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Abstract

We have developed a new approach (MDLEP) to learning Bayesian network

structures based on the Minimum Description Length (MDL) principle and

Evolutionary Programming (EP). It employs a MDL metric, which is founded

on information theory, and integrates a knowledge-guided genetic operator for

the optimization in the search process. In contrast, existing techniques based

on genetic algorithms (GA) only adopt classical genetic operators. We conduct

a series of experiments to demonstrate the performance of our approach and

to compare it with that of the GA approach developed in a recent work. The

empirical results illustrate that our approach is superior both in terms of quality

of the solutions and computational time for most data sets we have tested.

Lastly, our MDLEP approach does not need to impose the restriction of having

a complete variable ordering as input.
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1 Introduction

Data mining aims at extracting automatically implicit and nontrivial knowledge from

data. Recently, researchers have begun to work on methods for learning Bayesian

networks from data [7, 3, 17]. It has been shown that this problem is believed to be

computationally intractable [2]. Herskovits and Cooper [9] proposed a system known

as KUTATO based on the entropy technique. Later, they developed a Bayesian

metric which can measure the fitness of a network structure to the data based on

Bayesian approach [3]. A search algorithm called K2 was proposed to find the most

desirable network. One limitation of this search method is that they require as input

a total ordering among the variables. Heckerman et. al. [7] and Spirtes et. al. [16]

proposed various approaches to learn network structures without the variable ordering

restriction. More recently, Larrañaga et. al. [13, 14] have done some work on using

genetic algorithms for learning Bayesian networks.

We develop a new approach (MDLEP) to learning multiple-connected network

structures based on the Minimum Description Length (MDL) principle and Evolution-

ary Programming (EP). Specifically, our approach employs a MDL-based Bayesian

network learning technique founded on information theory and integrates an opti-

mization process which is based on evolutionary programming. An important char-

acteristic of our approach is that, in addition to ordinary genetic operators, we design

a knowledge-guided operator which incorporates a MDL learning scheme. Essentially

we make use of the network structure discovery knowledge for developing the genetic

operators. In contrast, previous work based on genetic algorithms (GA) do not con-

sider such knowledge in the operators. For instance, Larrañaga et. al. [13] used a

chromosome to represent a particular variable ordering. The purpose of the genetic

operators is to evolve different variable orderings. For each new variable ordering

formed by the operators, it is then passed to K2, an existing Bayesian network search
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algorithm proposed in [3], to obtain a network. In another recent work done by

Larrañaga et. al. [14], they adopted a classical GA approach and used a chromosome

to represent a particular network. Thus the purpose of the genetic operators is to

evolve different networks. For each network formed by the operators, it is evaluated

using an existing metric mentioned in [3] to measure its merits. However, only simple

and standard genetic operators are used. Furthermore, our approach does not need

to impose the restriction of having a complete variable ordering as input. Lastly, our

approach can be applied to Bayesian metric as described in [7] although we currently

employ the MDL metric. It has been shown that the MDL metric possesses similar

theoretical properties found in Bayesian methods [15].

We conduct a series of experiments to demonstrate the performance of our MDLEP

approach and to compare it with that of the classical GA approach described in [14].

The empirical results illustrate that our approach is superior both in terms of quality

of the solutions and computational time for most data sets we have tested.

2 Problem Definition and MDL metric

A Bayesian network is composed of a network structure and a set of parameters

associated with the structure. In general, the structure consists of nodes which are

connected by directed edges and form a directed acyclic graph. Each node represents

a domain variable that can take on a finite set of values. Each edge represents a

dependency between two nodes. A characteristic of such dependency is that it can be

uncertain and is parameterized probabilistically. Formally, let N = {N1, . . . , Nn} be

the set of nodes representing the variables in a domain. Each Ni can instantiate from

a finite set of values. In a Bayesian network concerned with N , there is a parent set

ΠNi
for each node Ni. If Ni has no parent in the network structure, ΠNi

is an empty

set. This structure captures the fact that the instantiation of node Ni depends on the
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instantiations of the nodes in ΠNi
. Since the dependency can be uncertain, there is

a set of conditional probability parameters associated with each node. For node Ni,

the probability parameters are in the form of P (Ni | ΠNi
).

