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Abstract. Manipulation skills are a key issue for a humanoid robot.
Here, we are interested in a vision-based grasping system able to deal
with previously unknown objects in real time and in an intelligent man-
ner. Starting from a number of feasible candidate grasps, we focus on
the problem of predicting their reliability using the knowledge acquired
in previous grasping experiences. A set of visual features which take into
account physical properties that can affect the stability and reliability of
a grasp are defined. A humanoid robot obtains its grasping experience
by repeating a large number of grasping actions on different objects. An
experimental protocol is established in order to classify grasps according
to their reliability. Two prediction/classification strategies are defined
which allow the robot to predict the outcome of a grasp only analizing
its visual features. The results indicate that these strategies are adequate
to predict the realibility of a grasp and to generalize to different objects.

1 Introduction

The global behavior of a humanoid robot should emerge from the ability to
execute simple tasks and combine them together in an intelligent way. The im-
portant skill we are interested in is that of being able to interact with objects,
moving them with arm-like limbs. Specifically, we aim at improving the grasp-
ing skills of a robot interacting in a real, non-customized environment. We are
interested in a visual-based grasping system that can provide the robot with
the ability of grasping objects never seen before (and unmodeled) in real time.
The robot should also be able to improve its performance by learning from its
previous grasping experiences.

When a robot faces a certain practical problem, the task to be performed
can be normally subdivided into lower-level tasks, until reaching basic actions.
Conversely, these basic tasks can be put together to form more complex be-
haviors. Interesting to note, primates do not differ too much from this pattern
of behavior. Indeed, prototypes of simple actions (both cognitive and practical
ones) are coded in primate brains, and the way they connect originates higher
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Fig. 1. The UMASS Torso. A humanoid robotic system developed in the Laboratory
for Perceptual Robotics in the University of Massachusetts. On the right, a detail of
one of the two Barret hands[7] that are part of the system.

level behaviors. In the case of grasping, specific areas of the posterior motor
cortex are believed to contain a vocabulary of motor actions of different level
(e.g. preshape the fingers for a precision grip) [18]. Such actions are selected and
combined in different ways according to the task (e.g. push or grasp), the object
shape and size, the timing of the action and other issues.

Another relevant aspect coming from neuroscience studies [9, 19] is that vi-
sual processes related to grasping actions in primates are different from visual
processes having different goals. In fact, looking at an object with grasping pur-
poses activates a peculiar neural pathway which is not active if grasping actions
are not involved. This activation seems to represent a ’potential grasping action’.
Some neurons in the anterior intraprietal area (AIP) are found to be active when
grasping some particular objects, but also when looking at them with the pur-
pose of grasping (and only in those cases). Some other neurons of the same zone
are sensitive to the size or orientation of the objects. Therefore, the AIP area
seem to encode the 3D features of objects in a way that is suitable to guide
the movements for grasping them, which are stored in the premotor cortex. Not
surprisingly, the AIP area does connect strictly to the areas of the motor cortex
containing the motion primitives which have been mentioned above. Thus, as
stated by [8], ”object attributes are processed differently according to the task
in which a subject is involved. To serve object-oriented action, these attributes
are subjected to a ’pragmatic’ mode of processing, the function of which is to ex-
tract parameters that are relevant to action, and to generate the corresponding
motor commands”.

In our approach to the grasping problem in a real environment, the emphasis
has been on exploiting the use of on-line visual sensing, and the definition of
visual attributes/features extracted from the object with the purpose of grasp-
ing Interesting to note, and unlike the majority of the research, the grasping
experience obtained with different objects is merged, meaning that experience
related to a certain object is useful in order to predict the outcome of a grasp



Fig. 2. Successful execution of a grip

performed on a different object. it. This contrasts to previous approaches which
typically assume that a parameterized model of the entire object is known before
grasp planning begins. When such a model exists, there is a well-founded corpus
of analytical methods for grasp analysis and synthesis that are computationally
expensive but could be applied off-line [1]. Even if the model is not previously
available, such analytical methods could be applied after an exhaustive recon-
struction phase from the visual input. However, this is not only too costly in
terms of sensing and computation time to be feasible for real-world applications,
but also in disagreement with the neurophysiological findings described above.

