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Abstract

In this paper, we propose a procedure, based on statistical design of experiments and gradient descent, that finds
effective settings for parameters found in heuristics. We develop our procedure using four experiments. We use
our procedure and a small subset of problems to find parameter settings for two new vehicle routing heuristics.
We then set the parameters of each heuristic and solve 19 capacity-constrained and 15 capacity-constrained and
route-length-constrained vehicle routing problems ranging in size from 50 to 483 customers. We conclude that our
procedure is an effective method that deserves serious consideration by both researchers and operations research
practitioners.
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1. Introduction

Over the last 10 years or so, researchers have devoted an enormous effort to tailoring
general-purpose metaheuristics such as simulated annealing, genetic algorithms, neural
networks, and tabu search to solve difficult combinatorial optimization problems including
the traveling salesman problem (TSP) and the vehicle routing problem (VRP). The volume
edited by Reeves (1993) and the paper by Osman and Kelly (1996) provide comprehensive,
accessible overviews of metaheuristics for combinatorial optimization problems.

The efforts of researchers in developing effective metaheuristics have already met with
some success. For example, best-known solutions to the well-studied 14 benchmark VRPs
of Christofides, Mingozzi, and Toth (1979) have been generated by tabu search procedures
including those of Taillard (1993), Gendreau, Hertz, and Laporte (1994), and Xu and
Kelly (1996). However, most of the efforts to develop effective metaheuristics have been
computationally burdensome and very time consuming.
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All of the metaheuristics that have been used to solve the VRP contain several parameters
(roughly anywhere from five parameters to more than 25 parameters) whose values need
to be set before the metaheuristic is run (Golden et al. (1998) provide a comprehensive
survey of metaheuristics for the VRP). For example, the network flow-based tabu search
heuristic of Xu and Kelly (1996) has 28 penalty, time-related, and control parameters and
four parameters (such as the number of elite solutions to store) that determine how their
heuristic solves a problem.

Our review of the literature indicates that it is not an easy task to determine appropriate
values for parameters found in VRP metaheuristics. The procedures used to set a parameter’s
value have ranged from simple trial-and-error to sophisticated sensitivity analysis. For
example, Van Breedam (1995) states: “The values that have to be assigned to all these
technical parameters are for the greater part determined by trial-and-error-like experiments.”
Gendreau, Hertz, and Laporte (1991) state: “This algorithm contains several parameters
and a number of variants can easily be envisaged. Several tests and a considerable amount of
fine tuning were carried out in order to arrive at the current version.” Once appropriate values
for parameters have been identified, it is standard practice in the literature to report results
generated by running a heuristic with the parameters fixed at these values (for example, the
single pass version of TABUROUTE reported by Gendreau, Hertz, and Laporte (1994)).
However, it is also common practice to report the best solution found during the course of
performing sensitivity analysis (for example, the multiple passes of TABUROUTE reported
by Gendreau, Hertz, and Laporte (1994)).

While, for the most part, researchers have set values of parameters in an ad hoc way,
there are a few researchers who have developed systematic ways of identifying effective
values of parameters found in VRP heuristics. Xu and Kelly (1996) try to identify the
relative contributions of five different components of their tabu search heuristic (network
flow moves, swap moves, tabu short-term memory, restart/recovery strategy, a simple tabu
search procedure (TSTSP) to find the best sequence of customers on a route). They disable
each component one at a time, execute their algorithm on seven VRPs, and compare the
solutions of the five different strategies. Xu and Kelly conclude: “. . . the TS [tabu search]
memory and restart/recovery strategy effectively help to locate extremely good solutions
and TSTSP provides an effective enhancement over 3-opt. . . ” Furthermore, the authors
run their heuristic with different frequencies for the swap moves—every two, three, five,
and six iterations—and conclude: “. . . the performance of our algorithm is sensitive to the
frequency. . . [and it] performs best using a medium frequency.”

Van Breedam (1996) tries to determine the significant effects of parameters for a genetic
algorithm (GA) procedure and a simulated annealing (SA) procedure for the VRP. He
attempts to discover the structure of the relation between total travel time and seven GA
parameters (including population size, number of generations, type of local improvement
operator, and quality of initial solution) and eight SA parameters (including cooling rate
and type of move) by applying the Automatic Interaction Detection technique (AID) of
Morgan and Sonquist (1963). AID is a tree-based classification method that uses analysis
of variance to summarize the relationship between predictor and response variables.

Van Breedam applies GA and SA to 15 test problems with 100 customers each (four
problems have time windows, two have pickups, and three have heterogeneous demand).
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He concludes that certain parameters have “consistent significant effect for all problems.”
For example, in the case of GA, not using a local improvement operator gives worse solutions
and using good initial solutions produces better final solutions.

The development of systematic procedures that determine appropriate values for para-
meters is not limited to VRP heuristics. Robertson, Golden, and Wasil (1998) use a frac-
tional factorial experiment to set parameter values in neural network models for a finance
application. Park and Kim (1998) use a nonlinear response surface optimization method
based on a simplex design to find parameter settings in several applications of simulated
annealing. Parsons and Johnson (1997) use statistical design of experiments to set the val-
ues of four parameters in a genetic algorithm. Xu, Chiu, and Glover (1996), in the context
of the Steiner Tree-Star problem, develop a procedure for fine-tuning five key factors in a
tabu search heuristic. Using two statistical tests in a very small number of experiments,
they are able to find a set of values for the five factors that generates improved results in
nearly three-quarters of their test problems. (For background information on designing
computational experiments, see the article by Barr et al. (1995). The book by Montgomery
(1991) is an excellent introduction to the design and analysis of experiments.)

