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ABSTRACT

Evolutionary programming is applied to the postpocessing of ensemble forecasts of temperature on a
spatial domain. These forecasts are obtained from the 11-member Reforecast V2 ensemble over the region
from 248–538N to 1258–668W for the period 1 January 1985–14May 2011. The evolution is based upon a static
ecosystemmodel that holds constant the number of individuals (algorithms), using a fixed rate of introduction
of new algorithms and removal of existing algorithms. Each algorithm adheres to a specific underlying genetic
architecture, and the selection pressure on the ‘‘species’’ is according to deterministic performance (root-
mean-square error) on a training dataset. On a 2325-case, independent test dataset, the method improved
root-mean-square error and ranked probability score relative to the Reforecast ensemble by 0.318F (8.7%)
and 3.3%, respectively, across the domain, with 96%of the grid points showing simultaneous improvements in
both measures. The use of input information by the evolutionary programming algorithms varied by region;
while the algorithm forecasts at all locations are fundamentally tied to the Reforecast ensemble forecast,
northeastern locations found snow cover to be the next most useful input, whereas southwestern locations
preferentially employed precipitable water. An adaptive form of the approach, developed to be readily im-
plemented into operations, is tested in the absence of improving inputs but is found to only slightly degrade
performance (1.2% in root-mean-square error and 0.6% in ranked probability skill score). A number of future
extensions are discussed.

1. Introduction

Postprocessing of numerical weather prediction (NWP)

model forecasts provides an opportunity to extract more

forecast skill from these data, and, relative to the computa-

tional requirements of producing the model data itself, it

has a relatively low cost. A number of postprocessing ap-

proaches have been examined in the meteorological litera-

ture, including multiple linear regression (i.e., MOS; Glahn

and Lowry 1972), artificial neural networks (e.g., Koizumi

1999; Kuligowski and Barros 2001; Hennon et al. 2005;

Roebber et al. 2007), evolutionary programming (EP; Yang

et al. 1996; Bakhshaii and Stull 2009; Roebber 2010, 2015a),

quantile mapping (e.g., Scheuerer and Hamill 2015), en-

semble Kalman filtering (e.g., Houtekamer and Mitchell

1998), Bayesian model averaging (Raftery et al. 2005), and

Bayesianmodel combination (BMC;Roebber 2015a), either

alone or along with bias correction (e.g., Cui et al. 2012).

Roebber (2015a) used bias correction in combination

with BMC in the context of single-site EP ensembles,

where the inputs were a combination of observed and

NWP data, and showed that approach to be effective.

Here, we will modify this approach, extending it to

spatial data involving only NWP ensemble model in-

puts, and document the relative gains in both de-

terministic and probabilistic skill that are obtainable

over the raw NWPmodel forecasts, multiple regression

models using the same inputs, and the bias-corrected

NWP ensemble. Finally, we will apply the spatial EP

methodology using an adaptive form.

In section 2, we describe the dataset used in the

analysis and detail the postprocessing methodology. In

section 3, we apply the method to the problem of 72-h

temperature forecasts on a North American domain and

discuss future extensions of the method. In section 4, we

present a summary of the paper.

2. Methodology

a. Meteorological data

The data used in this study are analysis and 72-h, 2-m

temperature forecasts valid at 0000 UTC, obtainedCorresponding author: Paul J. Roebber, roebber@uwm.edu
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from the Reforecast V2 ensemble (RFv2; 11 members;

Hamill et al. 2013) 18 latitude–longitude data for the

region from 248–538N and 1258–668W (Fig. 1). Fore-

casts are verified using the corresponding 0-h analysis

for the period 1 January 1985–14 May 2011.

Additionally, we obtain 72-h RFv2 forecasts for

850-hPa temperature, cloud cover, precipitable water,

10-m wind speed, and snow cover in excess of 1 in., all

from the control member of the ensemble only. We

compute the cosine of the solar zenith angle at local

noon for each date at each grid point following:

cosZ5 sin
p

180
u

� �

3 sin
p

180
D

� �

1 cos
p

180
u

� �

3 cos
p

180
D

� �

,
(1)

whereZ is the solar zenith angle,u is the latitude (8), and

D is the declination angle (8), given by
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and g (degrees) is

g5
360

365:25
3 (Day1 0:5), (3)

where Day is the day of the year. We compute the cli-

matological 2-m temperature (based on the analysis

data), and extract the minimum, 20th percentile, me-

dian, 80th percentile, and maximum members of the

2-m temperature forecasts from the 11-member RFv2

ensemble. Finally, we compute an analog forecast for

2-m temperature, using as the analog search database all

cases from the beginning of the available data (1 January

1985) up to 10 days prior to the forecast in question. The

analog is defined based upon the mean absolute differ-

ence in the forecast minimum, 20th percentile, median,

80th percentile, and maximum value obtained from the

11-member RFv2 ensemble. The forecast is then formed

FIG. 1. Root-mean-square error (8F) of the bias-corrected, control 2-m temperature forecast from the 11-member 72-h Reforecast
version 2 ensemble, valid at 0000 UTC, for the period 1 Jan 2005–14 May 2011. Verification is based upon the 0-h Reforecast V2
analysis.
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using the observed 2-m temperature of the analog case

as defined in Delle Monache et al. (2011).

