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Abstract: Machine learning (ML) models have proven to be an attractive alternative to traditional
statistical methods in oncology. However, they are often regarded as black boxes, hindering their
adoption for answering real-life clinical questions. In this paper, we show a practical application
of explainable machine learning (XML). Specifically, we explored the effect that synoptic reporting
(SR; i.e., reports where data elements are presented as discrete data items) in Pathology has on the
survival of a population of 14,878 Dutch prostate cancer patients. We compared the performance of a
Cox Proportional Hazards model (CPH) against that of an eXtreme Gradient Boosting model (XGB)
in predicting patient ranked survival. We found that the XGB model (c-index = 0.67) performed
significantly better than the CPH (c-index = 0.58). Moreover, we used Shapley Additive Explanations
(SHAP) values to generate a quantitative mathematical representation of how features—including
usage of SR—contributed to the models’ output. The XGB model in combination with SHAP
visualizations revealed interesting interaction effects between SR and the rest of the most important
features. These results hint that SR has a moderate positive impact on predicted patient survival.
Moreover, adding an explainability layer to predictive ML models can open their black box, making
them more accessible and easier to understand by the user. This can make XML-based techniques
appealing alternatives to the classical methods used in oncological research and in health care
in general.

Keywords: Cox Proportional Hazards (CPH); explainable AI; eXtreme Gradient Boosting (XGB);
interpretability; oncology; prostatectomy; ranked survival; SHAP

1. Introduction

Machine learning (ML) methods have been shown to be great complements to classical
statistical tools in health care [1–3] and more particularly in oncology, where they have
proven to be valuable for improving patient screening, diagnosis, and treatment [4–7]. More
interestingly, many ML models have been adapted to handle censored data (i.e., instances
that have not yet experienced the event of interest), making them attractive options for
studying recurrence and survival in cancer patients [8].

A few of these ML models (such as Survival Trees [9] and Bayesian Methods [10]) have
relatively simple inner workings, making them transparent to the user and easy to interpret.
Other more complex models (such as Support Vector Machines [11], Neural Networks [12],
and Ensemble Methods [13,14]) tend to have higher performance in regression and pre-
diction tasks [15]. However, due to the opacity of their inner workings when producing
their results, these are often treated as black boxes. This is unfortunate, since it makes it hard
to explain how they generated their output [16,17]. This hampers the trust that the users
(e.g., oncologists, cancer patients) have on the models’ predictions, which is detrimental for
their application in real-life scenarios [18].
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To mitigate this issue, several techniques have been proposed to open the so-called
black box of such high-performing, intricate models. These include Permutation Feature
Importance [19], Accumulated Local Effects [20], Local Interpretable Model-agnostic Ex-
planations (LIME [16]), Partial Dependence Plots, and SHapley Additive exPlanations
(SHAP [21]), among others [22]. Overall, their purpose is to generate an explicit knowledge
representation (in terms understandable to humans) of the models’ inner workings and
of how they generate their predictions [23]. The use of explainable ML (XML) as a novel
paradigm has started to grow in health care [24–26] and has been used in a few studies in
oncology [27–31], but its potential remains largely unexplored and underused.

Synoptic Reporting

Histopathological reports are of uttermost importance for providing timely and proper
information to oncologists, which is crucial in the diagnostic process and delivery of high
quality cancer care [32–34]. Traditional pathology reports are in the form of narrative text,
which means that they are written without a fixed, structured format [33,35]. Unfortunately,
these narrative reports are susceptible to data incompleteness, inferior understandability,
and misinterpretation [36], since they lack a fixed structure of scientifically validated
data items.

To alleviate these disadvantages, synoptic reporting (SR) has been introduced. SR
occurs in the form of a report in which the information elements are presented in a pre-
defined tabular form and stored as discrete data items in a database [37,38]. This structure
makes the most important information more accessible to clinicians, which has the potential
to reduce medical errors [38,39]. Additionally, SR allows for faster detection of essential
data, higher completeness of reported information, improved reporting of clinically relevant
data, uniformity, and making information computer readable [40,41].

In the Netherlands, SR was introduced in 2008 by the Nationwide Network and
Registry of Histo- and Cytopathology (PALGA), starting with pathological reporting of
breast and colorectal cancer. Currently, SR has been implemented in more than 31 different
protocols, all of which have been formally approved by the Dutch Society of Pathology.
Although the benefits of SR for Dutch patients has been investigated in a few types of
cancer (e.g., colorectal [35,42], gallbladder [43]), this has not been done in prostate cancer.