The aim of learning Bayesian networks is to automatically construct such a net-

work model from raw data. The learning problem can also be viewed as a kind of

unsupervised learning where the targets to be learned are Bayesian networks. The

input data are a collection of cases. Each case is a fully-instantiated set of domain

variables corresponding to some observed real-world circumstance in the domain of

interest. In the previous work of Lam and Bacchus on this problem [12, 11], we

make use of the Minimum Description Length (MDL) principle as a means for bal-

ancing between simplicity and accuracy. Central to this approach is a cost metric for

a candidate network structure. The cost metric is a function representing the total

description length Dt(B) of a candidate network structure B. Within the framework,

a shorter length Dt corresponds to a better network. Ideally we would like to find

a network structure which has the lowest Dt. We call such a network an optimal

network. In situations where an optimal solution cannot be obtained due to limited

computing resources, we wish to find a network with Dt as low as possible. The total

description length Dt of a candidate network structure B can be decomposed into

each individual variable. Let ΠNi
be the parent set of Ni. With overloading of the

notation Dt, it can be expressed as:

Dt(B) =
∑

Ni∈N

Dt(Ni, ΠNi
)

More detailed description of the MDL approach can be found in [12].
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3 The MDLEP Learning Approach

Evolutionary Programming (EP) uses the highest level of abstraction by emphasizing

the adaptation of behavioral properties of various species [4, 5]. Genetic Algorithms

(GAs) models evolution at genetic level [10, 6]. EP is a stochastic optimization

strategy that emphasizes the behavioral linkage between parents and their offspring

rather than seeking to emulate specific genetic operators as observed in nature. It is

a useful method of optimization when other techniques such as gradient descent or

direct, analytical methods are not possible. EP is suitable for difficult combinatoric

and real-valued function optimization problems in which the fitness landscapes are

rugged and have many locally optimal solutions. On the other hand, GAs cannot

guarantee similarity between offspring and their parents because GAs emphasize on

structural similarity.

There are three important differences between EP and the classical GA. Firstly,

there is no constraint on the representation. The classical GA involves encoding

the problem solutions as fixed-length binary strings [10, 6]. In EP, the representation

follows from the problem. Thus the mutation operation does not demand and assume

any particular encoding method. Secondly, the mutation operators simply change

aspects of the parent according to a statistical distribution. Minor modifications in

the behavior of the offspring occur more frequently than substantial variations in the

behavior of the offspring. Furthermore, the severity of mutations is often reduced

as the global optimum is approached. Thirdly, EP applies mutation operators only

while the classical GA uses crossover, mutation, and other genetic operators. We

describe our MDLEP approach to learning Bayesian network structures based on EP.

The newly designed mutation operators used in our algorithm are also presented.
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3.1 The Algorithm

The learning algorithm starts with an initial population of directed acyclic graphs

(DAGs) called parents. Each parent is evaluated by using the MDL metric described

in section 2. Next, each parent creates an offspring by performing a series of muta-

tions to the parent. The probabilities of executing 1, 2, 3, 4, 5, or 6 times mutations

are 0.2, 0.2, 0.2, 0.2, 0.1, and 0.1 respectively1. For each mutation, one of the four mu-

tation operators: simple mutation, reversion, move, and knowledge-guided mutation;

is selected for execution according to a uniform distribution. If mutations generate

an invalid offspring that is cyclic, the algorithm deletes the edges of the offspring

that invalidate the DAG conditions. The new offspring are then evaluated by using

the MDL metric. The next generation of parents are selected from the current gen-

eration of parents and offspring. The algorithm performs this selection by requiring

each DAG to compete against q DAGs randomly chosen from the population. If the

MDL metric of the former is lower than or equal to the chosen opponent in each com-

petition, the former receives one score. The algorithm retains the groups of DAGs

with the highest scores as parents of the next generation. The algorithm repeats this

process until the terminating condition is satisfied. The algorithm is summarized as

follows:

1. Set t to 0.

2. Create an initial population, Pop(t), of PS random DAGs. The initial population size

is PS.

