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Abstract —The uncontrolled conditions of real-world biometric applications pose a great challenge to any face recognition approach.
The unconstrained acquisition of data from uncooperative subjects may result in facial scans with significant pose variations along the
yaw axis. Such pose variations can cause extensive occlusions resulting in missing data. In this paper, a novel 3D face recognition
method is proposed that uses facial symmetry to handle pose variation. It employs an automatic landmark detector that estimates pose
and detects occluded areas for each facial scan. Subsequently, an Annotated Face Model is registered and fitted to the scan. During
fitting, facial symmetry is used to overcome the challenges of missing data. The results is a pose invariant geometry image. Unlike
existing methods that require frontal scans, the proposed method performs comparisons among interpose scans using a wavelet-based
biometric signature. It is suitable for real-world applications as it only requires half of the face to be visible to the sensor. The proposed
method was evaluated using databases from the University of Notre Dame and the University of Houston that, to the best of our
knowledge, include the most challenging pose variations publicly available. In these databases the average rank-one recognition rate
of the proposed method was 83.7 %.

Index Terms —O.8.13 Biometrics, I.5.4.d Face and gesture recognition, I.3.5.i Physically based modeling.
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1 INTRODUCTION

OWing to an increase in the availability of 3D data,
several 3D face recognition approaches have been

proposed. These approaches aim to overcome the limita-
tions of 2D face recognition by offering pose invariance.
However, they mostly use frontal 3D scans and assume
that the entire face is visible to the sensor. This as-
sumption is not always valid in real-world applications,
since unconstrained acquisition may lead to facial scans
with extensive occlusions that result in missing data.
Therefore, to take advantage of the full pose invariance
potential of 3D face recognition, the problem of missing
data must be addressed.

In our previous work [1], [2], we presented a 3D
face recognition method (ranked first in the shape-only
section of NIST’s Face Recognition Vendor Test 2006).
However, only frontal scans were used for recognition
as the method was not designed to handle missing data.
In subsequent work [3], we extended our method to
work in the presense of missing data by introducing a
landmark detection algorithm (based on [4]).

In this paper, we extend and integrate our previous
work to present a method that offers pose invariance and
high recognition rates. It allows matching among inter-
pose facial scans, and solves the missing data problem
by using facial symmetry on occluded areas (Fig. 1). The
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Fig. 1. Interpose matching using the proposed method (left to
right): Opposite side facial scans with extensive missing data,
generic AFM, deformed AFM for each scan (facial symmetry
used) and extracted geometry images.

proposed method is applicable to real-world scenarios as
it has the following unique combination of features:
• No user intervention is required: It is fully auto-

matic.
• No subject cooperation is required: It can handle

facial expressions and extreme pose variations.
• State-of-the-art performance: State-of-the-art perfor-

mance has been experimentally demonstrated.
• Can be applied to large databases: It has a reason-

able computational cost with excellent scalability.
Initial registration with the an Annotated Face Model

(AFM) [2] using the detected landmarks allows the pose
estimation of each facial scan. Then, the AFM is fitted
to the facial scan using a subdivision-based deformable
model framework that is extended to allow symmetric
fitting. Symmetric fitting alleviates the missing data



2

problem and enables the creation of geometry images
that are pose invariant. Compared to our previous work
[3], we have made the following improvements:
• A far more robust automatic 3D facial landmark

detector is used [5].
• Improved registration and fitting. These steps now

independently handle the left and right sides of
frontal scans to allow partial matching.

• A novel interpose database is introduced for addi-
tional experimental evaluation

• Significantly better results are presented indicating
the proposed method’s high accuracy in challenging
databases.

The rest of this paper is organized as follows: in
Section 2 the related work is described while in Section 3
the proposed method is presented in detail. In Section 4
the method’s performance is evaluated and in Section 5
the method is summarized.

2 RELATED WORK

2.1 Face Recognition and Landmark Localization

Most face recognition methods focus only on frontal
scans (see surveys of Bowyer et al. [6] and Chang et
al. [7]). As a result, the performance of such methods
is not evaluated with data that exhibit significant pose
variations. The methods that are evaluated using data
with pose variations are mentioned below. Note that
none of them handles the extreme pose variations and
the extensive missing data that the proposed method
does.

Lu et al. [8], [9], [10] have presented methods to locate
the positions of eye and mouth corners, and nose and
chin tips, based on a fusion scheme of the shape index on
range maps and the ”cornerness” response on intensity
maps. They also developed a heuristic method based on
cross-profile analysis to locate the nose tip more robustly.
Candidate landmark points were filtered out using a
static (non-deformable) statistical model of landmark
positions (in contrast to our approach). Although they
report a 90 % rank-one recognition rate in an identifica-
tion experiment, no claims where made with respect to
the effects of pose variation in Face Recognition. Their
proposed 3D approach [9] (evaluated using multiview
scans with yaw rotations up to 45◦ from MSU) that
can handle pose variations had a significant decrease
in 3D landmark detection accuracy compared to their
multimodal approach [8] (evaluated using near frontal
scans from FRGC v1).

Dibeklioglu et al. [11], [12] introduced a nose tip
localization and segmentation method using curvature-
based heuristic analysis to enable pose correction in a
face recognition system that allows identification under
significant pose variations. However, a limitation of
the method is that it is not applicable to facial scans
with yaw rotations greater than 45◦. Additionally, even
though the Bosphorus database that was used consists of

3,396 facial scans, these scans were obtained from 81 sub-
jects only. Blanz et al. [13], [14] presented methods on 3D
face reconstruction by fitting their 3D Morphable Model
on 3D facial scans. Their method is a well established
approach for producing 3D synthetic faces from scanned
data. However, face recognition testing is performed on
FRGC database with frontal facial scans, and on FERET
database with faces under pose variations which do not
exceed 40◦ yaw rotation.