In this paper, we used XML to study the effect of SR on predicted ranked survival of
Dutch prostate cancer patients. Additionally, we compared its performance with that of
a classical statistical method. The manuscript is organized as follows. Section 2 gives a
detailed description of how the data were curated and how the models were developed
and validated. Section 3 presents the obtained results, which are further discussed in detail
in Section 4. Section 5 closes the paper with our overall conclusions.

2. Materials and Methods
2.1. Data

In this retrospective cohort study, we used data from the Netherlands Cancer Registry
(NCR) and the Nationwide Network and Registry of Histo- and Cytopathology in The
Netherlands (PALGA) [44] retrieved from the national SR data for radical prostatectomy.
These were linked through a trusted third party (ZorgTTP). The data comprised all prostate
cancer patients diagnosed between 2011 and 2018 in the Netherlands. Features included de-
mographic, clinical, and pathological data, along with tumor, lymph node, and metastases
(TNM)-stage. Figure 1 shows the patient selection process. Originally, the dataset consisted
of 55,616 rows. We excluded patients that had distant metastases (defined as a clinical or
pathological M1). We only used records of patients who received a radical prostatectomy
(i.e., complete surgical removal of the prostate, resection). Lastly, we removed any double
records (which occurred when a PALGA excerpt was coupled to more than one tumor or
patient) and duplicates (often due to registration artifacts). This resulted in a preliminary
dataset of 17,587 patients and 41 columns.
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Figure 1. Flowchart depicting inclusion/exclusion criteria. The preliminary dataset consisted of
17,587 patients and 41 columns.

2.2. Pre-Processing

We used Python v3.7.1 for the analyses of the whole study.

2.2.1. Feature Engineering

Firstly, we engineered a new feature: the European Association of Urology risk group
(EAU), which classifies patients into risk groups for biochemical recurrence of localized
and locally advanced prostate cancer [45]. It provides a prognostic profile of a patient’s
tumor by assigning it to one of four categories based on prostate-specific antigen (PSA),
Gleason score, and clinical T and clinical N values (Table 1). For the latter, the 7th edition of
the Union for International Cancer Control (UICC) classification of malignant tumors was
used for patients diagnosed between 2011 and 2017 [46], and the 8th edition was used for
patients diagnosed between 2017 and 2018 [47]. However, this did not have an influence
on the EAU feature, since the definition of cT and cN did not change between versions [48].

Table 1. Risk groups for biochemical recurrence of localized and locally advanced prostate cancer as
defined by the European Association of Urology.

Localized Locally Advanced

Low Risk Intermediate Risk High Risk High Risk

PSA < 10 ng/mL PSA 10–20 ng/mL PSA > 20 ng/mL Any PSA
and GS < 7 or GS = 7 or GS > 7 Any GS
and cT1-2a or cT2b or cT2c cT3-4 or cN+

PSA: prostate-specific antigen; GS: Gleason score; cT: clinical T; cN: clinical N.
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2.2.2. Feature Selection

Afterwards, we chose a subset of features that were clinically relevant predictors of
prostate cancer survival based on the recommendation of clinical experts. These were
age, EAU (as defined in Section 2.2), incidence year (i.e., year in which the patient was
diagnosed), academic hospital (i.e., whether a patient was treated at an academic hospital
or not), and SR.

2.2.3. Dealing with Missing Values

Not all the models used in this study (Section 2.3) are capable of dealing with missing
values. Therefore, in order to make a comparison that was as fair as possible, we chose to
use a complete case analysis approach (i.e., removing patients that had any missing values).

A summary of the data can be found in Table 2. For continuous variables, we report
their mean and standard deviation, whereas for categorical variables we report their
absolute and relative numbers (as a percentage). In all cases, we also show completeness of
each variable (before deletion). In the end, the final dataset consisted of five features and a
total of 14,878 patients.

Table 2. General overview of the dataset used in this study.