In this paper, we show how statistical design of experiments can be used to find effective
settings for parameters found in heuristics. In Section 2, we give an overview of our pro-
cedure. In Section 3, we illustrate our parameter setting procedure with a case study of the
VRP. In Section 4, we give our conclusions.

2. Procedure for setting parameter values

Our procedure takes a small number of the problems from the entire problem set, finds
high-quality parameter settings for each problem, and then combines the parameter settings
to determine good parameter settings for the entire set of problems. Our procedure has four
steps, which are outlined in figure 1.

In Step 1, we select a subset of problems to analyze (analysis set) from the entire set of
problems (see figure 2). We select the problems so that most of the structural differences
(for example, demand distribution and customer distribution) found in the problem set are
represented in the analysis set. Since the time it takes to perform our procedure is directly
related to the size of the analysis set, we select as few problems as possible.

In Step 2, we determine a starting level for each parameter and the range over which the
parameter can vary. These decisions require somea priori knowledge of the behavior of
the heuristic on the specific problem class. If we do not have the necessary computational
experience, we conduct a pilot study. This study can be performed in a few trials on a small

Figure 1. Outline of procedure used to set parameter values.
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Figure 2. The pilot study problem set (P) is a proper subset of the analysis problem set (A), that is P⊂ A. S is
the entire problem set.

number of problems (taken from the analysis set). The pilot study has three objectives. The
first objective is to obtain a rough approximation of the best setting for each parameter—
this acts as a starting point. The second objective is to identify the experimental ranges
for each parameter. In many cases, the range of a parameter is dictated by the heuristic.
For example, the heuristic may not converge if a particular parameter is less than zero. In
this case, we would set the minimum of this parameter to zero. The third objective is to
identify the amount to change each parameter during the experimental design phase. We
will discuss the third objective in more detail later in this section.

Our procedure uses a two-level factorial design. In a two-level factorial design, each
parameter is tested at a low level and high level. The low and high settings are usually
denoted as−1 and+1, respectively. This indicates that the tests are performed at design
center−1 and design center+1. A two-level full factorial design is often abbreviated
2k, wherek is the number of parameters. For example, a full factorial design consisting
of two parameters has 22 combinations of the two levels of each parameter. We point out
that a partial two-level design such as a Taguchi design might provide quality results more
efficiently.

When there are more than a few parameters, it is usually necessary to use a fractional
factorial design. A fractional factorial design is often abbreviated as a 2k−p where 1/2p is
the size of the fraction. For example, a half-fraction of a three parameter factorial design,
23−1, requires four runs (see Table 1). We plot an example of a 23−1 design in figure 3. The
choice of a fractional factorial design (for example, a half fraction or a quarter fraction)
consists of a trade-off between the desire to conduct as few experimental runs as possible
with the need to conduct enough runs to identify the significant effects.

The triples in figure 3 are called thecoded variablesassociated with the factorial design.
Statisticians typically convert the natural variables (value of the parameter after adding or
subtracting1) to a matrix of+1s and−1s (matrix of coded variables). In figure 3, we
see that the design center is located at (0, 0, 0). This is often called azero point. An
experimental design is typically augmented with one or more zero points to estimate the
process behavior at the design center (for further details, see Montgomery (1991)).
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Table 1. A 23−1 fractional factorial design.

Run A B C

1 − − +
2 + − −
3 − + −
4 + + +

Figure 3. Geometric interpretation of a 23−1 factorial design where11 = 12 = 13 = 1. The triples are the
coded variables associated with the entries in Table 1.

We use the factorial experimental design to determine the parameter settings for each
experimental run. After we complete all of the experimental runs, we apply linear regression
to the results obtained from each run to find a linear approximation of the response surface
(the response is the quantity that we are trying to optimize with the heuristic). Next, we
calculate the path of steepest descent on the response surface (if the objective is to minimize),
using the starting point identified in the pilot study, and we make small steps along this path
by changing the parameter values. At each step, we conduct one or more trials (a trial is
one execution of a heuristic from a single initial solution). We continue until we reach the
limit of the experimental region or the best solution found has not changed for a specified
number of steps. At this point, we save the settings of each parameter (parameter vector)
associated with the minimum result.

In Step 4, we determine the final parameter settings for the heuristic by taking the average
of the parameter vectors that we obtained in Step 3 for each problem in the analysis set.

We point out that the response surface of a particular problem might not be convex. Thus,
moving down the path of steepest descent will probably not provide an optimal solution. In
fact, we do not perform exact optimization on any single problem (for example, by fitting
a quadratic model after the descent step; see Montgomery (1991) for details), so that it is
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unlikely we will determine the exact local minimum. However, since we want to determine
parameter settings that work well over a number of similar problems with different response
surfaces, searching for the global minimum or exactly identifying the local minimum of
each problem in the analysis set would only add complexity to the procedure without a
substantial contribution to our overall objective.