3. Each DAG in the population Pop(t) is evaluated using the MDL metric.

4. While t is smaller than the maximum number of generations G

1These parameter values are selected to ensure that minor modifications of the offspring occur

more frequently than substantial variations of the offspring.

6



• Each DAG in Pop(t) produces one offspring by performing a number of mutation

operations. If the offspring has cycles, delete the set of edges that violate the

DAG condition. If choices of set of edges exist, we randomly pick one choice.

• The DAGs in Pop(t) and all new offspring are stored in the intermediate popu-

lation Pop’(t). The size of Pop’(t) is 2*PS.

• Conduct a number of pairwise competitions over all DAGs in Pop’(t). Let Bi

be the DAG being conditioned upon, q opponents are selected randomly from

Pop’(t) with equal probability. Let Bij , 1 ≤ j ≤ q, be the randomly selected

opponent DAGs. The Bi gets one more score if Dt(Bi) ≤ Dt(Bij), 1 ≤ j ≤ q.

Thus, the maximum score of a DAG is q.

• Select PS DAGs with the highest scores from Pop’(t) and store them in the new

population Pop(t+1).

• Increase t by 1.

5. Return the DAG with lowest MDL metric found in any generation of a run as the

result of the algorithm.

In our experiments, we set the value of q to be 5.

3.2 The Mutation Operators

The learning algorithm uses four mutation operators, simple mutation, reversion,

move, and knowledge-guided mutation, to produce new offspring from existing DAGs.

Let B be an existing DAG to be mutated, N = {N1, . . . , Nn} be the set of nodes

representing the variables in a domain, E be the set of edges in B. The operators as

described below generate a new offspring by modifying E.

Simple Mutation - This operator first randomly selects an edge eij from nodes Ni

to Nj, where i 6= j. If this edge is present in the network it is deleted from the

network, otherwise it is added to the network.
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Reversion - This new operator randomly selects an edge, says eij, from E, and

modifies the direction of the edge. In other words, the set of edges, E ′, of the offspring

is: E ′ = (E − {eij}) ∪ {eji}
Move - This new operator modifies the parent set of a node, says Ni, if ΠNi

is not

empty. Specifically, it deletes a node Nk where Nk ∈ ΠNi
, from the parent set of Ni

randomly, and adds a new node Nj to ΠNi
if Nj 6∈ (ΠNi

∪ {Ni}).
Knowledge-Guided Mutation - This new operator is similar to the simple mu-

tation operator. It removes an existing edge from a Bayesian network structure or

adds an edge if there is no edge between the corresponding nodes. The main differ-

ence between these two operators is that knowledge-guided mutation considers the

MDL metric of all possible edges and determines which edge should be removed or

inserted. The MDL metric of an edge from Nj to Ni, where i 6= j, is computed by

using Dt(Ni, {Nj}). Before the learning algorithm is executed, the MDL metric of

all possible edges is computed and stored. When knowledge-guided mutation opera-

tor determines that an existing edge of the parental network structure B should be

removed, it retrieves the stored MDL metric of all edges in E and those edges with

higher MDL metric will be deleted with higher probabilities. On the other hand, if

knowledge-guided mutation operator decides to add an edge to the parental network

structure, it gets the stored MDL metric of the edges not in E, and the edges with

lower MDL metric will have higher probabilities of being added. The motivation of

this operator is described in the following paragraph.

Recall that the MDL metric of a network structure B is the sum of the MDL metric

Dt(Ni, ΠNi
) of all nodes in the network. The objective of the learning algorithm is to

find a network structure with minimal MDL metric. Thus, if we want to delete an

existing edge from some node to Ni, it is better to select an edge with higher MDL

metric because it is more likely to reduce the MDL metric Dt(Ni, ΠNi
) of node Ni.
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Similarly, if we want to insert an edge from some node to Ni, it is better to select an

edge with lower MDL metric because it is more likely to minimize the increment of

the MDL metric of node Ni.