Variable Mean SD N % Original
Completeness (%)

Input

age (in years) 65.11 5.97 - - 100.0

EAU 84.6
localized—low risk - - 506 3.40
localized—intermediate risk - - 10,930 73.46
localized—high risk - - 3094 20.80
Locally advanced—high risk - - 348 2.34

incidence year 100.0
2011 - - 1599 10.75
2012 - - 1784 11.99
2013 - - 1957 13.15
2014 - - 1792 12.05
2015 - - 1829 12.29
2016 - - 1982 13.32
2017 - - 1930 12.97
2018 - - 2005 13.48

academic hospital 100.0
Yes - - 3485 23.42
No - - 11,393 76.58

SR 100.0
Yes - - 7568 50.87
No - - 7310 49.13

Completeness refers to the percentage of patients with no missing values (Section 2.2). SD: standard deviation;
EAU: European Association of Urology risk group; SR: synoptic reporting.

2.3. Models

We defined ranked patient survival as the outcome to be predicted, which is calculated
based on follow-up time and event occurrence. We used two different models for this task.

First, we performed a multiple CPH analysis (using scikit-survival v0.15.0 [49]),
since this is one of the most common and well-known methods used in oncology. It is a
semi-parametric approach that evaluates the effects of different covariates (i.e., features) on
the hazard ratio (HR) of the occurrence of death. In a CPH regression, a patient’s hazard is
modelled as a combination of the population time-variant baseline hazard and of his/her
time-invariant predictors (multiplied by their corresponding coefficients). Moreover, it
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makes no assumptions on the underlying hazard function. We also performed a classical
CPH multiple regression (using lifelines v0.25.11 [50]), which yielded HRs for each
feature in the model.

Additionally, we used eXtreme Gradient Boosting (XGB, using xgboost v1.3.3) as
a representative ML technique for survival analysis [14]. We chose this model based
on the results of our previous work, where we compared the performance of several
ML algorithms for predicting ranked survival in a similar dataset and found that XGB
performed the best [28]. These results are also in line with those of a few other studies in
literature that have successfully used XGB for predictive modelling in oncology [29,51,52].
XGB poses its learning task as a numerical optimization process. It performs the gradient
descent procedure by calculating the loss function and minimizes it by adding decision
(regression) trees as weak learners (i.e., classifiers that perform slightly better than chance),
as shown in Equation (1):

L(t) =
n

∑
i=1

l(yi, ŷi
(t−1) + ft(xi)) + Ω( ft) (1)

Here, l is a (differentiable) convex loss function measuring the difference between the
target yi and the prediction ŷi at the iteration t− 1. The tree ft(xi), is built using data xi that
most improves the model [14]. These trees are parameterized and added one at a time until
the loss reaches an acceptable value or until there is no further improvement. The final
output is given by the weighted sum of the individual trees’ predictions. Moreover, XGB
actively tries to reduce overfitting by using subsets of the data for generating each new
tree, by constraining the trees characteristics (such as number of trees or tree depth), and
by weighting the updates (i.e., applying a learning rate), as given by the term Ω( ft) [53].

We performed a nested cross-validation procedure. The inner loop consisted of a
fivefold cross validation used for tuning the hyperparameters of the XGB model using a
randomized search of 2000 different parameter settings (shown in Table 3). The outer loop
consisted of a tenfold cross validation used to assess the model performance. In all cases,
the target was to maximize Harrell’s concordance index (Section 2.3.1).

Table 3. Hyperparameters of the XGB model.

Hyperparameter Hyperparameter Space Chosen Value

Max. depth [1, 2, 3, 4, 5, 10, 15, 25, 50, 100, 250, 500] 2
Max. number of trees [25, 50, 75, 100, 250, 500, 750, 1000, 1500] 75

Learning rate Logarithmic space ranging from 10−2 to 100 0.054
Subsamples [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8] 0.5

2.3.1. Model Evaluation

The models’ output is a prediction of the sequence of events (i.e., which patients have
a higher risk to die) on an arbitrary scale. The models do so based on a combination of a
patient’s follow-up time and his corresponding censorship indicator. Hence, we evaluated
the models’ accuracy using Harrell’s concordance index (c-index) [54].

The c-index is a measure of how discriminant a model is in a ranking prediction task.
It can be interpreted as the probability that a certain patient with a shorter time-to-event
(as compared to another patient) is assigned a higher predicted probability of having the
event (in our case, death). Mathematically, it is the proportion of concordant patient pairs
divided by the total number of patient pairs. A concordant pair is defined as the case
when a patient with a shorter follow-up time than another patient indeed received a higher
probability of an event. In essence, the c-index could be interpreted in a similar way as the
area under the receiver operating curve [54,55], with a value of c = 1 indicating a capacity
to perfectly predict patient ordering. In other words, a model with a high c-index value
would be able to predict between two patients which one will have a shorter survival time
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with high reliability. We used tenfold cross validation to calculate a mean c-index for the
CPH and XGB models. Then, we compared these values using a paired Student t-test [56].