Instead of this, our system is able to compute a grip of a real unmodeled ob-
ject using visual sensing in a grasp-oriented manner [13], and explicitly avoiding
a full reconstruction followed by a classical grasp planning process. The repeti-
tion of grasping actions performed on different objects under different points of
view provide the experience from which the robot learns the reliability of several
possible grasps. In this paper we describe how the robot learns to predict the
realiability of a grip starting from a number of grasping features and a set of
practical experiments.

Interesting to note, and unlike the majority of the research, the grasping
experience obtained with different objects is merged, meaning that experience
related to a certain object is useful in order to predict the outcome of a grasp
performed on a different object.

A key issue is to define the intrinsic features which characterize a grasping
action starting from visual information of the object and proprioceptive infor-
mation about the limb (and especially about the hand). Such features constitute
the base for assessing a hypotetical grip in order to predict the possible outcome
of its execution.



Fig. 3. Unsuccessful execution of a grip

We present in section 2 a set of nine features which characterize three-finger
planar grasps. The features depend on both grasping-oriented visual information
about the object and proprioceptive information about the hand geometry and
kinematics.

Later we introduce a strategy devised within this feature space so as to
predict the success of a particular grasp configuration. This strategy is based on
a nonparametric classification technique, the k-nearest neighbor rule (Sec. 4.1).
In section 5 we compare this technique with another one based on the use of a
neural network scheme. These strategies are validated using real data gathered
from experiments conducted on a humanoid system following the experimental
protocol described in Sec. 3. Our results suggest that both methodologies are
good enough to predict the reliability of a grasp within a reasonable error margin.

Finally, before going into more technical and detailed explanations, we show
two illustrative examples of the problem we are facing. Figures 2 and 3 show the
execution of two different grasping experiments. On the left side of the images is
the hand configuration correspondent to the grasp to perform. The meaning of
these figures are explained in more detail in section 2. On the right side of each
figure are depicted four frames extracted from the grasping sequence, showing
four successive instants of the action. From the first frames of each experiment
is not obvious what the outcome of the grasping action will be. Though, the
last frames show that, whilst the first grasping action (see fig. 2) was successful
and the object put back down on the table, the same didn’t occur in the second
case (fig. 3), as the object was dropped a few seconds after the lifting movement.
Thus, grips have different reliability, and our goal is to predict the most probable
outcome of their execution.



Experimental setup

Our experiments have been implemented using the UMass Torso. This humanoid
robot (Fig. 1) consists of two Whole Arm Manipulators (WAMs) from Barrett
Technologies, two Barrett Hands, a BiSight stereo head, and a quadraphonic au-
dio system. The WAMs are seven degree-of-freedom manipulators, whose kine-
matics are roughly anthropomorphic. The BiSight head consists of two cameras
and ten controllable degrees of freedom (four mechanical and six optical).

An important component of the humanoid are the grippers, in our case two
Barrett Hands (Fig. 1). Each of them is composed of three-fingers with a total of
four controllable degrees of freedom. Each finger consists of two flexion degrees
of freedom which are driven by a single motor. The fourth motor controls abduc-
tion/adduction of two of the fingers which are symmetrically placed on either
side of the remaining finger, the thumb. When adducted, the two fingers flex in
parallel to the thumb; when fully abducted, the two fingers flex in opposition
to the thumb. This design is very compact, allowing for the motors and control
CPU to be embedded into the wrist, but limits the possible placement of finger
contacts. In the UMass configuration of the Barrett Hand, the finger tips are
cylinders capped with hemispheres; each contains a six-axis force-torque sensor.

A high-level control basis provides a set of look/reach/grasp primitives upon
which our reach and grasp sequences are implemented [4, 16]. The stereo vision
system estimates the two-dimensional location of the target object on the table,
and provides a monocular image for surface curvature analysis (see [14] for more
details). Once a grip is selected (consisting of contact locations and a hand
posture), the hand is preshaped and positioned above the object. When the grasp
is physically established, the object is lifted and transported to a designated
location.