4 Empirical Results and Evaluation

We have conducted a number of experiments to evaluate the performance of our

MDLEP approach. We also compare it with a classical GA approach. In each ex-

periment, the learning algorithms attempt to learn a Bayesian network from a data

set. The data sets are generated from known Bayesian network structures and con-

ditional probability tables using probabilistic logic sampling technique. The learning

algorithms take the data set only as input. They do not know the Bayesian networks

that generate the data set in any ways during the learning process. After a Bayesian

network structure is learned, it is evaluated by two measures. One undirected mea-

sure is the structural difference which is defined as:
∑n

i=1 φi where φi is the sum of the

symmetric difference of each parent in the learned network and the known network.

Another measure is the total description length Dt. The lower the measure, the better

is the network.
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Figure 1: The PRINTD Network Structure
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Figure 2: The ALARM Network Structure

The data set PRINTD is derived from a network structure shown in Figure 1.

This network structure deals with troubleshooting a printing problem discussed in

[8]. 5000 cases were generated. The data set ALARM is derived from a network

structure shown in Figure 2. This structure is concerned with a medical domain of

potential anesthesia diagnosis in the operating room [1]. We generated 500, 1000,

2000, 3000, 5000 cases from this structure. The MDL metric of the original network

structures for the PRINTD data set is 106541.62. The MDL metric of the original

network structures for the ALARM data sets of 500, 1000, 2000, 3000, and 5000 cases

are 10533.33, 18533.45, 34287.88, 49595.82, and 81223.41 respectively.

4.1 Comparison Between MDLEP and GA

We employ our MDLEP learning algorithm to solve the ALARM problem with 500

cases and the PRINTD problem with 5000 cases. The population size PS is 50 and the

maximum number of generations is 5000. Forty trials of these experiments were per-

formed. We also implemented a classical genetic algorithm (GA) similar to the work

done by [14]. In the GA approach, the MDL metric is used for the objective function.
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A Bayesian network structure with n nodes is represented by an n × n connectivity

matrix C, where its elements, cij is 1 if j is a parent of i and 0 otherwise. An individual

of the population is represented as a string: c11c21 · · · cn1c12c22 · · · cn2 · · · c1nc2n · · · cnn

The one point crossover and mutation operations of classical GA are used [6, 10].

The population size PS is 50 and the maximum number of generations G is 5000.

The crossover probability pc is 0.9 and the mutation rate pm is 0.012. Elitist selection

without local optimization is used in the experiments. Forty trials of these experi-

ments are performed. For the ALARM problem with 500 cases, we record the MDL

metric of the best Bayesian network of each successive population and calculate the

average values of the 40 trials for increasing generations. The MDL metric for our

MDLEP learning algorithm and the GA are delineated in Figure 3. The structural

differences between the best Bayesian network structure found in each trial and the

original ALARM network for the two algorithms are summarized in Table 1. The last

two columns of the table contain:

• the average of the structural differences of the 40 trials (ASD), and

• the smallest structural difference of the 40 trials (SSD)

We have also collected a number of statistics presented in Table 2. The rows of

the table are:

• The average of the MDL metric of the 40 trials (AOM).

• The smallest MDL metric of the 40 trials (SMM).

2We have performed a number of experiments of using the GA with different combinations of

parameter values to solve the PRINTD problem with 5000 cases. These combinations are (Pc = 0.9,

Pm = 0.01), (Pc = 0.9, Pm = 0.1), (Pc = 0.5, Pm = 0.01), and (Pc = 0.5, Pm = 0.1). The results

of these experiments indicate that (Pc = 0.9, Pm = 0.01) is the best combination.
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Figure 3: The MDL metric for the ALARM problem with 500 cases

• The average number of generations (ANG) performed before the best Bayesian

network structure is found.

• The average number of MDL metric evaluations per Bayesian network structure

(AME).

• The average size of the parent sets (APS).

• The average number of invalid Bayesian network structures produced in each

generation (AIB).

• The average number of edges deleted in each invalid Bayesian network (AED).