Bronstein et al. [15] presented a face recognition
method that can handle missing data. Their method
is based on their previous work where they used a
canonical representation of the face. They report high
recognition rates on a limited database of 30 subjects. In
addition, the database that was used had no side scans.
The scans with missing data that was used were derived
synthetically by randomly removing areas from frontal
scans. In Nair and Cavallaro’s [16] work on partial 3D
face matching, the face is divided into areas and only
certain areas are used for registration and matching. The
method is based on the assumption that the areas of
missing data can be excluded. Using a database of 61
subjects, they show that using parts of the face rather
than the whole face yielded higher recognition rates.
However, both this method and their subsequent work
on 3D landmark detection [17], their method is not
applicable to missing data resulting from self-occlusion,
particularly in the presence of holes around the nose
region.

Lin et al. [18] introduced a coupled 2D and 3D feature
extraction method to determine the positions of eye sock-
ets using curvature analysis. The nose tip is considered
as the extreme vertex along the normal direction of
eye sockets. The method was used in an automatic 3D
face authentication system but was only tested on data
from 27 subjects with various poses and expressions.
Mian et al. [19] introduced a heuristic method for nose
tip detection and used it in a face recognition system.
The method was based on a geometric analysis of the
nose ridge contour projected on the x − y plane. A
preprocessing step to crop and pose correct the facial
data was used. This method can only be applied to
data with up to 90◦ roll variation and yaw and pitch
variation less than 15◦, thus limiting the applicability to
near frontal scans.

Methods have also been proposed that focus mainly
on the detection of 3D facial landmarks. Segundo et
al. [20] presented a face and facial feature detection
method by combining a method for 2D face segmenta-
tion on depth images with surface curvature information
for detecting facial features (e.g., eye corners and nose
tip). The method was tested on the FRGC 2.0 data with
over 99.7 % detection rate. However, this method had
problems in nose and eye corner detection when the face
had a significant pose variation (> 15◦ around the yaw
and roll axes). Wei et al. [21] proposed a nose tip and
nose bridge localization method to determine facial pose.
The method was based on a Surface Normal Difference
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algorithm and shape index estimation, and was used as a
preprocessing step in pose-variant systems to determine
the pose of the face. They reported an angular error of
the nose tip - nose bridge segment less than 15◦ in 98 %
of the 2500 datasets of BU-3DFE facial database, which
contains complete frontal facial scans with up to ±45◦

yaw variation.
Faltemier et al. [22] proposed a method called Ro-

tated Profile Signatures, based on profile analysis, to
robustly locate the nose tip in the presence of pose,
expression and occlusion variations. Their method was
tested against the NDOff2007 database which contains
7,317 facial scans (406 frontal and 6,911 in various yaw
and pitch angles). They reported a 96 % to 100 % success
rate with distance error threshold 10 mm. Although their
method achieved high success rate scores, the exact lo-
calization distance error results were not presented. Xu et
al. Finally, [23] presented a feature extraction hierarchical
scheme that detected the positions of nose tip and nose
ridge. They introduced the effective energy measure to
describe the local distribution of neighboring points and
detect the candidate nose tips. Although it was tested
against various databases, no exact localization results
were provided.

2.2 Facial Asymmetry

The human face is not perfectly symmetrical and the
exact level of facial asymmetry was recently quantified
in the work of Liu et al. [24]. In this work it was
shown that facial asymmetry is statistically significant
given a reasonable range of sensor noise. Additionally,
facial asymmetry has been used as a biometric in several
methods (e.g., Kompanets [25], Liu et al. [26] and Mitra
et al. [27]). In these methods, facial asymmetry offered
promising biometric results particularly in the presence
of facial expressions. As pointed out by Liu et al. [24],
facial asymmetry should not be ignored without a justi-
fication.

The proposed method, exploits facial symmetry and
does not assume the human face to be perfectly sym-
metrical. The method is based on the assumption that
the difference (caused by facial asymmetry) between the
left and the right region of a subject’s face is less than the
difference between these regions and the regions of an-
other subject’s face. The experimental results presented
in Section 4 justified that assumption for the databases
that were used. The concept of using partial facial data
for biometric purposes has also been investigated by
Gutta et al. [28] in the 2D face recognition domain with
promising results.

3 UR3D-S: A S YMMETRIC FACE RECOGNI-
TION METHOD

The proposed method, UR3D-S, processes each facial
scan and derives a wavelet-based biometric signature.
This representation is a biometric signature that can

Fig. 2. Depiction of the UR3D-S flow chart.

be directly compared with other signatures using an
L1 distance metric, allowing efficient matching in both
identification and verification scenarios. The novelty of
UR3D-S is that the signature is independent of the initial
pose and of missing data caused by occlusions (as long
as half of the face with respect to the yaw axis is visible
in the scan). Specifically, in order to perform interpose
matching we require that the following five landmarks
are visible on the same side of the face: inner and outer
eye corner, nose tip, mouth corner and chin tip. This
allows seamless comparisons among frontal, left and
right side scans, making UR3D-S suitable for real-life
biometric applications. The processing pipeline of each
facial scan consists of the following fully automated
steps (Fig. 2):

Step 1 Preprocessing: Standard preprocessing tech-
niques are used to filter the raw data.

Step 2 3D Landmark Detection: A robust landmark
detector is used for pose estimation (deter-
mining if it is a frontal, left or right scan).

Step 3 Registration: The raw data are registered to the
AFM using a two–stage approach.

Step 4 Symmetric Deformable Model Fitting: The AFM
is fitted to the data using facial symmetry.
The fitted model is then converted to a ge-
ometry image and a normal image.

Step 5 Wavelet Analysis: A wavelet transform is ap-
plied on the geometry and normal images
and the wavelet coefficients are stored as a
biometric signature.

3.1 Preprocessing

UR3D-S can use as input both polygonal and range data
obtained from optical or laser scanners. A preprocessing
step is applied to the raw data to convert them to
a unified representation and to eliminate any sensor-
specific problems [2]. Particularly for the range data, the
following preprocessing algorithms were applied before
converting the data to a polygonal representation:
• Median Cut: To remove spikes (that are common

in range images from laser scanners) a median cut
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(a) (b)

Fig. 3. Example of a facial scan (a) before and (b) after
preprocessing.