3. Case study

To illustrate our procedure, we use two local search heuristics to solve a total of 34 VRPs.
We report on four experiments. In each experiment, we apply a variant of Lagrangean
relaxation and an edge exchange procedure to the VRPs. In the first experiment, we solve
19 capacity-constrained VRPs with a Lagrangean-relaxed version of two-opt (LT) and in
the second experiment, we solve the same 19 VRPs with Lagrangean-relaxed sequential
smoothing (LS) (see Coy (1998) and Coy et al. (1997)) for a description of sequential
smoothing). In the third and fourth experiments, we solve 15 capacity-constrained and
route-length-constrained VRPs with Lagrangean relaxed two-opt and Lagrangean-relaxed
sequential smoothing, respectively. The Lagrangean relaxation procedure used by both
heuristics requires several parameters. In each experiment, we use statistical design of
experiments to set the parameter values.

3.1. Background

In the capacity-constrained vehicle routing problem, a homogeneous fleet of vehicles with
limited capacity delivers items from a single depot to a set of customers with known de-
mands. The objective of the VRP is to determine routes for the vehicles so that the sum
of the route lengths is minimized subject to the following constraints. Each customer can
be visited only once, each customer’s demand must be satisfied, the total demand on each
route may not exceed vehicle capacity, and each route must begin and end at the depot.
Additional constraints may include a route-length restriction and delivery time windows. In
this paper, we concentrate on the capacity-constrained VRP and on the capacity-constrained
VRP with route-length restrictions.

The articles by Bodin et al. (1983) and Laporte (1992), the edited volume by Golden and
Assad (1988) and the first five chapters in Ball et al. (1995) provide a survey of optimal and
heuristic methods for the capacity-constrained VRP and its variants. Gendreau, Laporte,
and Potvin (1997) and Golden et al. (1998) provide extensive reviews of metaheuristics for
the VRP.

3.2. Problem sets

We use two problem sets in our experiments—the 14 problems of Christofides, Mingozzi,
and Toth (1979) (denoted CMT) and the 20 large-scale problems of Golden et al. (1998).
The characteristics of each problem set are described in Table 2. The problems range in size
from N= 50 toN= 483 customers. Fifteen problems have route-length restrictions.
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Table 2. Problem sets used in our experiments. Problems 1 to 14 are from
CMT and problems 15 to 34 are from Golden et al. (1998).

Vehicle Max route
Problem N capacity length Service Time

1 50 160 ∞ 0

2 75 140 ∞ 0

3 100 200 ∞ 0

4 150 200 ∞ 0

5 199 200 ∞ 0

6 50 160 200 10

7 75 140 160 10

8 100 200 230 10

9 150 200 200 10

10 199 200 200 10

11 120 200 ∞ 0

12 100 200 ∞ 0

13 120 200 720 50

14 100 200 1040 90

15 240 550 650 0

16 320 700 900 0

17 400 900 1200 0

18 480 1000 1600 0

19 200 900 1800 0

20 280 900 1500 0

21 360 900 1300 0

22 440 900 1200 0

23 255 1000 ∞ 0

24 323 1000 ∞ 0

25 399 1000 ∞ 0

26 483 1000 ∞ 0

27 252 1000 ∞ 0

28 320 1000 ∞ 0

29 396 1000 ∞ 0

30 480 1000 ∞ 0

31 240 200 ∞ 0

32 300 200 ∞ 0

33 360 200 ∞ 0

34 420 200 ∞ 0
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3.3. Parameters used by each heuristic

Both heuristics in our experiments use a variant of Lagrangean relaxation. In a Lagrangean-
relaxed VRP, the capacity constraints are relaxed and a penalty term is added to the objective
function. The penalty term is formulated so that if an infeasible condition exists, the objective
function is penalized. For example, if a route exceeds the capacity restriction, the penalty
term will add length to the objective function value. Infeasible moves are possible under
these conditions as long as the total route length reduction exceeds the penalty incurred. The
penalty term has an adjustable constant,λC. If λC is too small, the edge exchange procedure
will converge without finding a feasible solution. IfλC is too large, the edge exchange
procedure may converge to a poor local minimum. Thus, a key feature of an implementation
of Lagrangean relaxation is the search for the rightλC. Each of the parameters that we set
with our procedure is used to control this search. The function of each parameter is described
in Table 3. For further details, see Stewart and Golden (1984) and Coy (1998).

3.4. Experiments 1 and 2

In this section, we illustrate the procedure outlined in figure 1. In Experiment 1, we give
a detailed description of each step of the procedure. In Experiment 2, we summarize the
results of the four steps (a full description of Experiment 2 is provided by Coy (1998)).
Since the two heuristics use the same Lagrangean relaxation procedure, we perform Step 1
and Step 2 only once and use the decisions made in these steps for both experiments.

3.4.1 Step 1. In Step 1, we need to select a subset of the 19 capacity-constrained problems
to form our analysis set. We want to select problems that are representative of the charac-
teristics (problem size, distribution of customer location, and distribution of demand) found

Table 3. Parameters set in Experiments 1 and 2 with design of experiments.