2 Vision-Based Grasp Features

In the particular case of planar grasp determination, i.e. for objects resulting
from the extrusion of a planar shape, we showed in [13, 14], how vision infor-
mation can be used to select a set of feasible grips that meet certain stability
criteria, including the particular kinematics of the three-fingered Barrett hand.
This approach typically yields a large set of triplets of contact points, out of the
infinite geometric possibilities. However, only one grip can be finally executed,
and this choice can be mediated by further considerations such as the particular
robot intentions, the task to be performed, additional reachability constraints,
etc. An adequate characterization of the grips is called for in order to be able to
predict their reliability and adjust practical aspects of the manipulation activity
accordingly during the execution of the grasp and subsequent movements (e.g.:
arm acceleration torques, etc). In this section we first describe some basic de-
scriptors (see [13, 14] for more details) and then introduce the nine features used
to characterize a grasp configuration. Fig. 4 shows a schematic representation of
the kinematics of the Barrett hand relative to the plain on the palm.



Fig. 4. Barrett hand kinematics. The hand has a thumb and two opposing fingers that
spread symmetrically along the axis defined by the thumb.

2.1 Grasp descriptors

The key properties of a grasp described using the following descriptors.

Grasp regions. The portions of the object contour where the three fingers are
placed (indicated in bold in the images). These are modeled as short, straight
segments and described by the coordinates of their extreme points.

Contact points. The three points where the fingers are supposed to touch the
object, each lying on one of the three grasp regions (P1, P2, P3).

Force directions. The real force directions F1, F2, F3 exerted by the fingers
of the Barrett hand are usually different from the ideal normal directions
N1, N2, N3.

Force focus. The intersection of the directions of the real forces CC .

Finger extensions. The opening of the fingers (ei in Fig. 4 and 6).

Spread angle. The spread angle (θ in Fig. 1) of the opposing fingers.

In addition to these grasp descriptors, some parameters that summarize phys-
ical aspects of the environment are introduced for their use in the definition of
the features in the following subsection.

Friction coefficient (µ). Estimate of the minimum possible friction between
fingers and object; µ = 0.4 was used, which is a very safe setting for rubber-
covered fingers.

Positioning error threshold (λ). Safety value for possible finger positioning
errors due to visual and mechanical imprecisions; it is set to λ = 2cm, larger
than the maximum positioning error observed in the practical experiments
(1.5cm).



2.2 Feature definitions

The descriptors introduced in previous subsection somehow low level. We pro-
pose nine high-level features computed from the grip descriptors that try to
measure different properties of each grip. Note that the inputs for their compu-
tation come only from the object contour extracted from the image along with
the knowledge about the hand geometry. More details ca be found in [2, 3].

All variables used in the different features are illustrated in Fig. 5, 6 and 7.

1. force line: This feature [14] considers the deviations δi of the real forces
Fi from the ideal condition of being perpendicular to the contour at the grasp
points. As the actual friction coefficient of the contacts between object and fin-
gers is not known beforehand, the more the force deviates from the normal, the
more the risk of the fingers sliding along the side of the object, due to a large
tangential component of the applied force. Low deviations indicate low risk of
instability: q1 = 4

3 (δ21 + δ22 + δ23)/arctan2(µ).

2. real focus deviation: This feature measures the distance D between the
focus of the ideal forces CG and the real focus of the grip CC . The feature is
computed as q2 = 2D

ηµ where η is the maximum possible finger extension.

Fig. 5. Geometrical representation of the variables involved in the computation of
features 1 (δ1, δ2, and δ3); feature 2 (D, CC , and CG); and feature 5 (DC).

3. finger extension: If the fingers contact the object with different extensions,
they touch the object in positions having slightly different distances from the
surface, and they probably exert a torque out of the horizontal plane of the ob-
ject. This feature estimates the risk given by differences in the finger extensions:
q3 = 1

η2 ((e1 − e2)
2 + (e2 − e3)

2 + (e3 − e1)
2).

4. finger spread: An equilibrated grip should have its three forces roughly
equally separated by 120o angles [15]. Calling θ the opening angle of the fingers



of the Barrett hand in opposition to the thumb, q4 = (π
6 /(

π
2 − θ))− 1 for θ > π

3
or else 0. This implementation identifies situations that are at risk for violating
force-closure, where the two opposing fingers have forces perpendicular to the
thumb and facing each other.