Fig. 4. Depiction of the landmark model (FLM8) overlaid on a
frontal facial scan.

filter with a 3× 3 window was applied.
• Hole Filling: Laser scanners usually produce holes

in certain areas (e.g., eyes, eyebrows). A hole fill-
ing procedure that uses bilinear interpolation was
applied.

• Smoothing: A smoothing filter with a 3× 3 window
was applied to remove white noise.

• Subsampling: The range data were subsampled at a
1 : 4 ratio.

An example of range data suffering with noise and holes
is shown in Fig. 3, before (a) and after (b) preprocessing.

3.2 3D Landmark Detection

Our method for 3D landmark detection and pose esti-
mation (described in detail in [5]) uses 3D information
to extract candidate interest points which are identified
and labeled as landmarks by matching them with a
Facial Landmark Model (FLM) [4], [3]. Once anatomical
landmarks are localized, then the corresponding rigid
transformation is computed in order to register the facial
scans.

We use a set of eight anatomical landmarks: right eye
outer corner (l1), right eye inner corner (l2), left eye inner
corner (l3), left eye outer corner (l4), nose tip (l5), mouth
right corner (l6), mouth left corner (l7) and chin tip (l8)
(Fig. 4). Notice that five of these points are visible on
profile and semi-profile facial scans. Thus, the complete
set of eight landmarks can be used for frontal and
almost-frontal faces and two subsets of five landmarks
each can be used for semi-profile and profile faces. The
right side landmark set contains the landmarks l1, l2, l5,
l6, and l8, and the left side the landmarks l3, l4, l5, l7 and
l8.

Each of these sets of landmarks constitute a corre-
sponding Facial Landmark Model (FLM). For the re-

maining of this paper, the model of the complete set of
eight landmarks will be referred to as FLM8 and the two
reduced sets of five landmarks (left and right) as FLM5L
and FLM5R, respectively. The FLMs are created in the
following manner:
• A statistical mean shape for each landmark set

(FLM8, FLM5L and FLM5R) is computed from a
training set of 150 manually annotated facial scans
with neutral expressions, randomly chosen from the
FRGC v2 database.

• Variations of each FLM are computed using Princi-
pal Component Analysis (PCA).

3.2.1 The Facial Landmark Models

The mathematical representation of an n-point shape in
d dimensions can be defined by concatenating all land-
mark coordinates into a k = nd vector and establishing
a shape space [29], [30], [31]. Since shape is invariant
to Euclidean similarity transformations, translational,
scale and rotational effects need to be filtered out. This
is accomplished by establishing a common coordinate
reference to which all landmark shapes are aligned; a
procedure commonly known as Procrustes Analysis. Since
for the purposes of this paper the size of the shape is of
great importance, it is not filtered out by scaling shapes
to unit size. Alignment is performed by minimizing the
Procrustes distance D2

P = |xi − xm|2 of each shape xi to
the mean shape xm. The alignment procedure is used
to compute the mean shape xm of landmarks, which is
the Procrustes mean xm = 1

N

∑N
i=1 xi of all N example

shapes xi .
Aligned shape vectors form a distribution in the shape

space, thus, we can model this distribution by estimating
a vector b of parameters that describes shape’s deforma-
tions [32], [31], [33], [30]. This shape decomposition is
performed by applying PCA to the aligned shapes.

If A contains (in columns) the p eigenvectors Ai

corresponding to the p largest eigenvalues λi of the
covariance matrix C of the aligned shape vectors, then
b is a p-dimensional vector given by b = AT · (x− xm).
The vector b is the projection of x onto the subspace
spanned by the p most significant eigenvectors of the
eigenspace (principal components). By applying limits to
each bi (e.g., |bi| ≤ 3

√
λi) we can create marginal mean

shape deformations. The number p of most significant
eigenvectors and eigenvalues to retain (modes of varia-
tion) can be chosen so that the model represents a given
proportion of the total variance of the data. The result is
the FLM [4], [3].

We incorporated 15 eigenvalues (out of the total 24)
in FLM8, which represent 99 % of total shape variations
of the complete landmark shapes. We also incorporated
seven eigenvalues (out of the total 15) in FLM5L and
FLM5R, which represent 99 % of total shape variations
of the FLM5L and FLM5R.

General-purpose feature detection methods do not
identify and label the detected candidate landmarks. It
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is clear that some topological properties of facial land-
marks must be taken into consideration. Thus, candidate
landmarks, irrespective of the way they are produced,
must be consistent with the corresponding FLM. This
is done by fitting a candidate landmark set y to the
FLM xm by minimizing the Procrustes distance |y−xm|
in a simple iterative approach. By projecting y to the
shape eigenspace, the deformation parameters b are
determined, and the landmark shape is considered as
plausible, if it is consistent with marginal shape defor-
mations [31], [33].

3.2.2 Landmark Detection & Selection

To detect landmark points, we have used two 3D local
shape descriptors that exploit the 3D geometry-based
information of facial scans: shape index and spin images.

The shape index is extensively used for 3D landmark
detection [34], [35], [8], [9], [10]. It is a continuous
mapping of principal curvature values (kmax, kmin) of
a 3D object point p into the interval [0,1], according to
the formula:

SI(p) =
1
2
− 1

π
tan−1 kmax(p) + kmin(p)

kmax(p)− kmin(p)
.

The SI values represent the type of local curvatures of
shapes (Cup = 0.0, Rut = 0.25, Saddle = 0.5, Ridge = 0.75,
and Cap = 1.0).

Local maxima (Caps) are candidate landmarks for
nose tip and chin tip and local minima (Cups) are
candidate landmarks for eye corners and mouth corners.
Local maxima and minima are located on a facial dataset
and sorted in descending order of shape index values.
The most significant subset of points for each group is
retained (a maximum of 512 Caps and 512 Cups). In
Fig. 5(a), black boxes represent Caps, and white boxes
Cups.