The sample is split with 4383 days (1 January 1985–

31 December 1996) for training, 2922 days (1 January

1997–31 December 2004) for cross validation, and

2325 days (1 January 2005–14 May 2011) for testing. In

the EP procedure (see sections 2b–d below), the training

data are used to develop the solutions, while the cross-

validation data are used to determine which of these

solutions to retain. Both training and cross-validation

data are then used again to assign weights for BMC.

Finally, the test data are used to evaluate performance—

all results reported in this paper are based on this in-

dependent test dataset of 2325 days.

One might wonder whether a limiting factor in

methods such as this, which map inputs to outputs (EP,

multiple linear regression, artificial neural networks,

etc.), and which rely on older training data, is the rela-

tively rapid pace of climate change? First, if the training

data contain sufficient exemplars of what will be repre-

sented in the future climate, this should not restrict in

any way its successful future application. Second, where

this is not the case, if a proportional response to a given

predictor continues to hold in future climate states, then

the method will still hold. On the other hand, if these

response functions do not hold and there are insufficient

exemplars of such future conditions in the training data,

then one should not necessarily expect the method to

perform well in the future. Ultimately, this argues for

adaptive forms of such systems, a concept that has been

explored by Roebber (2015c) and that is further dis-

cussed in section 3b below.

Although the 18 grid spacing of the RFv2 is somewhat

coarse, the long forecast history of these data, which

provide for a wide variety of conditions in all seasons,

makes it an excellent resource for the training and testing

of postprocessors. In section 3c, we provide a discussion

of how these ideas might benefit from application to a

higher-resolution dataset, such as the High Resolution

Rapid Refresh (HRRR; Benjamin et al. 2016).

b. Bias correction

Each forecast input Ft at time t is bias corrected fol-

lowing Cui et al. (2012), such that

B
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where Bt is the accumulated bias, Ft is the uncorrected

forecast, and Ot is the verification. The corrected fore-

cast at time t (Fct) is then formed by
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c. Bayesian model combination postprocessing for

spatial evolutionary programs

For the spatial training, we take some advantage of the

autocorrelation of meteorological fields. We accomplish

this by applying the concept of von Neumann neighbor-

hoods, defined by the grid point in question and the four

immediately adjacent points, using BMC (Monteith et al.

2011) to weight the resultant set of five forecast inputs.

Note that the number of weight comparisons required

by BMC scales as WN, where W is the number of raw

weight levels andN is the number of forecasts for a given

time step. Larger neighborhoods than the five-point one

used here could be envisioned, but come at computa-

tional expense. Here, we use only 6 levels of raw weights

(0–5), which for all possible weights then require 65

comparisons, a number that is quite tractable with mod-

est computing power even over a grid of 1800 points. For

obvious reasons, we require that at least 1 of the 5 inputs

have nonzero weight and thus, the possible normalized

weights (where the set of 5 weights sum to 1) range from

0 to 1, with the smallest possible nonzero weight being

0.048 and the largest possible less than unity being 0.833.

For each set of 5 forecasts, we cycle through the 65

possible combinations, producing a weighted forecast.

At each grid point, for each set of 5 forecasts, we com-

pute the posterior probability for the particular model

weight combination (e) given the training data (D) ac-

cording to the following formula:
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1

410
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where « is estimated using the average error rate of the

model combination on the training data, r is the number

of correct predictions, and n is the total number of

training cases. Readers interested in the rationale for

this formulation should consult Monteith et al. (2011).

Here, we define a model combination as correct for a

given date if the weighted forecast has lower squared

error than that of the median forecast obtained from the

set of 11 RFv2 forecasts at the point and time in ques-

tion. The final weight combination that is selected is the

one that maximizes the logarithm of Eq. (6), taking into

account that « must be less than 0.5.

Under the assumption that each individual member k

of the weighted forecast is normally distributed, one can

produce a wide variety of probability distribution shapes,

where for each individual member, the mean is the

forecast value, and the variance o2 is estimated as follows:
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where wk is the normalized weight of the kth forecast,

Fk is the kth forecast, O is the observed value, and the

summation is over the five forecasts and the n training

cases. The overall probability distribution function

is then simply the sum of these five individual distri-

butions, weighted by wk (i.e., a normal mixtures distri-

bution). Thus, this system can be used for both

deterministic [e.g., root-mean-square error (RMSE)]

and probabilistic [e.g., ranked probability skill score

(RPSS)] verification and will be assessed accordingly in

section 3.

Given the relatively coarse 18 latitude–longitude

grid, one might expect some difficulties to emerge

along orographic boundaries (complex terrain, coast-

lines), since the neighborhood sampling in those areas

may include substantially unalike points. One could

envision a procedure where such points are excluded

from the neighborhood, but for simplicity here, we

will simply allow the BMC weighting process to em-

pirically discount these locations through the above

process. The general issue will be addressed in the

discussion.

d. Evolutionary programming

The basic architecture of EP algorithms as developed

by Roebber (2015a) consists of a sum of 10 IF-THEN

equations involving linear and nonlinear combinations

of predictors. Such architecture is quite flexible, yet

because of the structural logic, allows for interpretation

of the forecasts so-produced. The genome is composed

of the variables, mathematical operators, and coeffi-

cients contained within each of the 10 IF-THEN lines

that make up the sum. The number of algorithm lines is

subjective and is chosen to insure sufficient algorithm

complexity to handle the variety of situations under

consideration.