5. real focus centering: This feature aims to measure the effect of gravita-
tional and inertial forces endorsing grasps with short distances between the real
focus CC and the center of mass of the object C. The latter is the centroid of the
two-dimensional shape described by the extracted object contour, assuming that
the object has uniform mass distribution. The quality value is: q5 = 4DC

ML+mL
,

where ML and mL are the sizes of the major and minor inertia axes computed
for the shape.

6. finger limit: When trying to grip large objects, there is a limit in the ex-
tension of the fingers. Due to the way the Barrett Hand grips objects, there is a
finger extension value that, if overcome, causes the grip to shift from a fingertip
grip to a fingerside grip to execute, which is more risky and less stable although
still possible (see Fig. 6). Therefore, a threshold on the maximum optimal finger
extension ε has been set in order to avoid marginal contacts: q6 = ε1 + ε2 + ε3
where εi = ( ei−η

λ )2 if ei > η, else 0.

Fig. 6. Geometrical representation of the variables involved in the computation of
features 3 (e1, e2, and e3); feature 4 ( θ); and feature 6 (η).

7. point arrangement: Similarly to [10, 15], we assess the likeness of the
grasp triangle to an equilateral one to obtain better grip balance. Each an-
gle is compared with a 60o (π/3 rad) angle typical of an equilateral triangle:
q7 = 3

2π (|α− π
3 | + |β − π

3 | + |γ − π
3 |).

8. triangle size: The larger the area of the grasp triangle, the more stable
a grip is [10]. This feature assesses the ability of the grip to resist the torques



generated by gravitational and inertial forces, whose magnitude is proportional
to the weight of the object. The quality measure is q8 = A

4AS2

, where AS2 is the
area of the grasp triangle, and A is the area of the object.

9. contact curvature: A concave surface is a better place to put a finger for
grasping purposes than a convex one [12]. This feature takes into account the
curvature of the three grasp zones. All the points closer to the grasp point than
the positioning error threshold are considered, and their local curvature values
are summed. The sum is weighted by the actual distance of each point from the
contact point, in a way that the more we approach the expected point of contact
the more the local curvature value becomes influent on the total. The curvature
ρ is positive for concavities, negative for convexities and 0 for planar zones. We
define the overall grip quality as: q9 = 3 ∗ ψ − (ρ1 + ρ2 + ρ3), where ψ is the
curvature threshold value, that is the best (most concave) possible curvature

allowed for a contact point. ρi =
∑k

j=−k(1 − |j|
k ) ∗ ρij , with ρij local curvature

of a point that is at distance j along the contour from the point i. In practice
the distance in measured in discrete steps. The maximum distance k depends on
the positioning error λ.

Fig. 7. Geometrical representation of the variables involved in the computation of
features 7 (α, β and γ); 8; and 9 (ρij).

2.3 Feature normalization

Originally these features were designed as quality assessment criteria [2]. We
claim that these criteria can be used to define a feature space with the purpose
of characterizing robot grasps according to their reliability. Values close to 0
indicate more stable characteristics whereas larger values try to identify sources
of instability. Moreover, all features are designed to have similar ranges. More
precisely, they are implemented so as the best grips correspond with the lower



values, with an ideal theoretical best value of 0 (except for features 8 and 9, which
are lower bounded to strictly positive values). Also, a preprocessing stage has
been performed based on physical and numerical considerations. This consists
of a normalization factor that is dependent on the distributions and ranges of
each feature, so that a middle quality grip for a certain feature is expected to
have a quality value of 1. When possible, the normalization value has been set
according to physical aspects related to the feature. Otherwise, a value that is
halfway between the best and the worst possible evaluations is the normalization
value. Justifications for the normalization can be found in [2].

3 Methodology: Experimental protocol

A set of real objects has been built for this experiment. They are planar objects
with a constant height made of an homogeneous material. Moreover, the colors
of the objects have been selected to simplify the image processing. An important
feature is that their shape is unknown for the system. The only programmed as-
sumptions about the objects is that they are planar. The rest of the information,
in particular the shape and location, is obtained from the images.

Moreover, in order to study the grasping performances in different circum-
stances several characteristics of the environment are tested. These are the weight
of the objects and the friction coefficient. Two qualitative categories for each of
both conditions are distinguished: heavy and light objects, and high and low
friction. The different weight is obtained by making two different sets similar in
appearance, but made of different material. Different contact friction is achieved
by using a latex fingertip to envelope the fingers.