From Figure 3, we can see that MDLEP induces much better Bayesian network

structures than the GA. The values of ASD and SSD for MDLEP (Table 1) are 24.6

and 17 respectively. On the other hand, the values of ASD and SSD for the GA are

56.9 and 45 respectively. An one-tailed paired t-test is used to determine if ASD

12



ASD SSD

MDLEP 27 21 29 24 26 32 21 19 27 27

GA 63 68 61 61 53 54 53 53 65 52

MDLEP 27 24 27 24 25 24 25 25 24 25

GA 54 54 45 58 53 56 68 59 57 55

MDLEP 27 24 18 30 29 27 27 22 24 17

GA 57 62 63 56 58 56 54 61 53 54

MDLEP 18 25 29 25 24 25 23 24 18 25 24.6(3.4) 17

GA 56 58 49 55 61 59 57 56 52 57 56.9(4.7) 45

Table 1: The structural differences between the best Bayesian network structure found

and the original ALARM network. The numbers in brackets are standard deviations

AOM SMM ANG AME APS AIB AED

MDLEP 9761.90 9689.55 4205.47 3.58 1.04 19.91 1.27

(36.56) (562.60) (0.01) (0.02) (0.48) (0.02)

GA 10720.63 10436.42 4495.42 10.37 2.13 49.40 5.68

(140.23) (598.13) (0.36) (0.04) (0.14) (0.23)

Table 2: Comparison between MDLEP and the GA for the ALARM problem with

500 cases. The numbers in brackets are standard deviations

for MDLEP is significantly smaller than that for the GA at 95% confidence level.

The t-statistics is 35.07, thus the Bayesian network structures generated by MDLEP

are qualitatively better than those obtained by the GA. From Table 2, we find that

MDLEP evolves good Bayesian network structures at an average generation of 4205.

The values of AOM and SMM for MDLEP are 9761.90 and 9689.55 respectively. The

values of AOM and SMM for the GA are higher than those of MDLEP. They are

respectively 10720.63 and 10436.42. The GA obtains the solutions at an average

generation of 4495.42. To determine if ANG for MDLEP is significantly smaller than

that for the GA at 95% confidence level, an one-tailed paired t-test is performed and

the t-statistics is 2.23. From this information, we can conclude that MDLEP finds

better network structures at earlier generations than the GA. MDLEP is about 6.82

times faster than the GA when they are executed on a Sun UltraSparc machine. The
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values of AME, APS, AIB, and AED for MDLEP are smaller than those of the GA,

thus MDLEP is better and faster than the GA.

For the PRINTD problem with 5000 cases, we record the MDL metric of the

best Bayesian network of each successive population and calculate the average values

of the 40 trials for increasing generations. The values for MDLEP and the GA are

delineated in Figure 4. The structural differences between the best Bayesian network

structure found in each trial and the original PRINTD network for the two algorithms

are summarized in Table 3. A number of statistics are presented in Table 4.
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Figure 4: The MDL metric for the PRINTD problem with 5000 cases

We observe from Figure 4 that MDLEP induces better Bayesian network struc-

tures than the GA. Table 3 indicates that MDLEP evolves the original PRINTD net-

work structure in all trials. On the other hand, the GA produces the original PRINTD

in only 12 trials. From Table 4, we find that MDLEP evolves good Bayesian network

structures at an average generation of 1032.32. The values of AOM and SMM for

MDLEP are both 106541.62. The values of AOM and SMM for the GA are slightly

higher than those of MDLEP. They are respectively 106622.09 and 106541.62. The

GA obtains the solutions at an average generation of 3555.55. An one-tailed paired t-
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ASD SSD

MDLEP 0 0 0 0 0 0 0 0 0 0

GA 4 8 0 21 0 0 6 12 0 0

MDLEP 0 0 0 0 0 0 0 0 0 0

GA 6 0 3 3 15 3 0 0 5 4

MDLEP 0 0 0 0 0 0 0 0 0 0

GA 3 6 0 9 0 8 10 0 2 13

MDLEP 0 0 0 0 0 0 0 0 0 0 0.0(0.0) 0

GA 7 6 2 0 3 9 1 6 8 10 4.82(4.91) 0

Table 3: The structural differences between the best Bayesian network structure found

and the original PRINTD network. The numbers in brackets are standard deviations

AOM SMM ANG AME APS AIB AED

MDLEP 106541.62 106541.62 1032.32 2.84 1.98 18.69 1.31

(0.0) (243.89) (0.88) (0.05) (5.90) (0.01)

GA 106622.09 106541.62 3555.55 6.36 2.19 38.64 2.81

(82.06) (1033.69) (0.11) (0.07) (2.00) (0.25)

Table 4: Comparison between MDLEP and the GA for the PRINTD problem with

5000 cases. The numbers in brackets are standard deviations

test is used to determine if ANG for MDLEP is significantly smaller than that for the

GA at 95% confidence level. The t-statistics is 15.02, thus, MDLEP induces the orig-

inal PRINTD network structure at much earlier generations than the GA. MDLEP

is about 3.62 times faster than the GA when they are executed on a Sun UltraSparc

machine. The values of AME, APS, AIB, and AED for MDLEP are smaller than

those of the GA, thus MDLEP is better and faster than the GA.