Initially, a population of algorithms is created with

this underlying structure, but in which all the variables,

operators, and coefficients are chosen at random. In

each iterative step (hereafter, generation), the fitness

of individual algorithms are evaluated and better per-

forming members are preferentially allowed to pass

their genetic material to the next generation (in some

cases, with mutations that provide an important source

of innovation). This process allows improvements in

performance from one generation to the next until some

measure of convergence is achieved. Here, we follow

these basic principles but with some differences in detail

with respect to Roebber (2015a).

Let F be the EP algorithm, such that

F5 hRFv20i1 �
5

j51

›
j
, (8)

where j refers to the algorithm line, hRFv20i is the nor-

malized RFv2 ensemble mean forecast (where the sum

of the five lines represents the adjustment to the nor-

malized RFv2 ensemble mean temperature), and each

line j is expressed as follows:
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where V1,j, V2,j, V3,j, V4,j, and V5,j can be any of the input

variables from Table 1;C1,j,C2,j, andC3,j are real-valued

multiplicative constants in the interval [21, 1]; OR,j is

one of two relational operators (#, .); and O1,j, O2,j

can be either the addition or multiplication operators.

This notation is such that V1,j, V2,j, etc. indicate the first

variable in line j, the second variable in line j, and so on.

The input variables are normalized to [0, 1] based on the

minimum and maximum of the training data, and the

final forecast is then reconstituted to the proper non-

normalized value based upon the minimum and maxi-

mum of the training data verification.

This structure, unlike that ofRoebber (2015a), specifies

a baseline forecast formed by the RFv2 ensemble mean

and the succeeding five lines then each represent an ad-

justment to that baseline forecast. For example, weather

forecasters know that under strongly radiative conditions

(clear skies, light winds), the minimum temperature will

be lower if there is snow cover, so here one of the five

IF-THEN conditional lines might test for the presence of

TABLE 1. Variables used as inputs to the evolutionary programs.
Bias-corrected inputs are bold. Note that this list is not inclusive of
all variables that could be included, but represent a selection of
variables that can be reasonably defended on the basis of both
meteorological and postprocessing considerations.

72-h forecast 850-hPa temperature
2-m climatological temperature (monthly basis)
72-h forecast cloud cover
72-h forecast precipitable water
72-h forecast 10-m wind speed
72-h forecast snow cover in excess of 1 in.
Cosine of the solar zenith angle
72-h analog forecast 2-m temperature
Min of the 72-h forecast 2-m temperatures from the 11 RFv2

members

20th percentile of the 72-h forecast 2-m temperatures from the

11 RFv2 members

Median of the 72-h forecast 2-m temperatures from the 11 RFv2

members

80th percentile of the 72-h forecast 2-m temperatures from the

11 RFv2 members

Max of the 72-h forecast 2-m temperatures from the 11 RFv2

members

Unity

2528 MONTHLY WEATHER REV IEW VOLUME 146

Unauthenticated | Downloaded 08/27/22 06:41 AM UTC



snow and calculate a downward adjustment to the en-

semble mean forecast in that case. Additionally, the as-

tute reader will note that the number of IF-THEN

conditional lines has been reduced from the 10 lines of

the prior studies (e.g., Roebber 2015a,b,c) to the 5 in this

study. This has been done to reduce computational

complexity—examination of algorithms trained on other

datasets using the 10 line form revealed that most of the

lines were not used in the final, trained forms.

The EP algorithms are trained using the following

steps:

1) Bias correct all input data that are 2-m temperature

forecasts (e.g., the bold items of Table 1).

2) Normalize all the input data in the range 0–1.

3) Randomly initialize a population of 50 algorithms at

each of the 60 3 30 grid points.

4) Evaluate the RMSE of each algorithm on the

training and cross-validation datasets.

5) At each grid point, sort the 50 algorithms in order

from lowest to highest RMSE on the training data.

6) Eliminate the 10 worst performers based on the train-

ing RMSE.

7) Select the top-ranked performer based on the train-

ing RMSE that is within some distance (see below) of

the current grid point and fill 1 of the available 10

slots with its clone.

8) Clone the 9 best performers based on the trainingRMSE

at the current grid location to fill the remaining 9 slots.

9) For each of the 10 clones, randomly select one of the

5 lines and one of the 11 genetic components of the

line (5 variables, 3 operators, and 3 coefficients) and

randomly replace it (sampling with replacement, so

the clone may or may not mutate).

Steps 4–9 are repeated through 50 generations, saving

the best individual algorithm at each grid point, based on

the cross-validation RMSE from any time during the

training. Note that while all the algorithms share the

same underlying structure, the variables, operators, and

coefficients are populated randomly and then allowed to

evolve—thus, in general, the algorithms will be struc-

turally distinct both at and across grid points.