In order to perform the experiments, a single object is placed on a table
within the robot workspace. Using the stereo-visual information the robot lo-
cates the object and computes a set of feasible grasp configurations. One of the
configurations is selected, either manually by a human operator, or automatically
by the robot, and executed.

If the robot has been able to lift the object safely, a set of stability tests are
applied in sequence. These are aimed at measuring the stability of the current
grasp. They consist of three consecutive shaking movements of the hand which
are executed with an increasing acceleration. After each movement the tactile
sensors are used to check whether the object has been drop off.

This protocol provides us with a qualitative measure of the success of a
grasp. Thus, an experiment may result in five different reliability classes: E
indicates that the system was not able of lifting the object at all; D, C, B
indicate that the object was dropped, respectively, during the first, second, or
third series of shaking movements; finally A means the object did not fall and
was returned successfully to its initial position on the table. Hence, we define
Ω = {A,B,C,D,E} as the set of reliability classes.

The number of feasible grips that are computed for a single object is usu-
ally large, varying from several dozens to more than one hundred. In addition a
particular execution of a grasp configuration can be influenced by many unpre-



dictable factors. Consequently, each configuration is executed a sufficiently large
number of times, by varying the location and orientation in the presentation of
the object. In this way, statistically significant conclusions can be reached.

Nevertheless, this repetition could lead to a non practical number of execu-
tions, for each object only a few configurations are selected to be executed. This
selection includes the most representative configurations of each object. Each
configuration is executed 12 times: four times for three different orientations of
the object.

4 Nonparametric prediction strategy

The data collected during the experiments comprises a large amount of informa-
tion. Several analyses can be carried out over this data, especially those regarding
the appropriateness and usefulness of the different features (see [2]). Here, how-
ever, we are more interested in the predictive capabilities that can be inferred
from these data and the methods that can make the best use of it.

In theoretical terms a data set is composed of N executed grasps. Each grip
gi, i = 1 . . . N is described by the nine visual features qi1, . . . qi9 introduced in
subsection 2.2. The spaceQS is formed by the ranges of the values of the features.
Moreover, we have also recorded the performance of the grip and have assigned
it to a class ωi ∈ Ω for each gi.

4.1 KNN classification rule

A prediction function has the form F (g) = ω̄ where g ∈ QS and ω̄ ∈ Ω. There ex-
ists a wide bibliography on the building of such functions based on the Bayesian
decision theory[5]. In this paper we have chosen the approach of the nonpara-
metric techniques in particular the voting k-nearest neighbors (KNN) rule for
modeling this function [11, 5]. The nonparametric techniques do not assume any
density distribution of the features and the classes. To predict the class of a
query point gq, the KNN rule counts the K-nearest neighbors and choses the
class that most often appears.

In our implementation we have introduced some modifications to the basic
schema. First we use the Euclidean metric for measuring the distance between
the points in QS . We weighted the contribution of each of the KNN points
according to its distance to the query point. This gives more importance to
the closer points. The kernel function used is K(d) = 1

1+(d/T ) , where T is an

adjustable parameter, and d is the distance.
Given knn(gq) = {(gi, ωi), i = 1 . . . k, gi ∈ QS , ωi ∈ Ω} the k closest points

to gq and di is the corresponding distance from gq. The votes or probabilities
corresponding to a class ω̄ are computed using this expression:

P (ω̄, gq) =
∑

gi∈KNN(gq)
ωi=ω̄

K(di)∑
gj∈KNN(gq)K(dj)



Fig. 8. The four objects used in the experiments.

Function P is also an expression of the posterior probability [11]. Our pre-
dictor would be defined as F (gq) = argmaxω∈ΩP (ω, gq).

4.2 Error and risk functions

Performance of classification methods is measured in terms of successful or wrong
classifications. Our classes have an important particularity, their qualitative or-
der (e.g.: class A means a higher stability for a grip than any other class).
Having this in mind, we try not to penalize in the same amount when the failure
is qualitatively smaller (e.g.: predicting B when the outcome is C), than larger
(i.e.: predicting A when the outcome is D). For this we build the error function
E(ω̄, ω),being ω̄, ω ∈ Ω, where ω̄ is the predicted outcome and ω the real one.
This is easily implemented with a table (see practical cases in Table 2).