2.4. Explainability

Lastly, in order to understand how our models yielded their predictions, we decided to
use one of the many explainability techniques that are available [22,57]. Namely, we chose
SHapley Additive exPlanations (SHAP) as proposed and implemented by Lundberg and
Lee (v0.39.0 [21]), since in our previous work [31] (where we compared it against the LIME
approach [16]) we found that it was capable of providing detailed enough explanations
of a model’s inner workings at a local and at a global level, the latter being crucial to
our model at hand. Moreover, this technique has numerous advantages. First, it offers
a unified approach that presents the mathematical properties of (local) accuracy (i.e., an
approximate model built to explain the original model should match the output of the
original model for a given feature), missingness (i.e., when a feature is missing, there
should be no impact on its attribution), and consistency (i.e., if a feature’s contribution
stays the same or increases regardless of other features, then its attribution should not
decrease), which are not found simultaneously in other techniques [21,58]. These are
desirable properties that guarantee sound behaviour of the obtained explanations. More
importantly, SHAP values are model agnostic, meaning that they can be applied to models
of different nature, which was imperative to our comparison. Their execution on tree-based
models is extremely efficient [59], which was particularly advantageous for the XGB model.
Lastly, their implementation is open-source and is being actively supported and developed
by the original authors, as well as by the community.

The solid theoretical background behind SHAP values is derived from coalitional
game theory, where the original purpose was to quantify the fair distribution of the payout
of players in a game scenario [60]. In our case, SHAP values quantify the contribution of
features to a model’s output in a prediction task as given by Equation (2).

g(z′) = φ0 +
M

∑
j=1

φjz′j (2)

Here, g is the explanation model and z′ is the coalition vector (i.e., a vector where a
value of 1 means that the corresponding feature is present, while a value of 0 means that
it is absent). The value of g is composed of the model’s base rate φ0 and the sum of the
individual contributions of all features φj (i.e., the features’ Shapley values).

Moreover, SHAP values are capable of quantifying feature contribution not only at
an individual level, but also among all pairs of them. This allowed us to study local
interaction effects out-of-the-box, providing new insights into the relations between the
model’s input [29]. For a more in-depth explanation about SHAP values, we refer the
reader to the original papers [21,59].

3. Results

Table 4 shows the results of the CPH multiple regression. Based on the corresponding
z- and p-values, age and EAU were the most important predictors of ranked survival for the
data at hand. Additionally, SR had a significant positive effect on overall predicted survival.
The features academic hospital and incidence year had no significant impact on the
model’s output.

Figure 2 shows a bar plot comparing the performance of the CPH and XGB models’
ranked survival predictions using the c-index. The latter is presented as a mean with its
corresponding 95% confidence intervals from the tenfold cross-validation. XGB performed
significantly better in predicting ranked survival predictions as compared to CPH, with
c-index values of 0.67 and 0.58, respectively (p < 0.0001).

Next, we calculated SHAP values of the CPH and XGB models, which are shown in
Figure 3. In short, these plots show the impact that each feature had on the model output.
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Features are ordered from top to bottom in decreasing importance, given by the mean of
their absolute Shapley values. For each of them, each dot corresponds to a patient. Their
location on the x-axis is determined by their SHAP value. In our case, positive SHAP values
correspond to a higher chance of death, while negative values correspond to the opposite
(i.e., a higher chance of survival). In other words, a patient with a higher SHAP value has a
higher mortality risk relative to a patient with a lower SHAP value. The color indicates the
value of the feature it represents and is depicted from low (blue) to high (pink).

Figure 2. Mean c-index of the CPH and XGB models using tenfold cross-validation. Error bars
represent the 95% confidence intervals across folds. **** p < 0.0001.

Figure 3. SHAP swarm plots of (A) CPH model and (B) XGB model. In each panel, features
are arranged from top to bottom in decreasing order of importance. For each of them, each dot
corresponds to a patient. Their location on the x-axis is determined by their SHAP value. Higher
SHAP values correspond to a higher chance of death. The color indicates the value of the feature it
represents and is depicted from low (blue) to high (pink).
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Afterwards, we generated dependence plots for all five features, as shown in Figure 4.
In these, we also compared the CPH and XGB models (in light and dark blue, respectively).
Once more, each dot corresponds to one patient. The feature’s values are represented along
the x-axis, while the SHAP values are shown along the y-axis (their interpretation remains
unchanged: positive SHAP values correspond to a higher chance of death and viceversa).