Eliminating the 10 worst performers (step 6) and not

allowing them tomutate to the next generation can result

in the loss of genetic diversity. This is a trade-off that is

made in order to create ecosystem ‘‘space’’ for new forms

to develop (the 10 new algorithms replace the 10 that have

been eliminated). The assumption is made that 50 algo-

rithms at a grid point are able to provide sufficient diversity

for innovative solutions to be discovered. One could pro-

ceed without step 6, but this would require continuously

increasing the carrying capacity and the overhead associ-

ated with carrying large numbers of poorly performing

algorithms is undesirable. This is particularly the case

since, as is shown in section 3a, large increases in carrying

capacity do not translate to large improvements in algo-

rithm performance. More sophisticated ecosystem dy-

namics can be employed that would provide a natural

counter to unrestrained population growth while still

promoting both innovation and diversity and is currently

being explored (see section 3c for further discussion).

The first clone is selected from some normally dis-

tributed location away from the grid point (nx, ny),

following Basak et al. (2010), where

s
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and i is the generation number, and M is the number of

grid points in the x direction (60) or the y direction (30).

Clones 2–10, however, are always produced locally (i.e.,

at nx, ny). It should be noted that the ‘‘next generation’’

is not introduced until the current generation has com-

pleted the procedure at all grid points, so the cloning

process is independent of the ordering of those grid

points (i.e., if a point atX,Y produces a clone atX1 1,Y

and X, Y is processed before X 1 1, Y, when the pro-

cedure reaches point X 1 1, Y, it does not yet know

about the clone).

This distant clone selection idea borrows from the

technique of invasive weed optimization (IWO; e.g.,

Mehrabian and Lucas 2006) such that as generations

increase, the probability of selecting a clone from farther

away decreases (i.e., falling from 98% at the first gen-

eration to 45% at the 50th generation). The rationale for

this scheme is that as generations increase, algorithms

are expected to have already achieved substantial local

optimization, yet we do not wish to entirely eliminate

the possibility that a useful innovation could be intro-

duced from more distant locations. Basak et al. (2010)

showed that the addition of the cosine function allows

for more rapid detection of optimal solutions, since the

probability of selecting a clone locally increases to 100%

every 10th iteration (from 5, 15, 25 etc.).

In the above procedures, we do not use the following

features that Roebber (2015a) showed to be beneficial:

genetic cross-over (simulated sexual selection), training

niches (here, we rely on the neighborhoods to perform

this function), the transposition form of mutation, fatal

disease, and an external performance criterion (instead,

we use the ranking process to provide the necessary

selective pressure). As will be shown below, application

of this somewhat simplified training process on the

spatial domain produces good performance both for the

individual algorithm at a grid and when these are com-

bined using BMC (section 3).
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3. Results

There are substantial spatial forecast patterns in

RMSE, dictated in large part by latitude and physiog-

raphy and likely also by the density of the verifying

observations. In the North American domain, the con-

tinental climate of the interior leads to larger tempera-

ture variability and larger forecast RMSE [Fig. 1; note

that the correlation between the standard deviation

in the analysis temperature at each grid point (based

on monthly data) and the RFv2 72h forecast RMSE

across this domain is 0.93]. Thus, interpretation of per-

formance should be accounted for in relation to this

‘‘background’’ level of error.

The procedures described in section 2 were applied to

the RFv2 dataset, and the results averaged over the

domain excluding the 4 boundaries [i.e. we verify on a

58 3 28 grid rather than 60 3 30 (Table 2), and also at

individual grid points]. By way of comparison, we also

include verification for forecasts produced using an or-

dinary least squares multiple linear regression (MLR)

with the 13 predictors (Table 1) along with the RFv2

ensemble mean, where the MLR equations are devel-

oped independently at each grid point using the training

and cross-validation data from before.

No attempt was made to control for overfitting of the

MLR; however, the number of predictors is of the same

order as operational versions of the National Oceanic

and Atmospheric Administration (NOAA) model out-

put statistics (MOS) and the RMSE of the MLR

is within 3% between the training and independent test

data, suggesting little generalization error. Other po-

tentially useful techniques for this application, which

have not been evaluated here, include nonhomoge-

neous Gaussian regression (Gneiting et al. 2005; Hemri

et al. 2014), quantile regression forests (Taillardat et al.

2016) and nonhomogeneous boosting (Messner et al.

2017). No claim is made here of the relative superi-

ority with respect to any of these techniques; such

evaluations will need to be conducted in the con-

text of the specific forecast context of concern. Here,

we provide the MLR and the RFv2 as standard base-

lines, along with bias corrections and BMC as further

improvements.

For the test data, the RMSE, relative to the 11-member

RFv2 ensemble mean, is 0.318, 0.278, 0.418, and 0.628F

lower for the bias-corrected RFv2 ensemble, the bias-

corrected multiple linear regression, the EP, and the EP

using bias correction and BMC, respectively (Table 2;

note that in this paper, we use the Fahrenheit tempera-

ture scale to be consistent with the available input and

verification temperature data). Thus, while substantial

improvement in the RFv2 ensemble mean forecast is

obtained simply through the Cui et al. (2012) bias cor-

rection, these gains are doubled when using this correc-

tion on EP along with BMC. Although ordinary least

squares regression is a form of bias correction, the Cui

et al. (2012) correction to theMLR reduces RMSE across

the domain considerably but notably the bias-corrected

MLR does not improve upon the bias-corrected RFv2

ensemble mean forecast. While the analog forecast is not

competitive as a stand-alone, as will be shown in the

relative weights analysis below, it does provide some

useful information in the form of another input to the EP

algorithms.