A step further is the definition of the risk function:

R(ω̄, gq) =
∑

ω∈Ω

P (ω̄)E(ω̄, ω), where ω̄ ∈ Ω.

The class ω ∈ Ω selected for the prediction is the one that minimizes the
risk, F (gq) = argminω∈ΩR(ω, gq). Using the risk function makes it possible to
introduce in the prediction step the qualitative ordering of the problem classes.

4.3 Implementation and results

A series of experiments where done following the experimental protocol de-
scribed in section 3. Three different combinations of physical properties were
tested: light objects and low friction (light/low), heavy objects and high fric-
tion (heavy/high); and light objects and high friction (light/high). A set of four
different objects, depicted in Fig. 8 were used. Table 1 shows the number of dif-
ferent grips executed for each case, and the percentages of grips that resulted in
each class of Ω. Note that the total number of grips results from the repetition
of a smaller number of configurations.

Two basic questions need to be answered about the prediction capabilities
of the rules described in section 4.1: first, are they able to generalize across
different objects, and second, did we have enough data to properly construct a



E D C B A Total

Light 102 84 33 27 18 264
Low 38.6% 31.8% 12.5% 10.2% 6.8% (22)

Light 51 97 56 38 118 360
High 14.2% 26.9% 15.6% 10.6% 32.8% (34)

Heavy 95 92 29 2 2 220
High 43.1% 41.8% 13.2% 0.9% 0.9% (23)

Table 1. Sample distribution among classes for the different data sets. The figures in
brackets in the “Total” column indicates the number of different configurations really
tested.

risk function? To answer these questions we have developed a cross-validation
method named leave-one-grasp-out validation similar to the well known leave-
one-out validation and n-fold cross-validation [5]. This consists of the following
steps: 1) given the whole data set, remove all the points of a particular grasp
configuration and use this subset as validation set; 2) use the remaining samples
for predicting the outcomes of the validation set and compute the mean error;
3) repeat steps 1) and 2) for all configurations. The validation error will be the
mean error of the iterations of step 2). The reason for removing all the points of a
configuration from the data set is that all the points of a particular configuration
are very close in QS and the KNN rule would be affected by this points instead
of using points of unrelated configurations, farther in QS .

Moreover, we are also interested in the sensitivity of the error with respect to
the size of the data set. We can analyze it by modifying the second step. Instead
of using the whole remaining data set, we chose randomly a set of given size.
This introduces a random factor, and to reduce the effect of this randomness we
repeat this step a sufficiently large number of times

Criterion 2a

E D C B A

E 0.0 0.5 1.0 1.0 1.0
D 1.0 0.0 0.5 1.0 1.0
C 1.0 1.0 0.0 0.5 1.0
B 1.0 1.0 1.0 0.0 0.5
A 1.0 1.0 1.0 1.0 0.0

Criterion 2b

E D C B A

E 0.0 0.0 1.0 1.0 1.0
D 0.0 0.0 1.0 1.0 1.0
C 1.0 1.0 0.0 0.0 0.0
B 1.0 1.0 0.0 0.0 0.0
A 1.0 1.0 0.0 0.0 0.0

Criterion 2c

E D C B A

E 0.0 0.00 0.25 0.50 0.75
D 0.25 0.00 0.00 0.25 0.50
C 0.50 0.25 0.00 0.00 0.25
B 0.75 0.50 0.25 0.00 0.00
A 1.00 0.75 0.50 0.25 0.00

Table 2. Error tables. The rows indicate the predicted outcome, and the columns the
real outcome. An error 1.0 indicates a failure, and 0.0 a successful prediction.

We have defined three error tables (see table 2). The first one 2a is quite
strict. It considers as failure any wrong prediction. The only exception is that it
considers half a failure a prediction one class lower that the real output. This is
a kind of conservative rule. The second table 2b is a way of reducing the classes
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Fig. 9. Size sensitivity validation for the data set of light objects and high friction

to two super-classes: the first one composed of class A, B and C, and the second,
D and E. Finally, the third table 2c tries to penalize errors depending on the
qualitative distance between the predicted outcome and the real one. Again,
“small” penalization is assigned for predicting a class as to be less stable than
it really is.

The different parameters of the knn prediction rule, K and T for the kernel
function, have been chosen using leave-one-out validation with the full datasets
minimizing the errors.