Since we were particularly interested in studying the effect of SR, we also studied its
interaction effect with the two other most important features: age and EAU, which is shown
in Figure 5. In this case, color represents the value of the interacting feature, going from
low (in blue) to highest (in pink).

Figure 4. Dependence plot for all features: (A) age; (B) EAU (encoded as 1—low risk/localised, 2—
intermediate risk/localised, 3—high risk/localised, and 4—high risk/locally advanced); (C) SR (en-
coded as 0—False, 1—True); (D) incidence year; (E) academic hospital (encoded as 0—False,
1—True). Each dot corresponds to one patient. In the case of categorical features (i.e., all features
except age), artificial jitter was added along the x-axis for the sake of easier representation. The
y-axis scale is the same for all features in order to give a proper idea of their contributions to the
model output.
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Figure 5. Interaction effects between SR and the two most relevant features: (A) age and (B) EAU (en-
coded as 1—low risk/localised, 2—intermediate risk/localised, 3—high risk/localised, and 4—high
risk/locally advanced). In both cases, artificial jitter was added along the x-axis to better show the
point density.

Table 4. Results of the CPH multiple regression

Feature HR 95% CI z-Value p-Value

age 1.07 1.06 1.09 10.72 <0.005

EAU
Localized—low risk 1.00 - - - -
Localized—intermediate risk 2.39 1.28 4.46 2.73 0.01
Localized—high risk 3.27 1.73 6.18 3.65 <0.005
Locally advanced—high risk 2.82 1.47 5.31 3.16 0.01

SR
No 1.00 - - - -
Yes 0.78 0.63 0.97 −2.27 0.02

academic hospital
No 1.00 - - - -
Yes 0.90 0.76 1.06 −1.23 0.22

incidence year 0.99 0.94 1.05 −0.25 0.80
HR: hazard ratio; CI: confidence interval.

4. Discussion

In this paper, we showed a practical application of XML in oncology. More specifically,
we looked at the effect that SR had on the survival of a Dutch prostate cancer subpopulation
of 14,878 patients. For this, we used two different approaches: classical statistical survival
analysis using a CPH model and state-of-the-art ML in the shape of an XGB model. More
importantly, we included an explainability layer in the form of SHAP values to generate an
explicit knowledge representation of how the models generated their predictions.

The comparison between the models (Figure 2) showed that the XGB approach per-
formed significantly better (p < 0.0001) with a c-index of 0.67 (which can practically
be considered reasonable performance [61]), in contrast to the CPH approach, with a
c-index of 0.58. This is in line with findings in the literature that performed similar com-
parisons between CPH and ML models [28,62–65]. These works found that ML-based
techniques can perform at least as well as classical statistical methods (if not better) than
classical statistical methods in predicting ranked occurrence of patient events. This high-
lights the potential of a more extensive use of ML-based methods when studying patient
survival or recurrence.

Afterwards, we opened the models’ black boxes by computing their SHAP values. This
allowed us to generate valuable insights on many different aspects. First of all, we were
able to generate an explicit representation (Figure 3) of what impact the different features
had on the models’ output (and thus on their performance). On one hand, we found that
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for the CPH model, the most important feature was age, followed by SR and EAU. On the
other hand, for the XGB model the most important feature was also age, but was followed
by EAU and then by SR. We believe that the latter ranking makes more sense, given that the
EAU feature has more information about the condition of a patient (since it is calculated from
his TNM staging, Gleason score, and PSA levels, Section 2.2). In both cases, incidence
year and academic hospital were the least important features. We hypothesize that this
could be because there were no important changes in the care pathway of this particular
patient subpopulation dependent on time (incidence year) or on the type of hospital
where the patients were treated (academic hospital). These results are also consistent
with the HRs calculated earlier (Table 4), where those of age, EAU, and SR were significant,
while those of incidence year and academic hospital were not. Therefore, we will focus
on the top three (significant) features (age, EAU, and SR) for the rest of this discussion.