While national forecast services work toward con-

tinuous skill improvements, an incremental advance of

this scale (0.318F) might not appear to have much value

in the public forecast context. However, as shown in

Roebber (2010), using electricity demand information

provided by Teisberg et al. (2005), an improvement of

this order can result in annual cost savings in this sector

for an Ohio-sized utility of $1.5 million (U.S. dollars) or

more. In recent years, natural gas has become an in-

creasingly important component of energy production

in the United States, and spot market prices are highly

sensitive to temperature. Although a comprehensive

analysis of the relationship between forecast error and

cost is highly complex, using data provided by the U.S.

Energy Information Administration (2014) for temper-

ature sensitivity and natural gas consumption, an approx-

imate estimate is that a forecast improvement of this scale

TABLE 2. The 72-h, 2-m temperature forecasts across the latitude–longitude domain extending from 248–538N to 1258–668W. Shown are
RMSE (8F) for the RFv2 ensemble mean without and with bias correction (BC), a multiple linear regression (MLR) trained at each grid
point using the 13 predictors (Table 1) and the RFv2 ensemble mean without and with bias correction (BC), the analog forecast, the EP
without and with BC and with the combination of bias correction and BMC (BC, BMC), and the adaptive EP without bias correction and
with the combination of bias correction and BMC (BC, BMC). Note that all computations are based on the test data (2325 days from 1 Jan
2005 to 14 May 2011). Also shown is the RPSS, using the ensemble-size correction methodology of Weigel et al. (2007).

RFv2 (BC) MLR (BC) Analog EP (BC) EP (BC, BMC) Adaptive (BC, BMC)

RMSE 3.86 (3.55) 3.97a (3.59) 5.00 3.45a (3.27) 3.45a (3.24) 3.54a (3.28)
RPSS 0.631 — — — 0.664 0.658

a The forecasts are not bias corrected but the inputs have been, as per Table 1.
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during cold outbreaks in the New York energy market

might lead to savings on the order of $250,000day21

(U.S. Energy Information Administration 2014).

Given the considerable spatial variability in error, it is

of interest to consider the spatial pattern of the relative

improvement of the EP using BMC compared to the

bias-corrected RFv2 ensemble mean (Fig. 2). The larg-

est improvements tend to be where the largest errors in

the RFv2 occur (the correlation between the reduction

in RMSE and the RMSE of the bias-corrected RFv2

ensemblemean is 0.54), the exception to this being in the

extreme southwest of the domain (offshore of California

and Mexico) where the RMSE is low.

An event that features both large temperature vari-

ability and large forecast errors is the Great Plains

cold surge. An example of such an event, and the im-

provement shown by the EP, occurred during the period

27 November–1 December 2006 (Fig. 3). We will focus

on the grid point nx5 27, ny5 10 (338N, 998W), which is

located about 250 km west of Dallas, Texas. The ana-

lyzed 0000 UTC temperature at this grid point fell from

718 to 288F from 30 November to 2 December, resulting

in RMSE for the bias-corrected RFv2 ensemble and the

EP 72-h forecasts of 5.588 and 2.888F, respectively. The

EP forecast improvement was primarily accomplished

through its relative capture of the temperature drop

between 30 November and 1 December, a deterministic

advantage that is also reflected in the 72-h probabilistic

forecast valid for 0000 UTC 1 December (Fig. 4).

It is of some interest to understand how this probabilistic

shift depicted in Fig. 4 was accomplished. In this instance,

perhaps not surprisingly, it appears to have been primarily

the result of pulling in useful upstream information. Con-

sider the five grid points making up the BMC calculation

numbered as follows: to the west (grid point 1), to the south

(grid point 2), at the point in question (grid point 3), to the

north (grid point 4), and to the east (grid point 5), with their

BMC weighting computed as 30%, 10%, 20%, 30%, and

10%, respectively. Clearly, upstream information at grid

points 1 and 4 is being weighted heavily (60%), and in this

situation we find that the forecasts (both the EP and RFv2

at grid point 4, and the EP at grid point 1) are indicat-

ing coldair inproximity to thegridpointof interest (gridpoint

3). One can then ask what contributed to the colder temper-

atures in the individual EP forecast at grid point 1? The al-

gorithm places considerable emphasis on the extremes of the

RFv2 ensemble forecast (the minimum and maximum

values), and in particular, where relatively large differences

occur indicating the presence of a significant temperature

gradient, the forecast is skewed colder. The overall effect of

these weights is to shift the probability distribution toward

colder temperatures. We note that a similar effect was

FIG. 2. Root-mean-square error (8F) improvement of the evolutionary program using Bayesian model combination relative to the bias-
corrected RFv2 ensemble mean.
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accomplished in the deterministic forecast at grid point 3

owing to the same sequence of genetic code as at grid point

1—large differences in the RFv2 minima and maxima skew

the forecast colder.

To quantify the probabilistic forecasts overall, we

compute the ranked probability score1 (RPS; Epstein

1969; Murphy 1969, 1971) and the associated skill score

(RPSS) referenced to climatology (Table 2). To correct

the RPSS for the negative bias associated with ensemble

size, we apply the correction methodology of Weigel

et al. (2007). The RPSS calculation shows a small (3.3%)

improvement for the EP relative to the bias-corrected

RFv2 ensemble across the entire domain. There is con-

sistency in this result; however, as EP improvement in

both RMSE and RPSS exists at grid points simulta-

neously over 96% of the domain.