However, our experiments indicated that the shape
index value alone is not sufficiently robust for detecting
anatomical landmarks on facial scans in a variety of
poses. Therefore, candidate landmarks estimated from
shape index values are further classified and filtered
out according to their relevance with corresponding spin
image templates.

A spin image encodes the coordinates of points on
the surface of a 3D object with respect to a so-called
oriented point (p,n), where n is the normal vector at a
point p of a 3D object’s surface [36]. A spin image at
an oriented point (p,n) is a 2D grid accumulator of 3D
points, as the grid is rotated around n by 360◦. Thus, a
spin image is a descriptor of the global or local shape of
the object, invariant under rigid transformations. For our
purposes of representing facial features on facial scans,
a 16× 16 spin image grid with 2 mm bin size was used.
This represents the local shape spanned by a cylinder of
3.2 cm height and 3.2 cm radius.

In order to identify interest points on facial scans, we
create spin image templates that represent the classes of
the landmarks used. Notice that due to the symmetry of

(a) (b) (c) (d)

Fig. 5. Depiction of landmark detection procedure for face reg-
istration: (a) shape index extrema; (b) spin image classification;
(c) consistent landmark sets and (d) best landmark set.

the face, only five classes (which represent the eye outer
corner, eye inner corner, nose tip, mouth corner and chin
tip landmarks) need to be created. Spin image templates
are generated using spin image grids of landmark points
from 975 available manually annotated frontal facial
scans from FRGC v2 database, and represent the mean
spin image grid associated with each of the five classes
of the landmarks used. These spin image templates are
generic and can be used on other test databases with no
additional training.

Instead of searching all points of a facial dataset to
determine the correspondence with the spin image tem-
plates, we use the candidate landmark points derived
from the shape index. Thus, local maxima and minima
of the shape index map (Caps and Cups) are further
classified into five classes (eye outer corner, eye inner
corner, nose tip, mouth corner and chin tip) according
to the similarity S(P, Q(T )) of their spin images P with
the spin image templates Q that represent each landmark
class:

S(P, Q) =
N

∑
piqi −

∑
pi

∑
qi√

[N
∑

p2
i − (

∑
pi)2] [N

∑
q2
i − (

∑
qi)2]

,

where pi, qi denotes each of the N elements of spin
images P and Q, respectively [36].

The landmarks of the five spin image classes are sorted
in descending order of significance according to their
similarity measure with their corresponding spin image
template. The most significant subset for each landmark
class is retained (a maximum of 128 eye outer corners,
64 eye inner corners, 64 nose tips, 256 mouth corners
and 128 chin tips). In Fig. 5(b), boxes of various shades
of grey represent the landmarks of the five spin image
classes. Notice that some of the classified landmark
boxes overlap due to similarity with different templates.

For each facial scan, the procedure for landmark de-
tection, labeling and selection has the following steps
(Fig. 5):

1. Extract candidate landmarks from the Shape Index
map.

2. Classify candidate landmarks by matching them
with the corresponding Spin Image templates.

3. Create feasible combinations of five landmarks
from the candidate landmark points.

4. Compute the rigid transformation that best aligns
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the combinations of five candidate landmarks with
the FLM5R and FLM5L.

5. Filter out those combinations that are not consis-
tent with FLM5L or FLM5R by applying the fitting
procedure as previously described.

6. Sort consistent right (FLM5R) and left (FLM5L)
landmark sets in descending order according to
a distance metric from the corresponding FLM.

7. Fuse accepted combinations of five landmarks (left
and right) in complete landmark sets of eight
landmarks.

8. Compute the rigid transformation that best aligns
the combinations of eight landmarks with the
FLM8.

9. Discard combinations of landmarks that are not
consistent with the FLM8 by applying the fitting
procedure as previously described.

10. Sort consistent complete landmark sets in descend-
ing order according to a distance metric from the
FLM8.

11. Select the best combination of landmarks (consis-
tent with FLM5R, FLM5R or FLM8) based on the
distance metric to the corresponding FLM.

12. Obtain the corresponding rigid transformation for
registration.

In Fig. 5(c), the landmark sets consistent with the
FLM5R, FLM5L and FLM8 are depicted as boxes. Notice
that some of the consistent landmarks overlap. Also note
that the FLM8 consistent landmark set is not always
the best solution; FLM5L and FLM5R are usually better
solutions for side facial scans.

In order to find the best solution, and compare the
consistent solutions we need a distance measure from
the corresponding FLM. Since FLM5R, FLM5L, FLM8
have different dimensions in shape space, we must use
a distance measure that is independent of shape space
dimension. For this purpose, we define an intuitive com-
bined normalized Procrustes and spin similarity distance:

DNPSS = DNP ·DSS =
DP

k2
· 1
2

[
1−

∑n
i=1 S(Pi, Qi)

n

]
,

where DNP is the normalized Procrustes distance, DSS

is the mean spin image similarity distance (normalized
to [0,1]), DP is the Procrustes distance, S(Pi, Qi) is the
similarity measure between the landmark spin image
Pi and the corresponding template Qi, k is the shape
space dimension, and n is the number of landmarks. The
division by k2 instead of k is preferred to give a bias to
a complete solution.

Finally, using the selected best solution, the regis-
tration transformation is computed, the yaw-angle is
estimated, and the facial scan is classified according to
pose as frontal, left side or right side.