Figure 3 shows the evolution of the prediction error for the data light-high
set using the three error schemes. The first and most obvious observation that
can be drawn from these figures is that the error is reduced as the size of the
available data set increases. Moreover, the evolution of the error rates depending
on the table error used seems to be equivalent, but in a different scale.

Light/Low Light/High Heavy/high

Criterion 2a 0.438 0.449 0.245
Criterion 2b 0.236 0.275 0.115
Criterion 2c 0.110 0.133 0.035

Table 3. Error rates reached with the three data sets when the size of the data set is
200.



Finally Table 3 shows the error rates reached in the size sensitivity experi-
ments with the three different data sets.

5 ANN classification approach

Light/Low Light/High Heavy/High

ANN ANN-22 knn ANN knn ANN knn

Criterion 2a 0.475 0.467 0.424 0.579 0.425 0.334 0.254
Criterion 2b 0.250 0.243 0.218 0.347 0.265 0.164 0.116
Criterion 2c 0.147 0.142 0.108 0.215 0.127 0.059 0.038

Table 4. Comparison between the error rates produced by the trained neural networks
and the non-parametric classification approach. These results are obtained using the
whole data sets as training sets.

A group of well known methods for classification are based on the use of
artificial neural networks. In our approach to the problem we also have considered
the use of this as a possible alternative.

For the neural network implementation we chose the classical feedforward
backpropagation architecture. The net takes as inputs the values of the 9 fea-
tures of a grip, and provide as output the choice between the 5 possible classes,
classifying in this way the grip according to its expected reliability. The net
has one hidden layer, made up by 14 nodes. The transfer function used in both
middle and output layers is the logistic sigmoid. Bias inputs are added to both
layers. The output layer is competitive, so that only one of the output goes to 1
whilst the others are forced to 0. The net parameters have been chosen through
an experimental setting process. The networks were trained with the Rprop (re-
silient backpropagation) [17] and with the Levenberg-Marquardt [6] algorithms,
obtaining slightly better results with the former.

In order to compare the results of the ANN approach with the non-parametric
prediction approach we have applied again the leave-one-grasp out validation. In
this case we have not performed an exhaustive sensitivity analysis of the size
of the train data set. Neural-networks usually need large data sets to produce
a good performance, so we have ours trained with the complete data sets. The
only case in which we have studied the influence of the size is in the case of the
light/low data set. In this case we disposed of a batch of 212 additional trials
which were not classified in configurations. The results in tables 4 and 5 indicate
that the performance of the neural network increases (from 73.5% to 78.4% of
error type 0 and 1), with the additonal data. Nevertheless, the performance of
the knn prediction function is still slightly better (78.9%).

2 The ANN-2 experiment is a special one. A set of 212 unclassified trials (which con-
figuration is unknown), is added to the training set. The purpose is to check if there
is any change in the results when the size of the training set is increased.



Light/Low Light/High Heavy/High

Error type Random ANN ANN-22 knn Random ANN knn Random ANN knn

0 28.1% 39.0% 41.7% 38.7% 23.5% 35.9% 52.2% 37.9% 52.3% 63.6%
1 36.5% 34.5% 36.7% 40.2% 26.2% 28.3% 21.4% 47.4% 42.3% 33.2%
2 17.9% 13.2% 11.7% 15.5% 20.3% 22.0% 13.6% 12.4% 3.6% 2.3%
3 12.2% 10.3% 7.2% 4.9% 20.7% 12.2% 10.6% 1.5% 1.4% 0.9%
4 5.3% 3.0% 2.7% 0.7% 9.3% 1.6% 2.2% 0.8% 0.4% 0.0%

Table 5. Comparison of the composition of the error in the prediction. For each data
set there are three columns. “Random” is the theoretical probability; “ANN” the error
produced by the ANN prediction; and “knn” the error of the non-parametric classi-
fication using criterion 2a for the evaluation of the risk. The error type indicates the
difference between the predicted class and the real outcome. Type 0 indicates a suc-
cessful classification, type 1 indicates that the predicted class was one above or behind
the real one.

