
 

 
 
 
 
 

Jadidinejad, A. H., Macdonald, C. and Ounis, I. (2020) Using Exploration to 

Alleviate Closed-Loop Effects in Recommender Systems. In: 43rd International 

ACM SIGIR Conference on Research and Development in Information Retrieval 

(SIGIR 2020), Xi'an, China, 25-30 Jul 2020, pp. 2025-2028. ISBN 9781450380164. 

 

   

There may be differences between this version and the published version. You are 

advised to consult the publisher’s version if you wish to cite from it. 
 

© Association for Computing Machinery 2020. This is the author's version of the 

work. It is posted here for your personal use. Not for redistribution. The definitive 

Version of Record was published in 43rd International ACM SIGIR Conference on 

Research and Development in Information Retrieval (SIGIR 2020), Xi'an, China, 

25-30 Jul 2020, pp. 2025-2028. ISBN 9781450380164. 
http://dx.doi.org/10.1145/3397271.3401230.  
 
 

http://eprints.gla.ac.uk/215383/  
     

 
 
 
 
 

 
Deposited on: 16 June 2020 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Enlighten – Research publications by members of the University of Glasgow 

http://eprints.gla.ac.uk 

http://dx.doi.org/10.1145/3397271.3401230
http://eprints.gla.ac.uk/215383/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/


Using Exploration to Alleviate Closed Loop Effects in
Recommender Systems

Amir H. Jadidinejad, Craig Macdonald, Iadh Ounis
University of Glasgow

firstname.lastname@glasgow.ac.uk

ABSTRACT
Recommendation systems are often trained and evaluated based on
users’ interactions obtained through the use of an existing, already
deployed, recommendation system. Hence the deployed recommen-
dation systems will recommend some items and not others, and
items will have varying levels of exposure to users. As a result,
the collected feedback dataset (including most public datasets) can
be skewed towards the particular items favored by the deployed
model. In this manner, training new recommender systems from
interaction data obtained from a previous model creates a feedback
loop, i.e. a closed loop feedback. In this paper, we first introduce
the closed loop feedback and then investigate the effect of closed
loop feedback in both the training and offline evaluation of rec-
ommendation models, in contrast to a further exploration of the
users’ preferences (obtained from the randomly presented items).
To achieve this, we make use of open loop datasets, where randomly
selected items are presented to users for feedback. Our experiments
using an open loop Yahoo! dataset reveal that there is a strong
correlation between the deployed model and a new model that is
trained based on the closed loop feedback. Moreover, with the aid
of exploration we can decrease the effect of closed loop feedback
and obtain new and better generalizable models.
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1 INTRODUCTION
Recommendation systems benefit from the collaborative effect in
that an effective recommendation model that predicts items of
interest for a user can be obtained by examining the historical
interactions of user and items. However, in reality, the historical
interactions of users can be affected by any previously deployed
recommender system. For instance, users may not leave feedback
on items as they have not been exposed to them. In this way, training
a recommender model on historical interactions, obtained from a
previous recommender system, forms a closed loop feedback (aka
bandit feedback1). Indeed, this feedback loop may reinforce the
users’ historical behavior [3, 16].
1Bandit feedback is the term mostly used in Reinforcement Learning.
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The problem of exposure bias has beenwell-known for some time
in the evaluation of both search engines [11] and recommender
systems [19]. In search scenarios, clickthrough impressions are
known to be weak signals of relevance, and thus test collections for
offline learning and evaluation often encompass explicit relevance
judging (to identify if the clicked document is definitely relevant to
the user’s information need) as well as pooling (to identify other rel-
evant items not retrieved by the single system) [11]. However, due
to the subjective nature of the users’ information needs in recom-
mender systems, such explicit judging is not possible. The evalua-
tion of both search and recommender systems can thus benefit from
online evaluation, in the form of A/B testing or interleaving [17].

In contrast, our aim is to learn a better recommendation model
from the observed closed loop feedback collected by the deployed
system. To overcome the challenge of closed loop feedback, some
recommender systems exploit a bandit-based approach, where ex-
ploitation – the presentation of items that the system is more confi-
dent about – ismixedwith the exploration of items it is less confident
about, in order to obtain the users’ feedback about items that they
would not otherwise be exposed to [13]. Indeed, the recommender
systems community is increasingly concerned with reinforcement
learning techniques to learn from such biased user feedback [2, 19],
as exemplified by the recent REVEAL workshops at RecSys [6].