Note that the use of landmark sets of five landmarks
serves two purposes: (i) it is the potential solution for
semi-profile and profile faces and (ii) it reduces the
combinatorial search space for creating the complete
landmark sets in a divide-and-conquer manner. Instead

(a) (b) (c)

Fig. 6. Left & right sides of the AFM: (a) control mesh, (b) facial
area anotation and (c) UV parametrization.

of creating 8-tuples of landmarks out of N candidates,
which generates N8 combinations to be checked for con-
sistency with the FLMs, we create 5-tuples of landmarks,
and check N5 + N5 = 2N5 combinations for consistency
with FLM5L and FLM5R. We retain 256 landmark sets
consistent with FLM5L and 256 landmark sets consistent
with FLM5R. By fusing them and checking consistency
with FLM8 we have an extra of 256× 256 combinations
to be checked. Thus, by this approach 2N5 + 2562 ¿ N8

combinations are checked, with O(N5) ¿ O(N8). For
N = 128 we have approximately 69 × 109 instead of
72 × 1015 combinations to be checked. Also, since an
exhaustive search of all possible combinations of the
candidate five landmarks is not feasible, simple length
constraints from the corresponding FLM and its defor-
mations are used to reduce the search space (pruning).

3.3 Annotated Face Model

In all the subsequent steps of the proposed method
(registration, fitting and wavelet analysis), the Annotated
Face Model (AFM) [2] is used. It is an anthropometrically
correct 3D model of the human face [37]. The AFM
was constructed only once and consists of a polygonal
representation (later used as the control mesh of the
subdivision surface), a facial area annotation and a UV
parametrization (Fig. 6).

The UV parametrization allows the conversion of the
AFM into an equivalent representation called geometry
image. A geometry image is the result of mapping all the
vertices of a 3D object (x, y and z coordinates) to a 2D
grid representation (u, v coordinates) [38]. Thus, a geom-
etry image is the regular sampling of a 3D model repre-
sented as a 2D image, with each u, v pixel corresponding
to the original x, y, z coordinates. Two dimensional
geometry images have at least three channels assigned to
each pair of u, v coordinates encoding geometric infor-
mation (x, y, z coordinates and/or normals). Note that
the UV parametrization of the AFM offers an injective
mapping from a sphere in R3 to a plane in R2. This
property is not violated even if its vertices are deformed,
thus allowing the creation of a geometry image from a
deformed AFM. Since the AFM is a topologically open
model, a simple cylindrical mapping technique was used
to create the UV parametrization. For a topologically
closed and genus zero model (suitable for the full human
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(a) (b) (c)

Fig. 7. AFM (black wireframe) and facial scans (grey polygons)
superposed after registration: (a) frontal scan; (b) 45◦ left side
scan; and (c) 45◦ right side scan.

head) Praun and Hoppe’s octahedron-based parameter-
ization [39] would be more appropriate.

3.4 Registration

To fit the AFM to each facial scan, they must both be
defined in the same coordinate system (Fig. 7). To this
end, we register the facial scans with the AFM using
a two–stage approach. First, an initial registration is
obtained from the landmarks detected in Section 3.2.
Second, an algorithm based on Simulated Annealing is
used to fine tune the registration.

The initial registration of each facial scan to the AFM
can be accomplished by minimizing the Procrustes dis-
tance between a set of landmark points x on the scan
and the corresponding landmark points x0 on the AFM
in an iterative approach. If T translates x so that its
centroid is at the origin (0,0,0), T0 translates x0 so that
its centroid is at the origin (0,0,0), and R is an optimal
rotation that minimizes the Procrustes distance of x to
the reference shape x0, then, the final transformation to
register a facial scan with vertices vi to the AFM is:

v′i = T−1
0 ·R ·T · vi .

The landmark set detected on a facial scan (frontal, right
or left) determines the model (FLM8, FLM5R or FLM5L)
that will be used to aid registration with the AFM.
However, in practice, when a frontal scan is detected,
instead of using the FLM8, the frontal scan is considered
as a pair of side scans and two independent registrations
using FLM5R and FLM5L are computed. In this case
the remaining steps of the method (Sections 3.5 and 3.6)
are repeated twice, and two independent signatures are
finally derived.

To improve the registration we use the algorithm
presented by Papaioannou et al. [40] that uses a global
optimization technique (Simulated Annealing [41], [42])
applied to depth images. The Simulated Annealing pro-
cess minimizes the following objective function:

O =
r∑

i=1

r∑

j=1

|Zm(i, j)− Zd(i, j)| ,

where Zm and Zd are the Z-buffers of the model and
data respectively (normalized to [0, 1]) and r is the spatial
resolution of the buffers. For side scans, only one half of

the model’s z-buffer is used in the objective function. The
other half is excluded as it would have been registered
with areas that may have missing data. Since we assume
that the initial registration provides a valid approxima-
tion, the Simulated Annealing algorithm is only allowed
to produce limited translations and rotations. It is only
used to fine-tune the registration; it does not alleviate
errors caused by erroneous landmark detection.

3.5 Symmetric Deformable Model Fitting

We use the subdivision-based deformable model frame-
work (presented in [2]) to fit the AFM to each facial scan
(already registered by the previous step). During fitting,
the AFM deforms in order to capture the shape of the
facial scan. The forces that drive this deformation are
called external forces. The forces that resist this deforma-
tion are called internal forces and correspond to the elastic
properties of the model’s surface (e.g., strain energy and
material stiffness).

We have modified the framework in [2] by incorporat-
ing the notion of symmetric fitting to handle missing data.
The fitting step can now handle the left and right sides
of the AFM independently (Fig. 6 (a)). The idea is that
facial symmetry can be used to avoid the computation of
the external forces on areas of possible missing data. The
internal forces are not affected and remain unmodified
thereby ensuring the continuity of the fitted surface. As
a result, when fitting the AFM to facial scans classified as
left side, the external forces are computed on the left side
of the AFM and mirrored to the right side (and vice versa
for right side scans). This can be applied also to frontal
scans since they are handled as a pair of independent left
and right side scans (as stated in Section 3.4). Therefore,
for each frontal scan, two fitted AFMs are computed: one
that has the left side mirrored to the right and another
that has the right side mirrored to the left.

The basic equation of the deformable model frame-
work is given by Newton’s second law:

Mq
d2q
dt2

+ Dq
dq
dt

+ Kqq = fq .