The longitudinal axis of lowest RFv2 predictability,

based on combined ranks for RMSE and RPSS, is along

998W, making it of interest to inspect relative perfor-

mance there (Fig. 5). Although the latitudinal profiles

are similar, the EP is consistently better than the bias-

corrected RFv2 in both deterministic and probabilis-

tic performance. Some insight can be gained into these

characteristics by examination of forecast error distri-

butions. When considering the spatial distribution of the

difference in probabilities associated with specific fore-

cast error increments between the EP and the bias-

corrected RFv2 ensemble (Fig. 6), a shift from higher

toward lower forecast errors is apparent in most regions.

FIG. 3. (a)–(f) Surface analyses from 1200 UTC 26 Nov to 1200 UTC 1 Dec 2006, obtained from the NOAA Daily Weather Map series.

FIG. 4. Evolutionary program (blue) and RFv2 bias-corrected
ensemble (red) probabilistic temperature forecasts for 0000 UTC
1Dec 2006 for the grid point corresponding to 338N, 998W (located
about 250 kmwest of Dallas, TX). The analyzed temperature is the
vertical dashed line.

1 Probabilities are computedwithin temperature intervals ofwidth
28F from2808F to11208F. Thus, each bin has a verification of 1 (for
occurrence) and 0 for all other 28F bins for that case, and the mean
square error summed across all the bins becomes the multicategory
equivalent of the Brier score, the ranked probability score.
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What information does the EP use in order to gain

this forecast advantage? This can best be answered

through application of relative weights (Cooksey 1996;

Roebber 1998: Roebber 2015b). This method provides

a scaled ‘‘weighting’’ from 0 to 100 of each forecast input,

based on a regression analysis that assigns the amount of

variance in the forecast that can be uniquely attributed to

that input. This can be obtained from the squared sem-

ipartial correlation (sr2), which is the difference between

the squared multiple correlation (R2) from a regression

using all available forecast inputs and a second R2 based

upon a regression where the input of interest has been

removed. The sr2 of the ith input is then converted to a

relative weight for M inputs as follows:

rw
i
5 100

sr2i

�
M

i51

sr2i

, (11)

with the M weights summing to 100 units.

The highest weighted forecast input for the EP atmost

locations is the median, bias-corrected RFv2 forecast,

an unsurprising result since the ensemble mean forms

the baseline forecast and the ensemble median and the

mean are highly correlated. Nonetheless, this weighting

accounts for only about 50% of the variance and there is

considerable variability in the nextmost important piece

of forecast information (Fig. 7). For example, in the

northeastern portion of the domain, the second-most

important input is often snow cover, whereas in the

desert southwest, it is precipitable water, and in the

northern Great Plains, it is the cosine of the solar zenith

angle. In a few locations, the analog forecast is found to

be a useful secondary source of information for these

forecasts. Finally, we note that the list of predictors

(Table 1) is not comprehensive and the improvements

reported here are not necessarily the limit of what is

obtainable using these approaches.

Rank histograms (Anderson 1996; Hamill and

Colucci 1997; Talagrand et al. 1997) are a means of

FIG. 5. (top) Ranked probability skill score (larger is higher skill) and (bottom) root-mean-square error (lower is better performance)
for the evolutionary program (green) and bias-corrected RFv2 ensemble (red) at 998W, extending from 258 to 528N. Also shown is the
root-mean-square error for the multiple linear regression (black dashed).
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quantifying the reliability of forecast probabilities, that

is, the ensemble relative frequency should be a reliable

indication of the observed occurrence. An extension of

this is to consider the frequency of outliers, those events

that verify outside of the range indicated by the en-

semble (Siegert et al. 2011). Specifically, one expects

for a consistent K-member ensemble that outliers will

occur with a base rate of 2/(K1 1). For the 11-member,

bias-corrected RFv2, the U-shaped rank histogram

(Fig. 8, top) with a 20.9% excess outlier percentage

indicates substantial underdispersion, a problem com-

mon to numerical weather prediction models. The rank

histogram of the five-member, bias-corrected EP en-

semble still shows underdispersion (Fig. 8, bottom),

however the excess outlier percentage is reduced to

4.8%, indicating improved reliability. These EP results

are comparable to those reported for the ECMWF

and NCEP ensemble prediction systems by Buizza

et al. (2005).

a. Carrying capacity

The EP algorithms in Roebber (2015a) were devel-

oped for a single location, and accordingly the carrying

capacity of the population was set to a relatively large

number (10 000 individuals). Here, we are training al-

gorithms across an 1800 point grid, and have set the

carrying capacity to 50 individuals per grid location,

which keeps the computational demands of the training

process relatively equivalent to that of Roebber (2015a).

A question that naturally arises is whether this reduced

carrying capacity constrains the ability of the method to

develop the best solutions.