Table 4 shows the error rates according to risk criteria defined in table 2
produced by both classification approaches. A first conclusion that can be learned
from the tables is that the knn classification methods are better in all the cases.
This conclusion is also supported by the results shown in tables 5 and 6. In these
tables we also show the theoretical probability of choosing the class randomly
and taking into account the probability of each class according to table 1. Table 6
shows a detailed description of the errors for one of the data sets. Again the knn
classification shows better behavior than neural nets. Moreover both methods
represent a neat improvement over the theoretical probability.

6 Discussion

From a practical point of view, when performing a stochastic action like grasping
an unmodeled real object with a robotic hand, an error between two neighbor
classes can be considered acceptable, especially in the case of a false negative.
Indeed, it means that the reliability of the grasp is only slightly better than
the predicted one. This justifies the definition of criteria 2b and 2c. The results
summarized in table 3 suggest that the expected error rates will be around 0.25
(with error criterion 2b) or even close to 0.1 (with criterion 2c). It must be noted
that these results have been obtained even though the available data were far
from optimal. Firstly they were very unequally distributed across the classes,
with some classes poorly represented. More precisely, the low-quality classes D
and E strongly prevail on the others except in one of the data sets. Secondly,
they were very noisy due to uncontrollable errors in sensing, image processing
and motor control.

The comparison with the neural net approach yields the conclusion that the
knn approach is clearly preferable. The reason is either we do not have enough
data samples for training the net reliably (in spite of using the complete sets of



Random
E D C B A

E 2.0% 3.8% 2.2% 1.5% 4.7%
D 3.8% 7.2% 4.2% 2.9% 8.8%
C 2.2% 4.2% 2.4% 1.7% 5.1%
B 1.5% 2.9% 1.7% 1.1% 3.9%
A 4.7% 8.8% 5.1% 3.9% 10.8%

ANN
E D C B A

E 7.0% 5.9% 3.2% 0.9% 0.9%
D 3.1% 11.1% 3.9% 3.9% 5.7%
C 1.2% 3.2% 2.2% 3.2% 8.1%
B 1.5% 1.2% 1.8% 1.8% 5.2%
A 0.7% 4.1% 4.5% 2.0% 13.7%

Knn
E D C B A

E 8.6% 3.3% 1.4% 0.6% 0.8%
D 3.1% 14.7% 4.2% 2.8% 3.2%
C 1.1% 1.1% 0.6% 0.0% 0.3%
B 0.0% 0.8% 2.2% 1.1% 1.4%
A 1.4% 6.9% 7.2% 6.1% 27.2%

Table 6. Detailed error tables of the values summarized in table 5 for the data set
“Light/High”. The rows indicate the predicted class for query, while the columns indi-
cate the real class of the query. Each cell of a table contains the percentage of predictions
of class row when the real output was the class column.

data points), or, simply, that the neural net, or our particular implementation,
is not well suited to this problem.

In addition, the knn classification has shown several interesting properties.
First, with a reasonably small number of samples it is able to produce quite good
classification rates. Table 5 shows that in all the data sets the rate of error with
distanceof type 1 or 0 (i.e.: successful) is alway over 70%, reaching 96.8% in the
“Heavy/High” data set. This significant figure in such a stochastic problem like
this. A second conclusion is that error rates decrease as the size of the data set
increases; and a good level of error rate is achieved with less than 200 training
samples. Third and final, the use of the leave-one-grasp-out validation technique
for measuring the errors allows us to conclude that generalization is possible
within this scheme, so the output of a given configuration can be predicted from
the experience of different but similar configurations, for the same object or for
a different object.

7 Conclusions

We have presented a contribution to a methodology for computing and executing
reliable grasps for unmodeled objects using only visual sensing as input, in such
a way that the system can exhibit an incremental adaptive behavior based on its
previous experiences. We have proposed a set of intrinsic features that adequately
characterize a grip and can be computed by using only the object image and the
kinematics of the hand. We have implemented a number of different approaches
that accept as inputs the features, and give as output the reliability class of the



grip. Feature space data were obtained from real experiments with a humanoid
robot. We used both features that depend on the object image and also on the
particular kinematic configuration of the hand.

The obtained prediction results are satisfactory enough to suggest that the
methodology is adequate and further progress should be made in this direction.
This progress should follow the line of designing a learning strategy that minimize
the number of experimental trials necessary to build the data set used for the
prediction of successful future trials.
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