We investigate the impact of closed loop feedback on both the
training and evaluation of recommendation models. Without the
application of online bandit-based or reinforcement learning ap-
proaches, the classical offline training and evaluation approaches of
collaborative filtering models suffer from the closed loop effect. Our
contributions in this paper are hence two-folds: Firstly, we propose
a novel methodology in order to assess the effect of closed loop
feedback on both the training and evaluation of recommendation
models. Compared to previous research [5, 15, 16] that are based on
simulation frameworks, our approach is based on sampling from
a real-world randomized dataset2. The proposed methodology pro-
vides a new perspective to analyze the closed loop effect on both
the training and evaluation of recommender systems. Secondly, our
experiments based on the real-world randomized dataset reveal
that the evaluation based on closed loop feedback datasets is not
compatible with that of the randomized open loop feedback when
the deployed model has no exploration (i.e. it only exploits the high-
est relevant item to expose to the user), at least for the dataset and
models in our experiments. On the other hand, we show that if the
deployed model explores a broader range of items, the closed loop
effect is decreased and the evaluation based on closed loop feedback
is more compatible with the randomized open loop feedback dataset.

2In the randomized dataset, each item is exposed randomly.
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Figure 1: Closed loop feedback in recommendation systems.

2 RELATEDWORK
Counterfactual Evaluation: Learning from bandit feedback [9] is
a well-studied topic in Reinforcement Learning. Inverse Propensity
Scoring (IPS) is a well-known approach that allows the new model
to be evaluated/learned independently from the deployed model.
The key idea of IPS is to weight samples based on the propensities
of the observed items using importance sampling, where propensity
refers to the probability of item 𝑖 being shown to the user 𝑢 at the
point of data collection. This is a theoretically unbiased way to
learn a new model based on the feedback collected from the de-
ployed model [14]. Practically, these models need a comprehensive
and stochastic deployed model that covers all possible items with
accurate logged propensities [19]. Hence, despite the theoretical
underpinning of the propensity-based methods, it is not easy, in
reality, to satisfy the above constraints.

Algorithmic Confounding: Chaney et al. [3] showed that al-
gorithmic confounding occurs when a recommendation system
platform attempts to model user behavior without accounting for
the observed recommendations. Based on simulation, they showed
that closed loop feedback (1) causes homogenization of user behav-
ior while decreasing the utility and (2) amplifies the impact of rec-
ommendation models on the distribution of item consumption. In
addition, Sun et al. [15, 16] proposed strategies based on active learn-
ing to debias the effect of feedback loops. These are the most related
works to ours, but they are based on synthetic datasets. We propose
a novel methodology to leverage real-world randomized datasets.

Unbiased Learning to Rank: Users’ feedback in recommen-
dation systems is reminiscent of clickthrough data in information
retrieval (IR). Previous research [11] has shown that there is a
strong dependency between the documents presented to the user,
and those for which the system receives feedback, i.e. higher-ranked
documents obtain more clicks (position/presentation bias). As a
result, such feedback does not reliably reflect retrieval quality [11].
Researchers in IR have proposed novel approaches for both learn-
ing [7] and evaluating [11] from user’s clickthrough data that specif-
ically factored for position bias in search results. However, due to
the subjective nature of the users’ information needs in recom-
mender systems, these models are not directly applicable.

3 CLOSED LOOP FEEDBACK
The term feedback refers to a situation in which two (or more)
dynamic systems are strongly connected together such that each
system influences the other and their dynamics [1]. Figure 1 shows
the closed loop information flow of a recommendation system. The
deployed recommender system (RecSys) component filters (or per-
sonalizes) items for the target user (e.g. by suggesting a ranked list
of items) depicted as exposure (𝑒). As a result, the user has a partial
view of the world, modulated by the RecSys component [10]. The
user’s recorded preferences towards those ranked items (depicted
as 𝑟 ) are leveraged as training data to develop the next-generation
of the recommendation model. These interactions are subject to
selection bias exposed by the RecSys component [16, 17, 19].