Parameter name Description

Initial capacity lambda (λC0) First and smallestλC used in search

Large factor (LF) Until the first feasible result has been found, increaseλC andλD

by LF (e.g.,λC1= λC0× LF)

Small factor (SF) After a feasible result has been found, increaseλC andλD

by 1+ SF× (1− LF)

Excess load upper bound (LUB) Used to determine whether solution is “close” to feasible; if total
excess load/number of routes≤ LUB and the solution is either
feasible or close to feasible with respect to the route-length
constraint, attempt to force feasibility

Temporary lambda factor (λT) When attempting to force feasibility, temporarily increaseλC by
λT if the solution is infeasible with respect to vehicle capacity
and temporarily increaseλD by λT if the solution is infeasible
with respect to the maximum route-length constraints

Number of feasible solutions (NFS) Number of feasible solutions found on each trial
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Figure 4. Three-dimensional plots of the four problems in the analysis set for Experiment 1 and Experiment 2.
Demand at each customer is shown on the vertical axis.

in the entire set of problems. In addition, since the time it takes to run our experiments is
related to the number of problems in the analysis set—the larger the number of problems,
the more time required to run our experiments—we select a small number of problems. We
require an analysis set that can be analyzed in a reasonable amount of time and produce
good average parameter values. We select four problems: 1, 5, 26, and 28. This analysis
set contains the smallest problem, the largest problem, and two mid-size problems. Two
problems have a random distribution of customers and random distribution of demand and
two problems have a symmetric arrangement of customers and clustered demand.

In figure 4, we illustrate the four problems in the analysis set. Thex and y axes are
located on the bottom of each plot. The quantity of demand at each location is located on
the vertical axis. From these plots, we can determine how the customers are distributed and
how customer demand is distributed. For example, the plot of Problem 28 indicates that
the customers are placed at the corners of a grid and the locations with the highest demands
are located close to the depot.

3.4.2 Step 2. In Step 2, we make several decisions in order to initialize our procedure.
We choose an initial set of parameter values (design center), the size of the incremental
change of each parameter (1), and the limits of the experimental region. In preliminary
tests, we gained enough computational experience to make these choices for each of the
four experiments. In Table 4, we show the values that we use to initialize our procedure.
Based on the behavior of the two heuristics and the fact that our procedure relies on gradient
descent, we do not need to place upper limits on the parameters.
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Table 4. Minimum value, design center, and incremental change for
each parameter used in Experiment 1 and Experiment 2.

Parameter Min value Design center 1

λC0 0.01 0.6000 0.3000

LF 1.01 1.2500 0.1500

SF 0.01 0.5000 0.2500

LUB 0.00 0.1500 0.1000

λT 1.01 1.7500 0.5000

NFS 1.00 6.0000 3.0000

If we did not have sufficient computational experience to initialize our procedure, we
could perform a pilot study using problems from the analysis set. The pilot study could be
used to determine rough approximations for the experimental region, the design center, and
the1 for each parameter. We sketch a pilot study in the next paragraph.

To begin the pilot study, we use a trial-and-error approach with the problems in the
pilot study problem set to find a set of parameter values in which the heuristic performs
reasonably well. We call this set of parameter values the design center. Next, we identify
extreme values for each parameter. Briefly, we choose one parameter, denoted byP, and
hold the remaining parameters values constant at the design center. We increase the value
of P. After each increase, we conduct a trial on each of the problems in the pilot study
problem set and we evaluate how well the heuristic performs. When the heuristic stops
performing well (for example, the heuristic is taking far too long to process or the solutions
are very poor), we stop increasingP and call the current value ofP the maximum value
for P. We then decrease the value ofP in order to identify its minimum value. We repeat
this procedure with the other parameters. In the process of identifying the extreme values
for each parameter, we vary the incremental change of the parameter value. Using this
experience, we estimate how large a change in the parameter value is necessary to make a
significant difference in the performance of the heuristic and we call this value the1 for
the parameter.

3.4.3 Step 3. In Step 3, we perform the nine steps shown in figure 5. We begin by
choosing a fractional factorial design. For Experiment 1 and Experiment 2, we choose a
fractional factorial experimental design with 26−1 = 32 runs. This allows us to conduct
each experiment with half of the runs of a full factorial design. We transform the fractional
factorial design to a matrix of coded variables and we augment our experimental design with
one zero point. The augmented matrix of coded variables for Experiment 1 and Experiment 2
is shown in Table 5.

We calculate the parameter values for each run by taking the value of a parameter at the
design center and either adding or subtracting1. For example, to find the value forλC0 on
the first run, we take the value ofλC0 at the design center and the size of the corresponding
1 (0.6 and 0.3, respectively from Table 4). We then add or subtract1 depending on the
sign of the coded variable in Table 5 to obtain 0.6− 0.3= 0.3. The entire parameter vector
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Figure 5. Design of experiments procedure used for setting the parameters of a VRP heuristic.

for the first run is (0.3, 0.1, 0.25, 0.25, 2.25, 3). After computing the parameter vectors
associated with each row in the fractional factorial design, we conduct a set of five trials
for each parameter vector. We begin each trial from one of five solutions to the traveling
salesman problem (an infeasible solution to the VRP having only one route). We generate
each solution with the randomized greedy heuristic described by Johnson and McGeoch
(1997).

For each experiment, we construct a data set that has an augmented matrix of coded
variables (independent variables) and the average result from each run (dependent variable).
We then fit a linear model to the data set using linear regression to obtain an estimate of
the response surface. We point out that, since we use the same number of trials for all
parameter settings, the fitted linear regression model from the raw trial data is the same as
the model we fit from the averaged data. Consequently, the calculated gradient is the same.
The significance tests andR2 values are more significant for the averaged data. Another
researcher with the same problem and parameters settings would obtain different solutions
from the randomized greedy heuristic used for initial solutions. We average over the runs to
provide an analysis that is somewhat less sensitive to this randomization—one that another
researcher could, at least on the average, duplicate.