4.2 Parameter of MDLEP

We study the effect of different values of q for the MDLEP algorithm on solving the

ALARM problem with 500 cases and the PRINTD problem with 5000 cases. The

population size PS is 50 and the maximum number of generations is 5000. The

values of q are 3, 5, 7, 9, and 11. Ten trials of these experiments were performed. The
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structural differences between the best Bayesian network structure found in each trial

and the original ALARM network for the MDLEP algorithm with different values of q

are summarized in Table 5. For the PRINTD problem with 5000 cases, the structural

differences are presented in Table 6. We find that there is not significant difference

for various values of q by using a two-tailed paired t-test at 95% confidence level.

Trial label ASD SSD

1 2 3 4 5 6 7 8 9 10

q=3 27 21 29 24 26 32 21 19 27 27 25.3(4.03) 19

q=5 27 24 27 24 25 24 25 25 24 25 25(1.15) 24

q=7 27 24 18 30 29 27 27 22 24 17 24.5(4.40) 17

q=9 18 25 29 25 24 25 23 24 18 25 23.6(3.34) 18

q=11 30 27 21 25 17 23 22 18 28 23 23.4(4.20) 17

Table 5: The structural differences of the best BAYESIAN network found by the

MDLEP algorithm with different values of q for the ALARM problem with 500 cases.

The numbers in brackets are standard deviations

Trial label ASD SSD

1 2 3 4 5 6 7 8 9 10

q=3 0 0 0 0 0 0 0 0 0 0 0.0(0.0) 0

q=5 0 0 0 0 0 0 0 0 0 0 0.0(0.0) 0

q=7 0 0 0 0 0 0 0 0 0 0 0.0(0.0) 0

q=9 0 0 0 0 0 0 0 0 0 0 0.0(0.0) 0

q=11 0 0 0 0 0 0 0 0 0 0 0.0(0.0) 0

Table 6: The structural differences of the best BAYESIAN network found by the

MDLEP algorithm with different values of q for the PRINTD problem with 5000

cases. The numbers in brackets are standard deviations

4.3 Learning the ALARM Network Using MDLEP

In sub-section 4.1, we observe that MDLEP is superior to the classical GA proposed

by Larrañaga et. al. [14]. Thus, more experiments are done to determine the per-

formance of MDLEP on learning the ALARM network with 1000, 2000, 3000, and
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5000 cases. The parameter values of MDLEP described in sub-section 4.1 are also

used here. Ten trials of each experiment are conducted. A number of statistics are

presented in Table 7. The structural differences between the best Bayesian network

structure found in each trial and the original ALARM network for all experiments

are summarized in Table 8.

1000 2000 3000 5000

AOM 18021.33 33825.42 49431.21 81148.56

(64.65) (125.29) (284.52) (262.25)

SMM 17905.80 33745.70 49230.08 81004.00

ANG 3914.6 3554.1 3962.8 3931.7

(674.39) (667.74) (884.20) (505.19)

AME 3.59 3.63 3.64 3.64

(0.02) (0.01) (0.02) (0.02)

APS 1.16 1.29 1.36 1.43

(0.03) (0.02) (0.02) (0.02)

AIB 20.81 21.61 22.65 22.62

(0.45) (0.38) (0.59) (0.65)

AED 1.29 1.32 1.35 1.36

(0.01) (0.02) (0.02) (0.03)