Input: deployed RecSys model𝑀 ; randomized exposure 𝑅
Output: closed loop feedback dataset

𝐷𝑀 = ⟨𝑢𝑠𝑒𝑟𝑠, 𝑖𝑡𝑒𝑚𝑠, 𝑐𝑙𝑖𝑐𝑘𝑠⟩
initialize 𝐷𝑀 ← ∅ ;
//iterate through the randomized exposures 𝑅;
foreach 𝑒 = ⟨𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚, 𝑐𝑙𝑖𝑐𝑘⟩ ∈ 𝑅 do

//predict based on the previous observed history;
if 𝑀 (𝐷𝑀 , 𝑢𝑠𝑒𝑟 ) == 𝑖𝑡𝑒𝑚 then

𝐷𝑀 ← 𝐷𝑀 ∪ 𝑒 ;
//update the model’s parameters ;
𝑓 𝑖𝑡 (𝑀, 𝑒) ;

end
end

Algorithm 1: closed loop feedback sampling from a random-
ized dataset (𝑅) based on a deployed model (𝑀).

The main challenge is that both the User and the RecSys compo-
nents depicted in Figure 1 form a feedback loop: they are strongly
connected together such that each component influences the other
and their dynamics, i.e. the system presented in Figure 1 is a dy-
namic system where a simple causal reasoning about the system is
difficult because each component influences the other, leading to a
closed loop feedback. On the other hand, if the RecSys component
in Figure 1 is a random model, then the interconnection between
the User and the RecSys components is removed and the RecSys
component has no effect on the collected feedback dataset known
as open loop feedback.

The modeling of the users’ preferences without taking into ac-
count the closed loop effect has a negative effect on both users
and recommendation models. From the user’s perspective, during
different iterations of closed loop feedback, the RecSys component
systematically restricts the perception of the user by recommend-
ing personalized items. This might create a monoculture where,
during different iterations of closed loop feedback, the perception
of the user becomes narrower, aka filter bubble [3, 10]. On the
other hand, from the system’s perspective, the recommendation
models are trained based on the users feedback. During different
iterations of closed loop feedback, the observed feedback is hence
systematically biased towards some particular items. As a result, the
observed feedback that is used for both the training and evaluation
of new models becomes restricted to a highly skewed distribution
of items [16]. For instance, if popular items are overexposed by
the RecSys component in Figure 1, the user’s perceptions may be
restricted to those popular items (i.e. the user’s perspective). As a
result, the collected feedback dataset will be skewed towards the
popular items too (i.e. the system’s perspective), raising questions
about the quality of machine learning models being trained and
evaluated based on closed loop feedback [2, 4]. In this paper, we
focus on the system’s perspective. Our aim is to show the impact of
the deployed model on both the training and evaluation of a new
model based on closed loop feedback. For this purpose, we propose
a novel methodology in the following section.

4 METHODOLOGY
Our objective is to show the impact of closed loop feedback in both
the training and evaluation of recommendation models. Therefore,
we aim to answer the following two research questions:

RQ1: Is the evaluation of models based on closed loop feedback com-
patible with the corresponding open loop feedback? Our hypothesis is



that the deployed model (the RecSys component in Figure 1) plays
a key role when collecting closed loop feedback. In this research
question, we evaluate the effectiveness of various recommenda-
tion models with and without closed loop feedback. Our aim is to
demonstrate the relationship between the deployed model (𝑀) and
the new evaluated model (𝑀 ′).

RQ2: How does exploration affect the closed loop feedback? Our
hypothesis is that the confounding role of the deployed model can
be decreased if the deployed model explores broader ranges of items
instead of exploiting highly relevant items. In this research question,
we add exploration to the deployed recommendation model and
analyze the effect of closed loop feedback when the deployed model
involves exploration compared to the situation when the deployed
model only exploits the items with the highest relevance scores.

Most current public datasets for developing and evaluating rec-
ommender systems have been collected from a deployed system.
These datasets cover only the User component in Figure 1, i.e. the
deployed recommender system used is not known. Even if the de-
ployed model is identified, designing a rigorous experiment in this
dynamic system is not straightforward. Therefore, we cannot inves-
tigate the closed loop effect based on the current public datasets. On
the other hand, randomized datasets are promising for analyzing
closed loop feedback. In a randomized dataset, items are randomly
selected for being exposed to the user, i.e. the RecSys component
depicted in Figure 1 is a random recommendation model.