For Experiments 1 and 2, we find that the linear regression models are significant at the
0.01 level and have adjustedR2 values that range from 0.42 to 0.96. Each parameter that
we set with our procedure is statistically significant in at least one of the linear models. The
linear models that we use for each problem are described in Table 6.

It is critical to choose the1 of each parameter so that the behavior of the process will
vary enough to allow a significant linear fit (using the F test). If a linear model does not fit
(F test fails), we recommend that the1 of each parameter should be increased by as much
as 50% to 100% and that a new replication of the experiment should be performed. We use
the linear estimate of the response surface to determine how to set the parameter values.
Since we are minimizing, we find the path of steepest descent on the response surface.

The gradient of the linear model is the vectorb= (b1, b2,. . . , bk) wherebj is an estimated
regression coefficient. The path of steepest descent is the negative gradient of the linear
model (−b). To move along the path of steepest descent, a change of one unit in the coded
variable,xj , corresponds to a change ofbi /bj units (coded) in variablexi . In order to make
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Table 5. Augmented matrix of coded variables used in Experi-
ments 1 and 2.

Parameters

Run λC0 LF SF LUB λT NFS

1 −1 −1 −1 +1 +1 −1

2 +1 −1 −1 +1 +1 +1

3 −1 +1 −1 +1 +1 +1

4 +1 +1 −1 +1 +1 −1

5 −1 −1 +1 +1 +1 +1

6 +1 −1 +1 +1 +1 −1

7 −1 +1 +1 +1 +1 −1

8 +1 +1 +1 +1 +1 +1

9 −1 −1 −1 −1 +1 +1

10 +1 −1 −1 −1 +1 −1

11 −1 +1 −1 −1 +1 −1

12 +1 +1 −1 −1 +1 +1

13 −1 −1 +1 −1 +1 −1

14 +1 −1 +1 −1 +1 +1

15 −1 +1 +1 −1 +1 +1

16 +1 +1 +1 −1 +1 −1

17 −1 −1 −1 +1 −1 +1

18 +1 −1 −1 +1 −1 −1

19 −1 +1 −1 +1 −1 −1

20 +1 +1 −1 +1 −1 +1

21 −1 −1 +1 +1 −1 −1

22 +1 −1 +1 +1 −1 +1

23 −1 +1 +1 +1 −1 +1

24 +1 +1 +1 +1 −1 −1

25 −1 −1 −1 −1 −1 −1

26 +1 −1 −1 −1 −1 +1

27 −1 +1 −1 −1 −1 +1

28 +1 +1 −1 −1 −1 −1

29 −1 −1 +1 −1 −1 +1

30 +1 −1 +1 −1 −1 −1

31 −1 +1 +1 −1 −1 −1

32 +1 +1 +1 −1 −1 +1

33 0 0 0 0 0 0
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Table 6. Coefficients of linear models from Experiments 1 and 2. All models are significant at the 0.01 level.
A zero indicates that the parameter is not significant at the 0.05 level.

Problem Adj.R2 Intercept λC0 LF SF LUB λT NFS

Experiment 1 (LT)

1 0.581 550.276 3.14865 0.00000 0.00000 0.00000 0.00000−3.35173

5 0.677 1397.097 7.96334 2.59741 3.09920 0.00000 0.00000−3.68940

28 0.447 1191.016 3.22946 3.42525 0.00000 0.00000 0.00000 0.00000

26 0.440 1247.358 2.82791 2.89954 0.00000 0.00000 0.00000−3.42412

Experiment 2 (LS)

1 0.966 551.621 12.93426 0.00000 0.00000−1.46257 0.00000 0.00000

5 0.758 1360.410 3.79195 1.41637 0.00000 0.00000 0.00000−2.93175

28 0.596 1164.822 3.81332 0.00000 0.00000 0.00000 0.00000−1.92033

26 0.420 1202.462 1.86986 1.71696 1.87747 0.00000−1.62750 −1.53584

a one unit (coded) change in the variable with the maximum coefficient, we divide each
coefficient by the absolute value of the maximum coefficient in the model (bm). To calculate
the step size (uncoded), we multiply each ratiobj /bm by1 j .

To illustrate this technique, we demonstrate how to calculate a step along the path of
steepest descent using Problem 1 in Experiment 1 (see Table 6). We begin by finding
the regression coefficient with the largest absolute value. The largest absolute coefficient
is 3.35173 (the coefficient of NFS). We then divide each parameter’s coefficient by this
quantity and multiply each of these results by the parameter’s1. The result is a full step
for each parameter. The step size forλC0, is (3.14865/3.35173)× 0.3= .2818, the step
size for NFS is (3.35173/3.35173)× 3= 3, and the step sizes for the remaining parameters
are 0 (these parameters are not statistically significant).

In the last three steps of our procedure (Steps 3.7 to 3.9), we make steps along the path of
steepest descent. Starting at the design center, we subtract the step size of each parameter
from the previous level of each parameter. If the next step along the path will cause one of
the parameters to go outside the experimental region, we hold that parameter constant and
continue making steps with the other parameters. After calculating a step, we perform a
set of five trials to determine the performance of the heuristic at this point (using the same
five initial solutions used earlier). We continue making steps along the path until we fail to
improve the response for two full steps or when all of the parameters reach the limit of the
experimental region. Finally, we select the parameter settings associated with the minimum
response.