The term q is the control points vector that determines
the degrees of freedom of the AFM (each point has
three degrees of freedom). The term Mq is the mass
matrix and is multiplied with the acceleration vector in
order to control the kinetic energy. The damping matrix
Dq is multiplied with the velocity vector in order to
control the energy dissipation. For data fitting purposes
we set Mq

d2q
dt2 = 0 and Dq

dq
dt = 0, as they represent

the translational effects of the external forces. The term
fq represents the external forces vector; during fitting
it consists of forces that pull the control points vector
towards the surface of the facial scan. The term Kq is
the stiffness matrix and determines the elastic properties
of the AFM that resist the external forces. It can be
decomposed into three matrices Kq = Kα+Kβ+Kγ . Kα is
related to the first order strain energy, Kβ to the second
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order strain energy and Kγ is related to the spring forces
energy:

Eα = 1
2καqT Kαq ,

Eβ = 1
2κβqT Kβq ,

Eγ = 1
2κγqT Kγq ,

where κα ,κβ and κγ are the individual weights.
The analytical equations are solved using an iterative

Finite Element Method (FEM) approximation. In our
implementation, we employed the subdivision-based
FEM approximation proposed by Mandal [43]. This ap-
proximation solves the above equations in an iterative
manner. The AFM is used as the control mesh of a
subdivision surface. At each step, the internal and ex-
ternal forces are computed on the limit surface and, by
using the inverse subdivision matrices, are transferred
to the control mesh (q). Details of this implementation
have been presented in [2]. The key aspects of the
implementation are outlined below:
• The resolution of the control mesh determines the

degrees of freedom but does not affect the accuracy
of the approximation (which is determined by the
resolution of the limit surface).

• The Loop subdivision scheme [44] is used because
it produces a limit surface with C2 continuity, and
only 1-neighborhood area information is needed for
each vertex.

• Computing the external forces requires multiple
nearest neighbor searches between the AFM and the
surface of the facial scan. To decrease the computa-
tional cost a space partitioning technique (Octrees
[45], [46]) is used.

When the deformation stops, the annotated model ac-
quires the shape of the raw data. Since the deformation
has not violated the injective nature of the AFM’s UV
parametrization, the deformed AFM can be converted to
a geometry image. The normal image which is the first
spatial derivative of the geometry image is also derived.

3.6 Wavelet Analysis

We apply a wavelet transform on the derived geometry
and normal images in order to extract a descriptive and
compact biometric signature. As explained in Section 3.5,
the derived geometry and normal images represent the
full face even if half of the facial data are missing from
the scan. When facial symmetry is used (for side scans)
the information in the geometry and normal images is
redundant, because half of it is the mirror of the other
half. However, we keep both sides in order to have a
common representation that is independent of the initial
pose.

Each channel of the geometry and normal image is
treated as a separate image for wavelet analysis (re-
sulting in six channels, three for each image type). The
Walsh wavelet transform [47] for images is a decimated
wavelet decomposition using tensor products of the full
Walsh wavelet packet system. The 1D Walsh wavelet

(a) (b) (c)

(d) (e)

Fig. 8. Wavelet analysis of a frontal facial geometry image
(the intensity of the coefficients was adjusted for visualization
purposes): (a) original image, (b-e) depiction of the coefficients
from 1st, 2nd, 3rd and 4th level Walsh transform.

packet system is constructed by repeated application of
the Haar filterbank, a two-channel multirate filterbank
based on the Haar conjugate mirror filter. The choice
of Haar filters was based on their excellent localization
properties. The application of the Haar filterbank is
conceptually simple and computationally efficient. It is
performed by applying a low-pass filter and a high-
pass filter on a one-dimensional input, and repeating
the same process on the two resulting outputs. The low–
pass and high–pass Haar filters are g and h, respectively:
g = 1√

2
[1 1] and h = 1√

2
[1 − 1]. For images, there

will be four outputs for each level of the Haar wavelet:
gt ∗ g, gt ∗ h, ht ∗ g and ht ∗ h (corresponding to Low-
Low, Low-High, High-High, High-Low respectively). We
compute a level 4 decomposition (i.e., we apply the
filters four times), which yields 16× 16 wavelet packets
(Fig. 8). Since the geometry and normal images are of
resolution 256×256, each wavelet packet has a resolution
of 16× 16.

The level 4 decomposition produces 256 (16 × 16)
wavelet packets. Since not all packets encode the same
amount of information, most of the packets can be
ignored without losing significant information from the
original image. In our approach, 40 wavelet packets
(roughly 15 %) are retained to create an efficient and
compact biometric signature. We favor the wavelet pack-
ets with the minimum variation among the scans of
the same subject as well as the maximum variation
among the scans of different subjects. The selection of
the 40 wavelet packets was optimized using a validation
database with frontal facial scans.

The coefficients contained within the signature can
be directly compared, without having to reconstruct the
original image, using a weighted L1 metric. The differ-
ence between a probe and a gallery geometry image is
measured as:

DG =
n∑

i=1

wi|GP [i]−GG[i]| ,
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(a) (b) (c) (d) (e)

Fig. 9. Depiction of scans from the combined UND database
from a single subject: (a) frontal, (b) 45o right, (c) 45o left, (d) 60o

right, and (e) 60o left. Note the extensive missing data in (b-e).

where GP and GG are the wavelet coefficients derived
from the geometry images of the probe and gallery scans
respectively, n is the number of coefficients, and wi is a
weight mapping function. The localization properties of
the Walsh transform allow per area mapping, therefore
for k annotated facial areas, the wi function will have k
distinct values. For the experiments, these values were
selected empirically based on the biometric importance
of each area.

The difference between a probe and a gallery normal
image, DN, is computed in a similar manner. The final
difference between a probe and a gallery scan is given
by

D = DG + wnDN ,

where wn is a normalization weight. Since the ratio of
the average L1 difference between two geometry images
over the average L1 difference between two normal
images is approximately 1 : 8, we set wn equal to 8. Note
that the normal images, being the first spatial derivative
of the geometry images, are less sensitive to positional
(but not rotational) errors introduced during registration.
As a result, the interpose matching favors the normal
images over the geometry images.