In order to simulate the effect of closed loop feedback, we pro-
pose a novel methodology based on Algorithm 1 that samples a
set of closed loop feedback 𝐷𝑀 for a particular deployed model𝑀
from the random exposures (𝑅). For each ⟨user, item, click⟩ tuple in
the randomized dataset, the deployed model first predicts the user’s
preferences (𝑟 in Figure 1) based on the current state of the model
𝑀 . If the output of the model is equivalent to the observed random
outcome, the corresponding ⟨user, item, click⟩ will be leveraged as
a closed loop feedback and the deployed model𝑀 will be updated
based on the observed feedback. Since each user has been exposed
to a random item, Algorithm 1 samples a subset of exposures rein-
forced by the deployed model 𝑀 . On the other hand, if the given
deployed model𝑀 is a random model, then the collected feedback
data will form an open loop feedback dataset. As a result, we will
be able to contrast the effectiveness of a new model on both closed
and open loop scenarios. Li et al. [8] proposed a similar approach
for the unbiased offline evaluation of contextual-bandit models.
However, our proposed methodology provides a new perspective
to assess the effect of closed loop feedback, which is not possible to
investigate based on the current public datasets.

5 EXPERIMENTAL SETUP
We use the Yahoo! front page news dataset (Yahoo! R6B) [8], which
is a well-known randomized dataset commonly used in the field
of counterfactual learning and evaluation. A unique property of
this dataset is that the displayed news articles were randomly sam-
pled from the pool of candidate articles, and the user’s feedback
(i.e. clicks) were collected for each random exposure. The dataset
contains 15 days of random exposure of news articles to the users.
We randomly sample two consecutive days, leverage the first day
to initialize the model𝑀 based on randomized open loop feedback
and then apply Algorithm 1 to collect closed loop feedback (𝐷𝑀 ) for

the second day.3 We use 80% of the feedback for training and 20%
for evaluation. We repeat our experiments 10 times and report the
average of the results. We evaluate the following models: A simple
baseline model that recommends a random item among all available
items (Random); An unpersonalized model that selects the top-20
most popular items and suggests them to each and every user re-
gardless of their preferences (Popularity); Bayesian Personalized
Ranking (BPR) [12] is a well-known pair-wise ranking model. The
BPR model is trained based on uniform negative sampling, i.e. we
randomly sample items not interacted with as negative instances
for each user; Weighted Approximate-Rank Pairwise (WARP) [18]
is another pair-wise ranking prediction model. Unlike BPR, the neg-
ative items are not chosen by random sampling: they are chosen
among those negative items that would violate the desired ranking
given the current state of the model. The dimensions of the user
and item representations were set to 64 and each model was trained
using the Adam optimizer (the learning rate is 10−3) with a batch
size of 256. For a particular deployed model𝑀 , we collect a closed
loop feedback dataset (𝐷𝑀 ) based on Algorithm 1. The collected
closed loop feedback dataset is leveraged to train and evaluate a
new model (𝑀 ′) in the same manner as for the deployed model (𝑀).
In addition, we evaluate the models based on the commonly used
normalized Discounted Cumulative Gain (nDCG@20) metric.

6 RESULTS AND DISCUSSION
Table 1 shows the average of 10 different experiments with 95%
confidence intervals for two different settings: (I) when we only
exploit the best item suggested by the deployed model and (II) when
we choose the item by randomly sampling from the distribution of
relevance scores4 associated with each candidate item. The rows
and columns in Table 1 correspond to the deployed model (𝑀) and
the evaluated model (𝑀 ′), respectively.

RQ1: Table 1 (I) shows the dependency between the deployed
model and the corresponding evaluated model based on closed loop
feedback when the deployed model only exploits the item with
the highest relevance score (i.e. no exploration). The ground truth
(open loop evaluation) is the ‘Random’ deployed model where there
is no correlation between the deployed model and the evaluated
model. From the table, we observe that the evaluation of models
based on closed loop feedback is not compatible with the open loop
feedback (e.g. BPR outperforms other models based on closed loop
feedback while WARP is markedly better than BPR based on open
loop feedback). Focusing on BPR and WARP, we observe that when
the BPR is the deployed model, the performance of BPR is markedly
higher than WARP, while when WARP is the deployed model, the
performance of these two models are close to each other. Our ex-
periments reveal that there is an inconsistency between the closed
loop and open loop (random) evaluation. However, the study of the
dependency between the deployed model and the corresponding
evaluated model needs a further investigation (e.g. with various
types of recommendation models).