As a means of addressing this point, tests were run at

a single grid point where the forecasts are relatively

demanding (nx 5 27, ny 5 10; the same location dis-

cussed previously). For these tests, the training and

testing is accomplished as previously except that all so-

lutions are located only at the grid point in question, and

FIG. 6. Difference (evolutionary program2 RFv2 ensemble) in cumulative probabilities of forecast errors# 28 (green),. 28 and# 58
(blue), and. 58 (red). Distributions are shown for latitudes of (bottom) 258–308; (top to next to bottom) 308–358, 358–408, 408–458, 458–508,
and.508N; and for longitudes of (left) 1258–1208 and (next to left to right) 1208–1158, 1158–1108, 1108–1058, 1058–1008, 1008–958, 958–908,
908–858, 858–808, 808–758, 758–708, ,708W.
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the carrying capacity is set to 50, 100, 500, 1000, and

10 000 individuals. We find that as carrying capacity in-

creases from 50 to 10 000 individuals, the RMSE reduces

by 2.7%. Given that larger RMSE reductions are ob-

tainable through themuchmore efficient bias correction

process [Eqs. (4)–(5)], using a smaller carrying capacity

in exchange for faster processing seems worthwhile.

Such trade-offs become more important when consid-

ering adaptive forms (section 3b) or higher-resolution

domains (section 3c).

b. Adaptive application

Roebber (2015c) developed an adaptive evolutionary

programmingmethod suitable for single-site data. Here,

we generalize that result to the spatially dependent ap-

proach explored in this article. As in Roebber (2015c),

we employ a ‘‘mixed-mode’’ evolution wherein the

overall IF-THEN genetic framework, which has evolved

up to case M, uses the next generation to supply the

forecast for case M 1 1, but where the EP coefficients

C1,j, C2,j, and C3,j are adjusted in an effort to optimize

them for the case at hand.

The process begins exactly as in section 2d: we train an

initial architecture using 50 generations and the 4383

training and 2922 cross-validation days, saving the best

performing algorithm at each grid point at any point in

this training, based on RMSE on the cross-validation

data. We then evolve the IF-THEN architecture using a

moving window of 2 yr of training data and 1 yr of cross-

validation data, such that to produce a forecast for case

7306, the training interval is from case 6211–6940 in-

clusive, and the cross-validation interval is from case

6941–7305 inclusive, and these ranges are updated by 1

with each new forecast.

Here, the ‘‘fast mode’’ is that in which we adjust the

coefficientsC1,j,C2,j, andC3,j to minimize the RMSE on

the cross-validation data for that particular IF-THEN

architecture. If the performance of this newly evolved

EP algorithm (including the fast mode coefficients),

based on RMSE on the cross-validation data, is supe-

rior to that of the prior ‘‘best’’ algorithm at that grid

point, then it becomes the new best performer and

is the algorithm that is used to produce forecasts for

that grid point until such time as it is itself replaced.

The coefficients C1,j, C2,j, and C3,j are randomly se-

lected from the interval [21, 1] and this selection is

repeated 10 times, with each combination evaluated to

determine performance. The choice of 10 selections is

FIG. 7. Highest weighted forecast input (Table 1) for the evolutionary program solution at each grid, excluding the RFv2 median
forecast member.
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arbitrary and is based on balancing the need to trial

a variety of weights against computational consider-

ations, as these calculations must be repeated at every

grid point.

Since we are shortening the training intervals but not

adding improved information to the system in this test,

some degradation in performance is expected and does

occur (Table 2). The relatively small increase in RMSE

(0.098 and 0.048F for the raw and bias-corrected fore-

casts, respectively) and decrease in RPSS (0.006), how-

ever, seems acceptable given the benefit of adding an

adaptive capability that can effectively incorporate im-

proved information without the need for retraining, as

shown in Roebber (2015c).

c. Future extensions

The ‘‘ecosystem model’’ applied here is a simple,

static one—fixed births and deaths at each iteration

leading to a fixed population size for a single solution

‘‘species.’’ It is possible to implement more dynamic

models, which could incorporate multiple species in-

teractions over space and time, such as predation and/

or competitive exclusion (e.g., Lugo andMcKane 2008;

Sprott 2008; Biswas et al. 2014). Preliminary experi-

ments with such an approach suggest that it can pro-

duce additional, incremental gains in algorithm forecast

skill, but that the most substantial contribution of such

an approachmay be in its potential to improve ensemble

diversity and thereby increase probabilistic forecast

skill (e.g., Carja et al. 2014). However, such improve-

ments are not yet clearly established and remain a sub-

ject of current investigation.With regard to probabilistic

improvements, application of a different cost metric

for training may also be preferable. Here, we have em-

ployed RMSE and, as shown in Roebber (2015a,b),

there is evidence that efforts to optimize with respect to

deterministic skill can come at the expense of probabi-

listic skill. Experiments using RPS as a cost metric may

shed some light on this question.

Although we have demonstrated relative success

using this method for spatial data, extending the spatial

‘‘footprint’’ across three grid points of coarse resolu-

tion (i.e., ;300 km) likely reduces the effectiveness of

the approach. In the current configuration, a ‘‘nearby’’

point 100 km distant, which may be at a much higher

elevation, will be steeply discounted in the BMC pro-

cess, but this effectively reduces the information

available to the combination. A three-category strati-

fication of grid points based upon terrain (water,

sloped, not sloped) for the 18 3 18 data (Fig. 9)

and for 3-km gridded data (Fig. 10) demonstrates

the difference. A methodology that can account for

‘‘likeness’’ of spatially nearby points would potentially

better utilize the ability of BMC to combine information.