Table 7 shows our results for Problem 1 in Experiment 1. (In the remainder of the section,
we use the term length to refer to the sum of the route lengths in the VRP.) Using the step
sizes calculated above, we make 1/4 steps down the path of steepest descent (we make small
steps to avoid stepping over potentially good local minima) by subtracting 1/4× the step
size from the value of each parameter in the previous parameter vector. For example, Step
0 in Table 7 represents the design center. We calculate the parameter vector for Step 1 in
the following manner. The value forλC0 is 0.6− 1/4× 0.2818= 0.6− .07045= 0.52955,
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Table 7. Setting parameters for Problem 1 in Experiment 1. The parameter vector for
each set of trials is 1/4 step down the path of steepest descent from the parameter vector
used in the previous set of trials.

Parameters

Step λC0 LF SF LUB λT NFS
Average
length

Average
times (s)

0 0.6000 1.2500 0.5000 0.1500 1.7500 6.0000 553.54 0.36

1 0.5295 1.2500 0.5000 0.1500 1.7500 6.7500 544.45 0.41

2 0.4591 1.2500 0.5000 0.1500 1.7500 7.5000 546.06 0.42

3 0.3886 1.2500 0.5000 0.1500 1.7500 8.2500 546.42 0.50

4 0.3182 1.2500 0.5000 0.1500 1.7500 9.0000 542.16 0.54

5 0.2477 1.2500 0.5000 0.1500 1.7500 9.7500 542.61 0.61

6 0.1773 1.2500 0.5000 0.1500 1.7500 10.5000 543.35 0.68

7 0.1068 1.2500 0.5000 0.1500 1.7500 11.2500 539.39 0.74

8 0.0364 1.2500 0.5000 0.1500 1.7500 12.0000 540.47 0.85

9 0.0364 1.2500 0.5000 0.1500 1.7500 12.7500 540.47 0.90

10 0.0364 1.2500 0.5000 0.1500 1.7500 13.5000 540.47 0.94

11 0.0364 1.2500 0.5000 0.1500 1.7500 14.2500 540.47 0.93

12 0.0364 1.2500 0.5000 0.1500 1.7500 15.0000 540.47 0.96

13 0.0364 1.2500 0.5000 0.1500 1.7500 15.7500 540.47 1.03

14 0.0364 1.2500 0.5000 0.1500 1.7500 16.5000 540.47 1.08

15 0.0364 1.2500 0.5000 0.1500 1.7500 17.2500 540.47 1.07

the value for parameter NFS is 6− 1/4× (−3)= 6.75, and the values of LF, SF, LUB, and
λT do not change.

We chose to make several small steps along the gradient of descent rather than two large
steps. We did this so as not to step over a good local minimum along the path. Clearly,
our method is a compromise between performance and complexity. A traditional statistical
approach would make full steps down the path, stop after two steps, and fit a quadratic
model to the response surface to find the local minimum. Exact optimization based on
a quadratic model for one particular problem adds complexity to the procedure without
substantially improving our ability to determine parameter settings that work reasonably
well over a number of similar problems. Furthermore, smaller initial values for delta would
no doubt improve the solution to a specific problem, but again contribute little to our overall
objective.

After making a step, we conduct five trials using the same five initial solutions and the
current set of parameter settings. We then average the results of the five trials. In this
problem, we found the best average length on Step 7. In Step 9,λC0 did not decrease,
because the next step would have gone outside the experimental region. In this case, we
hold λC0 constant and we continue to make steps with NFS until we meet the stopping
criterion at Step 15.

In figure 6, we summarize the response surface procedure for each of the four test
problems. The panels on the left show the average length of each trial at each step. (We
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Figure 6. Response surface optimization for Experiment 1.

point out that some smoothing of the curve would assist in the location of a minimizing
step. However, our objective is to make a recommendation for a class of problems and the
additional accuracy is not necessary for any specific problem.) The panels on the right show
the average processing time for each trial at each step (that is, the average CPU time it took
to complete one trial). The top two panels (Problem 1) show the results given in Table 7.
We find the minimum result at Step 7 and the average length plateaus at a slightly higher
value until the search stops at Step 15. This indicates that decreasingλC0 in Step 8 does not
improve the average result and that the subsequent increase in NFS adds processing time,
but does not change the average length.

Problem 5 has four significant parameters,λC0, LF, SF, and NFS (see Table 6). In
this problem, reducing the values of LF and SF (each has a positive coefficient) causes
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processing time to increase rapidly for most of the steps. By Step 20,λC0, LF, and SF
reach their minimum values. Increasing NFS (the only parameter that is still within the
experimental region) adds processing time at a slower rate, but does not reduce the average
length.

In Problem 28, NFS is not statistically significant. In this case, we find a minimum at
Step 6. The procedure stops at Step 9, since any further changes would cause the values of
λC0 and LF to leave the experimental region.

In Problem 26, we find the minimum average length at Step 12 and stop testing at Step
20 since no additional improvement has been made for eight 1/4 steps. This problem has
three statistically significant parameters (λC0, LF, NFS). By Step 9,λC0 and LF reach the
limit of the experimental region. For the remaining steps, we increase NFS. In contrast
to Problems 1 and 5, increasing NFS, after the other parameters have reached their limits,
does decrease the average length.