RQ2: Figure 2 shows the items’ coverage of the deployed model
with and without exploration. The figure shows that random sam-
pling based on the items’ relevance scores, instead of choosing the
3This allows us to initialize the model with a proper prior knowledge and then to
investigate the effect of closed loop feedback. Otherwise, different instances of the
deployed model will not coverage.
4We use the softmax function to map the relevance scores to a probability distribution.



Table 1: Evaluation based on NDCG@20 with (II) or without (I) exploration. 95% confidence intervals are shown with the ±
symbol. Rows correspond to the deployed model while columns correspond to the newmodel, which is trained and evaluated
based on the closed loop feedback collected by the deployed model.

(I) Exploitation (II) Exploitation+Exploration
Random Popularity BPR WARP Random Popularity BPR WARP

Random 0.0005 ± 0.000 0.009 ± 0.001 0.222 ± 0.025 0.240 ± 0.030 0.0005 ± 0.000 0.009 ± 0.000 0.212 ± 0.026 0.228 ± 0.027
Popularity 0.0007 ± 0.000 0.049 ± 0.005 0.840 ± 0.070 0.838 ± 0.071 0.0007 ± 0.000 0.053 ± 0.013 0.815 ± 0.081 0.783 ± 0.099
BPR 0.0006 ± 0.000 0.045 ± 0.010 0.852 ± 0.082 0.839 ± 0.099 0.0007 ± 0.000 0.048 ± 0.004 0.796 ± 0.055 0.797 ± 0.054
WARP 0.0007 ± 0.000 0.046 ± 0.012 0.804 ± 0.086 0.802 ± 0.077 0.0006 ± 0.000 0.035 ± 0.007 0.583 ± 0.069 0.584 ± 0.067
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Figure 2: Items’ coverage of the deployed model without (a)
and with (b) exploration. Both axes are log scaled for clarity.

item with the highest relevance score, leads to a better coverage of
the items’ consumption. Table 1 (II) shows the corresponding results.
Compared to the situation where the deployed model only exploits
the item with the highest relevance score (exploitation), the evalua-
tion of different models based on closed loop feedback is more com-
patible with the open loop evaluation (i.e. when the deployed model
is ’Random’). This answers RQ2; exploration does decrease the ef-
fect of closed loop feedback. However, the difference between the
nDCG@20 values are small. For example, when the deployed model
is BPR, although the effectiveness of BPR is not markedly higher
thanWARP (aswe observe in the exploitation setting), the difference
between the nDCG@20 absolute values of BPR and WARP is small
(Δ𝑛𝐷𝐶𝐺@20 = 0.001). A further analysis of Table 1 reveals that the
performances of all models are degraded in the exploration setting.
We conjecture that leveraging a more effective exploration strategy
(e.g. Thompson sampling) [13] rather than random sampling is im-
portant to balance between exploitation based on closed loop feed-
back and exploration without degrading the systems’ performances.
We leave the choice of the exploration strategy for future work.

7 CONCLUSIONS
Recommendation systems are an instance of dynamic systems
where a simple causal reasoning about the users’ preferences is
difficult because both the recommender and the user have a direct
influence on each other. In this paper, we introduced the notion of
closed loop feedback and proposed a novel methodology to analyze
the closed loop effect based on randomized datasets. Our experi-
ments revealed that when the deployed model has no exploration,
the collected closed loop feedback is highly skewed towards a sub-
group of items and the training and evaluation of recommendation
models based on closed loop feedback is not compatible with the
random open loop situation. However, when the deployed model in-
volves exploration, the evaluation of recommendation models based
on closed loop feedback becomes more compatible with the ran-
dom open loop scenario. We know that the current public datasets

are collected from a deployed model, but we are not aware of the
deployed model’s specifications. If the deployed model has no explo-
ration5 then any new model that is trained and evaluated based on
closed loop feedback datasets will suffer from the closed loop effect.
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