Table 7: Performance of MDLEP for the ALARM problem with 1000, 2000, 3000,

and 5000 cases. The numbers in brackets are standard deviations

From Table 7, we can observe that the values of AOM and SMM for all experiments

are smaller than the corresponding MDL metric of the original ALARM network. In

other words, there are Bayesian network structures with smaller MDL metric in the

search space and MDLEP can successfully find them in all experiments. The values

of ANG show that the best network structures are obtained at generations between

3554 and 3963. The values of AME, APS, AIB, AED for all experiments are within a

small interval. However, for a problem with larger number of cases, their values are

normally larger than those with smaller number of cases. In other words, the ALARM

problem with larger number of cases is harder and takes longer to solve than the one
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number of cases

1000 2000 3000 5000

Trial 1 22 9 9 7

Trial 2 20 12 8 9

Trial 3 22 9 16 13

Trial 4 15 10 17 10

Trial 5 27 10 15 10

Trial 6 15 8 18 11

Trial 7 23 10 8 8

Trial 8 16 12 9 10

Trial 9 26 12 11 17

Trial 10 24 13 9 11

ASD 21.0(4.40) 10.5(1.65) 12(4.03) 10.6(2.80)

SSD 15 8 8 7

Table 8: The structural differences between the best Bayesian network structure found

and the original ALARM network. The numbers in brackets are standard deviations

with smaller number of cases. Table 8 indicates that MDLEP can produce network

structures that are similar to the original ALARM network.

5 Conclusions

We have presented a novel approach (MDLEP) to learning Bayesian network struc-

tures based on the Minimum Description Length (MDL) principle and Evolutionary

Programming (EP). Specifically, our approach employs a MDL-based Bayesian net-

work learning technique which is founded on information theory and integrates an

optimization process which is based on evolutionary programming. An important

characteristic of our approach is that, we have designed a knowledge-guided operator

which incorporates a MDL learning scheme. Essentially we have made use of the

network structure discovery knowledge for developing the genetic operators. We have

conducted a series of experiments to demonstrate the performance of our MDLEP

approach and to compare the performance of the MDLEP approach with the classical
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GA approach described in [14]. The empirical results illustrate that our approach is

superior both in terms of quality of the solutions and computational time in most data

sets we have tested. For future work, we will compare the MDLEP approach with

other algorithms including stochastic hillclimbing and simulated annealing methods

[18] .

References

[1] I. A. Beinlich, H. J. Suermondt, R. M. Chavez, and G. F. Cooper. The ALARM

monitoring system: A case study with two probabilistic inference techniques for

belief networks. In Proceedings of the 2nd European Conference on Artificial

Intelligence in Medicine, pages 247–256, 1989.

[2] D. Chickering, D. Geiger, and D. Heckerman. Learning Bayesian networks:

Search methods and experimental results. In Proceedings of the Fifth Conference

on Artificial Intelligence and Statistics, pages 112–128, 1995.

[3] G. F. Cooper and E. Herskovits. A Bayesian method for the induction of prob-

abilistic networks from data. Machine Learning, 9:309–347, 1992.

[4] D. B. Fogel. An introduction to simulated evolutionary optimization. IEEE

Trans. on Neural Network, 5:3–14, 1994.

[5] L. Fogel, A. Owens, and M. Walsh. Artificial Intelligence through Simulated

Evolution. New York: John Wiley and Sons, 1966.

[6] D. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learn-

ing. Reading MA: Addison-Wesley, 1989.

19



[7] D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian net-

works: The combination of knowledge and statistical data. Machine Learning,

20(3):197–243, 1995.

[8] D. Heckerman and M. Wellman. Bayesian networks. Communications of the

ACM, 38(8):27–30, 1995.

[9] E. Herskovits and G. Cooper. KUTATO: An entropy-driven system for construc-

tion of probabilistic expert systems from databases. Technical report, Knowledge

Systems Laboratory, Medical Computer Science, Stanford University, KSL-90-

22, 1990.

[10] J. Holland. Adaptation in Natural and Artificial Systems. Cambridge MA: MIT

Press, 1992.

[11] W. Lam. Bayesian network refinement via machine learning approach. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 20(3):240–251, 1998.

[12] W. Lam and F. Bacchus. Learning Bayesian belief networks - an approach based

on the MDL principle. Computational Intelligence, 10(3):269–293, 1994.
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