3.4.4 Step 4. In the final step of our procedure, we average the parameter values produced
by our response surface procedure to obtain the final parameter values for the experiment.
In Table 8, we show the parameter values for each problem and the average parameter values
for both experiments.

3.4.5 Computational results. We solve all 19 capacity-constrained problems with LT and
LS using the average parameter values. The computational results are given in Table 9.
On average, LT generates solutions that are 4.81% above the best-known solutions on all
19 problems. On average, LS generates solutions that are 3.43% above the best-known
solutions on all 19 problems.

Table 8. Parameter vectors for Experiments 1 and 2.

Problem λC LF SF LUB λT NFS

Experiment 1 (LT)

1 0.1068 1.2500 0.5000 0.1500 1.7500 11.2500

5 0.0750 1.0176 0.0135 0.1500 1.7500 12.9495

28 0.1757 1.0250 0.5000 0.1500 1.7500 6.0000

26 0.0425 1.0277 0.5000 0.1500 1.7500 15.0000

Average 0.1000 1.0801 0.3784 0.1500 1.7500 11.2999

Experiment 2 (LS)

1 0.0750 1.2500 0.5000 0.1698 1.7500 6.0000

5 0.0750 1.0819 0.2199 0.1500 1.7500 12.9583

28 0.3750 1.2500 0.5000 0.1500 1.7500 7.1331

26 0.3759 1.1472 0.3125 0.1500 2.0751 7.8406

Average 0.2252 1.1823 0.3831 0.1549 1.8313 8.4830
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Table 9. Computational results from Experiments 1 and 2. Minimum result from 25 trials on each
problem.

Experiment 1 Experiment 2

Problem N Best known LT Time (min) LS Time (min)

1 50 524.61 524.61 0.61 524.61 0.95

2 75 835.26 850.88 1.95 849.84 2.27

3 100 826.14 837.22 2.07 836.36 2.36

4 150 1028.42 1054.23 5.68 1054.17 7.01

5 199 1291.45 1350.03 12.06 1340.53 16.48

11 100 1042.11 1046.91 3.15 1047.73 5.05

12 120 819.56 819.56 2.38 819.56 3.03

23 255 587.09 630.31 17.03 614.27 28.99

24 323 746.56 799.23 28.26 782.48 54.38

25 399 932.68 996.43 48.91 973.54 94.23

26 483 1137.18 1214.66 78.29 1177.14 147.38

27 252 881.04 913.41 27.80 902.76 31.83

28 320 1103.69 1168.24 46.28 1146.17 53.26

29 396 1364.23 1447.97 76.10 1416.65 86.26

30 480 1656.66 1744.97 121.73 1714.70 132.36

31 240 666.84 733.87 17.02 724.68 15.55

32 300 973.60 1058.85 30.34 1040.33 31.70

33 360 1338.78 1446.30 48.60 1409.63 51.47

34 420 1831.62 1918.26 73.01 1896.72 87.96

3.5. Capacity-constrained and distance-constrained problems

Using the procedure described above to set the parameter values, we solve 15 capacity
and route-length-constrained problems with Lagrangean-relaxed two-opt and Lagrangean-
relaxed sequential smoothing. To accommodate the route-length constraint, the two heuris-
tics require two additional parameters. We use a 28−2 fractional factorial experimental
design for the procedure.

We solve all 15 capacity-constrained and route-length-constrained problems with LT and
LS using the average parameter values. The computational results are given in Table 10.

On average, LT generates solutions that are 1.63% above the best-known solutions on
all 15 problems. On average, LS generates solutions that are 0.80% above the best-known
solutions on all 15 problems. In addition, LT generates two new best-known solutions and
LS generates five new best-known solutions. The routes for all of the new best-known
solutions as well as a detailed presentation of Experiments 3 and 4 are provided by Coy
(1998).
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Table 10. Final results from Experiments 3 and 4. Each result is the minimum from 25 trials on each
problem. Bold print indicates a new best-known solution.

Experiment 3 Experiment 4

Problem N Best known LT Time (min) LS Time (min)

6 50 555.43 561.77 0.95 560.89 1.70

7 75 909.68 937.33 3.48 929.19 8.69

8 100 865.94 879.07 3.27 866.87 5.20

9 150 1162.55 1189.08 14.18 1186.70 38.81

10 199 1395.85 1480.08 25.41 1443.95 69.95

13 100 1541.14 1561.45 9.02 1552.90 26.73

14 120 866.37 869.20 2.96 866.53 6.53

15 240 5646.46 5862.58 31.54 5761.64 49.92

16 320 8566.04 8606.01 62.18 8512.72 65.00

17 400 11649.06 11200.38 74.41 11242.54 84.43

18 480 14639.32 14031.06 53.80 13782.41 43.49

19 200 6702.73 6508.26 3.90 6466.68 12.38

20 280 9016.93 8540.19 10.36 8540.74 11.84

21 360 11047.69 10415.84 37.14 10334.90 36.24

22 440 12250.06 12042.50 111.29 11957.15 99.04

3.6. Summary of computational results

In this section, we compare the quality of the solutions generated by LT and LS to the
solutions generated by the tabu search heuristic (TS) of Xu and Kelly (1996) and the
record-to-record travel heuristic (RTR) of Golden et al. (1998).