An example of a forecast dataset, well suited for the

purpose of testing this procedure, would be the HRRR

(Benjamin et al. 2016).

Using the 3-km HRRR, one might define neighbor-

hoods as previously except in doing so, one would also

specifically account for the likeness of grid points within

an area. Consider a synoptic field ‘‘overlaid’’ on a region

with complex orography (terrain, coastal zones). Sub-

stantial variations in temperature can arise from vari-

able terrain, and within coastal zones (e.g., lake and

sea- breeze boundaries along the Great Lakes and east-

ern, western, and southern shores, and back door cold

fronts in New England). A considerable fraction of

FIG. 8. Ranked histograms for (top) the 11-member, bias-cor-
rected RFv2 and (bottom) the 5-member, bias-corrected EP en-
semble. The base rate frequency for each bin is shown as the
horizontal line.
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regional variability in such regions will necessarily re-

flect the interaction of the orography with the synoptic

signal.

We can account for this by classifying each grid point

in the domain according to its orographic similarity

with surrounding points as in Fig. 10. One could then

proceed radially outward from each point until some

minimal set of M-like points are identified to form the

collection for BMC. Thus, a point will be matched to all

points of similar maximum slope classification by pro-

ceeding outward in all directions up to some distance

R until the M points are obtained. This set of M points

would constitute the neighborhood used in the BMC

procedure.

Applying this type of classification to the map of

Fig. 10, based upon a maximum slope of 300m (3km)21

(i.e., a grid point is considered sloped if the terrain in-

creases or decreases at a rate greater than this amount),

results in more than 96% of the domain points with at

least 100 like points within a radial distance of 50 km or

less. For the purposes of BMC, this is considerably more

like points than are needed (or are feasible) to form

ensembles and it is expected that some experimentation

would be required to find the optimal combination of

FIG. 9. A three-category stratification of grid points based upon terrain (water, sloped, not
sloped) for the 18 3 18 data and for 3-km gridded data (se next, Fig. 10) demonstrates the
difference. Shown are water (blue), sloped (green), and not sloped (red).

FIG. 10. As in Fig. 9, but for 3-km gridded data.
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performance and computational efficiency. This latter

would also be required given theO(700) increase in grid

points needed to be considered relative to the RFv2

for the otherwise similar spatial domain. Extension of

these methods to other forecasts of interest (e.g., winter

weather, severe weather, etc.) are likewise of interest.

An alternative approach to identifying likeness of spa-

tially nearby points is the ‘‘mother–daughter’’ methods

of Deng and Stull (2005, 2007).

It is important to note that the present study has used

analysis data rather than station observations for all

forecast verifications (EP, MLR, RFv2, Analog). Prior

work (e.g., Roebber 2015a) has shown that the EP

method works well for station observations, so this is

not a general limiting factor for the approach. Nonethe-

less, details related to translating forecasts from a grid

point to a specific station location are nontrivial and

might require some additional correction procedure as

part of the interpolation. It might be expected that as

higher-resolution analyses and forecasts become more

ubiquitous, the translations will become less subject to

error given the ability of the higher resolution to better

capture physiographic variation with a region. In the

present study, one should expect that the analysis is

smoother than what onemight see in the station data, and

thus the reported errors for all the forecasts are likely

smaller than that which would be obtained using station

data; nonetheless, this bias applies to all the methods

studied and we do not expect the relative performance of

the methods reported here to change.

4. Summary

In this paper, we have developed a new approach

to producing evolutionary program forecasts that ac-

counts for the spatial dimension of the data. The ap-

proach is based upon a static ecosystem model in which

the total number of individuals (forecast algorithms)

at a grid location is held constant, for a single solution

‘‘species.’’ The evolution occurs based on selection

pressure—the highest-performing individuals based on

deterministic forecast skill are allowed to produce the

next generation, and the poorest-performing individuals

based upon that same measure are eliminated.

The approach was applied to 72-h forecast data for

temperature, obtained from the 11-member Reforecast

V2 ensemble, on a 18 latitude–longitude grid for the

region from 248–538N to 1258–668W. Training, cross

validation, and testing were accomplished for the period

1 January 1985–14 May 2011. After bias correction,

the method was shown to improve deterministic (root-

mean-square error) and probabilistic (ranked proba-

bility skill score) forecasts compared to the Reforecast

V2 ensemble across this domain by 0.318F (8.7%) and

3.3%, respectively. This improvement was widespread,

with 96% of the grid points showing improvements

in both root-mean-square error and ranked probabil-

ity skill score, although the key information used in

these forecasts varied substantially with geography. An

adaptive form of the evolutionary programming ap-

proach, which would be possible to implement opera-

tionally, was tested using fixed rather than improving

inputs and found to lead to relatively little skill deg-

radation (1.2% and 0.6% for deterministic and proba-

bilistic, respectively). Future extensions to this work

include the following:

d more comprehensive inputs;
d refinements to the adaptive approach, particularly

with respect to the setting of algorithm coefficients

under the ‘‘fast evolutionary mode’’;
d implementation of a dynamic rather than a static

ecosystem model to enhance solution diversity, in

combination with a success measure such as the

ranked probability score; and
d application of the methodology to higher-resolution

datasets where ensemble construction could account

for local geographic variation.
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