Dependence plots (Figure 4) can provide a few insights on the feature distributions.
For example, we can see that the number of patients that are 50 years old or younger is
lower than in other age groups. We can also observe that there are more patients with an
EAU of 2 or 3 (i.e., intermediate and high risk, respectively; both localised) compared to the
rest. A more interesting practical application was to provide additional information on how
the models deal with their inputs. Particularly, we can clearly see how the CPH approach
is only capable of modelling linear relations between the features and its output. It could
be argued that this model could be extended [66–68] to account for non-linearities in the
data through, for example, covariate transformations, step-wise regression, or specialized
functions. However, these alternatives are often highly dependent on the (subjective)
expertise of the researcher, which could also reduce the model generalizability, making it
prone to overfitting. In contrast, the XGB approach is capable of capturing and modelling
said non-linearities out-of-the-box, without any additional effort from the researcher in
a more generalizable, data-driven approach. For example, in the case of age (Figure 4A),
we can identify a plateau for patients between ∼40 and ∼55 years on their SHAP values.
Then, there is a relatively constant rise until ∼75 years, with a sharp increase after that.
Moreover, dependence plots also allow to compare the model’s inner workings with real
life and clinical intuition (based on the user’s medical expertise) to better understand the
phenomenon at hand. For example, EAU (Figure 4B) shows that the XGB model gives
patients with a low risk a much better chance of survival compared to the rest, which
is expected. Lastly, we can see that the XGB model found that when a patient received
SR (Figure 4C), his SHAP values shifted from positive to negative, further suggesting that
SR has a positive impact on predicted patient survival. Since the latter was of particular
interest, we also computed the interaction effects SR had with age and EAU (Figure 5).
Figure 5A reveals that the negative/positive effect of not receiving/receiving SR is more
impactful for older patients. Figure 5B shows a similar trend: not receiving/receiving SR
is more detrimental/beneficial for patients that are in a higher EAU risk group (either
localised or locally advanced).

The results presented here are the first step in exploring the effect that SR has on the
survival of prostate cancer patients. They should be expanded and confirmed with further
research. For example, it could be interesting to incorporate additional prognostic factors
(such as patient performance or comorbidities) and look at cause-specific survival (which
were not available in the dataset at hand). It could also be valuable to investigate what
items were missing in the narrative reports in comparison with those with SR and analyze
what impact they had on the patient care pathway. Given the volume of reports, using
natural language processing (NLP) could be a suitable approach [69].

Lastly, it is worth mentioning that (X)ML-based models still present a few limitations.
For instance, they are well-known to be data hungry, requiring large amounts of data to
achieve acceptable performance. Very often, they require optimization and tuning of differ-
ent parameters, which can be a cumbersome process. Lastly, depending on their complexity,
these type of models can be very resource consuming and computationally demanding.
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5. Conclusions

In this paper, we explored the impact that SR has on predicted ranked survival in a
population of 14,878 Dutch prostate cancer patients. We used classical statistical methods
(in the form of a CPH model) as well as more novel XML techniques (in the form of an XGB
model in combination with SHAP values). Our results show that XGB approach performed
significantly better than CPH in our patient cohort. The explainability layer of the analysis
pipeline (in the form of SHAP values) revealed that this difference in performance was due
to the XGB’s capability of capturing and modelling non-linearities as well as interaction
effects present in the data. SHAP values hint that SR has a moderate positive impact on
predicted patient survival. Combining the XGB model with SHAP visualizations revealed
interesting interaction effects between SR and other important features of interest, such as
age and EAU.

These findings show how XML-based techniques are capable of competitive perfor-
mance, while at the same time opening their black box by generating an explicit knowledge
representation of how models derive at their predictions. While increasing the trust that
end users (e.g., clinicians, patients) have on (complex) ML models remains a huge chal-
lenge [17,70,71], we believe that XML is a step in the right direction, potentially making
them even more attractive tools in oncology and in health care in general.
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Abbreviations
The following abbreviations are used in this manuscript:

CPH Cox Proportional Hazards
EAU European Association of Urology risk group
GS Gleason score
HR Hazard ratio
LIME Local Interpretable Model-agnostic Explanations
NCR Netherlands Cancer Registry
NLP Natural Language Processing
PALGA Nationwide Network and Registry of Histo- and Cytopathology in the Netherlands
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PSA Prostate-specific antigen
SD Standard deviation
SHAP SHapley Additive exPlanations
SR Synoptic Reporting
TNM Tumor, nodes, metastases
UICC Union for International Cancer Control
XGB eXtreme Gradient Boosting
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