4 EXPERIMENTAL RESULTS

4.1 Databases

4.1.1 Combined UND Databases
To evaluate the performance of UR3D-S a combination of
the largest publicly available 3D face and ear databases
was used. For frontal facial scans, we use the FRGC
v2 database [48], [49]. It contains a total of 4007 range
images, acquired between 2003 and 2004. The hardware
used to acquire these range data was a Minolta Vivid
900 laser range scanner, with a resolution of 640 × 480.
These data were obtained from 466 subjects and contain
various facial expressions (e.g., happiness, surprise). For
side facial scans, the Ear Database from the University of
Notre Dame (UND) [50], collections F and G were used.
This database (which was created for ear recognition
purposes) contains side scans with yaw rotations of 45o,
60o and 90o. In the 90o side scans, both sides of the face
are occluded from the sensor, and do not contain any
useful information for face recognition purposes. Hence,
only the 45o side scans (118 subjects, 118 left and 118
right) and the 60o side scans (87 subjects, 87 left and
87 right) were used. Even though these side scans are

(a) (b) (c) (d)

Fig. 10. Depiction of scans from the UH database from a single
subject. (a,b) Right and left scans with neutral expression were
acquired simultaneously. (c,d) Right and left scans with open
mouth were acquired simultaneously.

denoted as 45o and 60o, the measured average angle of
rotation is 65o and 80o respectively (Fig. 9). Nevertheless,
the database notation (45o and 60o) will be used. Since
not all subjects exist in both databases, the number of
common subjects between the frontal scans and the 45o

side scans is 39 and between the frontal scans and the
60o side scans is 32.

For our experiments, we define the following collec-
tions:

• UND45LR: Contains 45o side scans from 118 sub-
jects. For each subject, the left scan is considered
gallery and the right is considered probe. Total: 236
scans.

• UND60LR: Contains 60o side scans from 87 subjects.
For each subject, the left scan is considered gallery
and the right is considered probe. Total: 174 scans.

• UND00LR: Gallery set has one frontal scan for each
of the 466 subjects. Probe set has two 45o side scans
(left and right) for each of the 39 subjects and two
60o side scans (left and right) for each of the 32
subjects. Total: 608 scans.

In all cases there is only one gallery scan per subject.
Also, all subjects present in a probe set are also present
in the gallery set (the opposite is not always true).

4.1.2 UH Databases

In addition to the UND databases we used a database
with data collected at the University of Houston [51].
The database contains 1075 left and 1075 right scans of
281 subjects. A unique feature of this database is that
each pair of left and right side scans was acquired si-
multaneously (Fig. 10). The scans were acquired using a
3dMDTMsystem. This system consists of one left and one
right optical scanner that acquire data simultaneously
but are independent of each other. We consider these
side scans comparable to the UND 45o scans. During the
acquisition of the data, each subject was asked to remove
accessories on the face (e.g., glasses). An initial scan
was acquired while the subject assumed a neutral facial
expression. Subsequently, several scans were acquired
while the subject was reading loudly a predefined text
(thus assuming arbitrary facial expressions). All scans of
a particular subject were acquired on the same day.

For our experiments, we define the following collec-
tions:
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• UHDB7L: Contains left side scans from 281 subjects.
For each subject, one scan is considered gallery
and the rest are considered probe. The minimum
and maximum left scans per subject are 1 and 6,
respectively. Total: 1075 scans.

• UHDB7R: Contains right side scans from 281 sub-
jects. For each subject, one scan is considered gallery
and the rest are considered probe. The minimum
and maximum right scans per subject are 1 and 6,
respectively. Total: 1075 scans.

• UHDB7LR-M: Contains multiple left and right side
scan pairs from 281 subjects. For each subject, one
left and one right scan (acquired simultaneously)
are considered gallery and the rest are considered
probes. The minimum and maximum pairs of scans
(left and right) per subject are 1 and 6, respectively.
Total: 2150 scans.

• UHDB7LR-S: Contains a single left and right side
scan pair from 281 subjects. For each subject, the
left scan is considered gallery and the right scan
is considered probe. The left and right scans were
acquired simultaneously. Total: 562 scans.

In all cases there is only one gallery scan per subject
with the exception of UHDB7LR-M where there are two.
Also, all subjects present in a probe set are also present
in the gallery set (but not vice versa).

4.2 Landmark Detection Evaluation

In order to evaluate the performance of the landmark
detection algorithm we manually annotated landmarks
on several facial scans, which can be considered as
ground truth. We manually annotated landmarks on the
466 frontal scans of UND00LR (Fig. 9 (a)), on the 118
left and 118 right side scans of UND45LR (Fig. 9 (b-c))
and on the 87 left and 87 right side scans of UND60LR
(Fig. 9 (d-e)).

In all cases, the overall mean distance error and stan-
dard deviation between the manually annotated land-
marks and the automatically detected landmarks were
computed to represent the landmarks’ localization error.
This error is expressed with the mean Euclidian distance,
DE , between the detected landmark points and the
annotated landmark points.

Another metric which reflects the quality of the land-
mark detection algorithm for registration purposes is the
modified directed Hausdorff distance, DH , of the face model
M to the probe face T , as defined in [52]:

DH(M, T ) =
1
p

p∑

i=1

min
tj

|mi − tj | ,

where |mi−tj | is the Euclidian distance between the face
model vertices mi and the probe face vertices tj , and
p is the number of face model vertices. The DH(M,T )
represents the mean value of the minimum Euclidian
distances |mi − tj | of the vertices of the face model M ,
to which a probe facial scan T is registered. In order
to compute this metric, only the automatically detected

TABLE 1
3D Landmark detection errors.

