com-
munities by taking a mechanistic modelling approach that integrates 
processes from plant physiology to community scales. Evolutionary 
FSP modelling is a versatile tool to study interactions between traits 
and fitness and how plant physiology drives eco-evolutionary pro-
cesses, and to unravel the mechanistic basis of species interactions.
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