In Tables 11 and 12, we summarize the performance of the four heuristics. Over all 34
problems, we make the following observations. LS is first in solution quality and third in
running time. It averages 2.27% above the best-known solutions and its running time is
approximately 1,412 minutes (23.5 hours). TS is a close second in solution quality and
fourth in running time. It averages 2.44% above the best-known solutions and its running
time is approximately 54,232 minutes (903.9 hours). RTR is third in solution quality and
first in running time. It averages 3.04% above the best-known solutions and its running
time is approximately 935 minutes (15.6 hours). LT is fourth in solution quality and second
in running time. It averages 3.41% above the best-known solutions and its running time is
approximately 1,085 minutes (18.1 hours).

Finally, we conduct the following experiment in order to examine how results produced
by our tuned parameters compare to results produced by random parameters. We generate
10 random parameter vectors where the values of the six parameters (λC0, LF, SF, LUB,
λT, NFS) are selected from a uniform distribution on the interval (Minimum parameter
value, 2×Design center− Minimum parameter value). We then run LT and LS using the
10 random parameter vectors on each of the 19 capacity-constrained problems. On each
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Table 11. Percent above the best-known solutions
for the LT, LS, TS, and RTR heuristics. Bold print
indicates the best result for a particular category.

Problem set LT LS TS RTR

Capacity-constrained

CMT 1.53 1.40 0.09 2.10

Large-scale 6.72 4.61 0.25 1.79

Overall 4.81 3.43 0.19 1.91

Capacity-constrained and route-length-constrained

CMT 2.24 1.36 3.62 3.34

Large-scale 1.11 0.30 6.92 5.47

Overall 1.63 0.80 5.50 4.48

All problems

CMT 1.88 1.38 1.72 2.72

Large-scale 4.47 2.89 2.91 3.26

Overall 3.41 2.27 2.44 3.04

Table 12. Running times (in minutes) for the LT, LS, TS, and
RTR heuristics. Bold print indicates the best result for a particular
category.

Problem set LT LS TS RTR

Capacity-constrained

CMT 27.90 37.15 927.80 76.84

Large-scale 613.37 815.37 42145.56 390.10

Overall 641.27 852.52 43073.36 466.94

Capacity-constrained and route-length-constrained

CMT 59.27 157.60 1122.13 115.46

Large-scale 384.63 402.35 10037.12 352.94

Overall 443.89 559.96 11159.25 468.40

All problems

CMT 87.17 194.75 2049.93 192.30

Large-scale 998.00 1217.72 52182.68 743.04

Overall 1085.16 1412.48 54232.61 935.34

problem, we start each heuristic from the same 25 initial solutions used in our previous
experiments.

In Table 13, we give the average percent above the best-known solutions for LT and LS
using tuned parameter vectors and the 10 random parameter vectors on the 19 capacity-
constrained problems. We observe that the average of 6.47% produced by LT with tuned
parameters is smaller than all 10 averages produced by LT with random parameters, and



96 COY ET AL.

Table 13. Average percent above the best-known solutions for LT and LS heuristics using tuned
and randomly generated parameter vectors on the 19 capacity-constrained problems.

Random vector
Tuned
Vector 1 2 3 4 5 6 7 8 9 10

LT 6.47 7.79 8.04 6.73 9.13 7.76 8.78 8.17 8.16 7.23 7.53

LS 4.61 6.18 6.21 4.71 6.79 6.15 6.51 5.94 6.05 4.72 4.82

the average of 4.61% produced by LS with tuned parameters is also smaller than all 10
averages produced by LS with random parameters.

4. Conclusions

In this paper, we propose a procedure based on statistical design of experiments that system-
atically selects high-quality parameter values. Our parameter setting procedure has four
steps. In the first step, we select a subset of problems to analyze from the entire set of
problems. In the second step, we use computational experience to select the starting level
of each parameter, the range over which each parameter will be varied, and the amount
to change each parameter. In the third step, we select good parameter settings for each
problem in the analysis set using statistical design of experiments and response surface
optimization. In the fourth step, we average the parameter values obtained in the third
step to obtain high-quality parameter values. Using our procedure, we set the values of
parameters and run our heuristics on 34 test problems that range in size from 50 to 483
customers. Our computational results show that LT and LS are reasonably effective in terms
of solution quality. The accuracy of LS is comparable to tabu search and record-to-record
travel. Furthermore, LS is much faster than tabu search.

Perhaps, most importantly, our procedure is a single pass procedure. The fact that
complex heuristics such as LT and LS work so well under this restriction attests to the
robustness of the approach.

In our computational experiments, we found that our procedure worked well on both
the capacity-constrained and capacity-constrained and route-length-constrained problems.
This may not always be the case with other combinatorial optimization problems or heuris-
tics. Poor performance may indicate that the class of problems being studied is too broad
for one set of parameter values. Thus, it may be necessary to divide the class into two
subclasses. If the heuristic does not perform well using the average settings and differ-
ent problems require very different parameters settings, the problem class is probably too
broadly specified. To divide the class into subclasses, we would determine how the prob-
lems in the analysis set differ and which of these differences is significant (for example,
depot location or distribution of demand). Then we would divide the problems into two or
more classes based on these characteristics. Finally, we would apply our procedure again
on each of the new subclasses.
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