DH DE

Database mean std.dev mean std.dev > 10
(mm) (mm) (mm) (mm) (mm)

UND00LR - front 4.61 1.04 5.77 1.81 3.4 %
UND45LR - right 3.90 0.95 5.83 2.49 4.2 %
UND45LR - left 4.03 1.22 6.02 2.45 6.8 %
UND60LR - right 4.37 3.11 5.87 2.47 6.9 %
UND60LR - left 4.32 2.41 6.08 2.53 11.5 %
UHDB7R 4.72 2.46 - - -
UHDB7L 4.76 2.86 - - -

landmarks were used for registration (without the Sim-
ulated Annealing step). To get comparative results for
DH we used as a model for frontal databases all the
vertices of the complete AFM, for left-side databases the
left side vertices of the AFM, and for right-side databases
the right side vertices of the AFM.

The results are summarized in Table 1. The last column
reports the percentage of landmarks with DE more than
10 mm. Note that there were no manually annotated
landmarks for the UHDB7R and UHDB7L databases,
threfore only the DH metric is reported. A more detailed
performance evaluation of the landmark detection algo-
rithm can be found in [5].

4.3 Face Recognition Performance Evaluation

Using the databases described in Section 4.1 we per-
formed several identification experiments. UR3D-S tack-
les the problem of matching arbitrary facial scans (left,
right or frontal). This is considerably harder than match-
ing only frontal scans, since side scans have extensive
missing data and it is not known a priori whether
each scan is left, right or frontal. In all experiments the
Cumulative Match Characteristic (CMC) graphs and the
rank-one recognition rates are reported. The automatic
landmark detector was used in all cases unless stated
otherwise.

4.3.1 Matching facial scans of the same side

In this experiment the performance of UR3D-S using
scans of the same side for both gallery and probe sets
was evaluated. This is not a realistic scenario, but allows
for the evaluation of our method without the need to
use facial symmetry. The only database suitable for this
purpose is the UH Database as it has multiple left and
multiple right side scans of each subject. We measured
the performance for matching left (gallery) with left
(probe) side scans (for UHDB7L) and right (gallery) with
right (probe) side scans (for UHDB7R). The rank-one
rate is 85.8 % and 86.8 % for UHDB7L and UHDB7R
respectively. The CMC graphs are presented in Fig. 11.

4.3.2 Matching facial scans of arbitrary side

In this experiment the performance of UR3D-S using
scans of arbitrary sides for gallery and probe sets is
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Fig. 11. CMC graphs for matching left (gallery) with left (probe)
side scans (for UHDB7L) and right (gallery) with right (probe)
side scans (for UHDB7R).

Fig. 12. CMC graphs for matching left (gallery) with right
(probe) side scans using UND45LR, UND60LR and the com-
bination of the two.

evaluated. This is a realistic scenario, as side scans (with
extensive occlusions that lead to missing data) are very
common in real world applications with unconstrained
acquisition. Our method can match any combination
of left, right or frontal facial scans with the use of
facial symmetry. Moreover, our method automatically
detects the side of the scan. For this experiment we
used the UND45LR, UND60LR, UND00LR, UHDB7LR-
M and UHDB7LR-S databases and the rank-one rates are
reported in Table 2.

In UND45LR and UND60LR, for each subject, the
gallery set contains a single left side scan while the probe
set contains a single right side scan. Therefore, facial

TABLE 2
Rank-one recognition rates per database.

Rank-one Rate
UND45LR 86.4 %
UND60LR 81.6 %
UND00LR 76.8 %

UHDB7LR-M 89.1 %
UHDB7LR-S 79.4 %

Fig. 13. CMC graphs for matching frontal (gallery) with left,
right and both (probe) side scans using UND00LR.

Fig. 14. UHDB7LR-M: matching left and right (gallery) with
left and right (probe) side scans. UHDB7LR-S: matching left
(gallery) with right (probe) side scans.

symmetry is always used for identification. As expected,
the 60o side scans yielded lower recognition rates as they
are considered more challenging compared to the 45o

side scans (Fig. 12).
In UND00LR, the gallery set contains a frontal scan

for each subject, while the probe set contains left and
right side scans. This scenario is very common when
the enrollment of subjects is controlled but the identifi-
cation is uncontrolled. Figure 13 depicts the CMC graph
(UND00LR’s probe set is also split in left-only and right-
only subsets). Compared to UND45LR and UND60LR,
there is a decrease in the performance of our method
in UND00LR. One could argue that since the gallery set
consists of frontal scans (without missing data), there
should be an increase in the performance. However,
UND00LR has the largest gallery set (it includes all of
the 466 subjects found in the FRGC v2 database) making
it the most challenging database in our experiments.

In UHDB7LR-M, for each subject the gallery set con-
tains a left and right side scan pair, while the probe set
contains multiple left and right side scan pairs. Since the
gallery set has two scans per subject, the performance
on this database is the highest among all databases,
as expected. The performance difference is substantial
compared to UND00LR (89.1 % versus 76.8 % rank-one).
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(a)

(b)

Fig. 15. CMC graphs for matching left (gallery) and right
(probe) side scans using automatic and manual landmarks: (a)
UND45LR and (b) UND60LR

TABLE 3
Rank-one recognition rates per database using

automatic and manual landmarks.

Rank-one Rate
Automatic Landmarks Manual Landmarks

UND45LR 86.4 % 91.5 %
UND60LR 81.6 % 90.8 %

This indicates that a pair of left and right side scans is
more descriptive than one frontal scan.

UHDB7LR-S, even though it is a subset of UHDB7LR-
M, is considered more challenging (Fig. 14). This is be-
cause the gallery set contains a single left side scan while
the probe set contains a single right side scan. Com-
pared to UND45LR and UND60LR (which have a similar
probe/gallery setup), the performance on UHDB7LR-S
is lower (79.4 % versus 86.4 % and 81.6 % rank-one).
However, UHDB7LR-S is considerably larger, consisting
of 281 subjects versus 118 and 87 subjects for UND45LR
and UND60LR, respectively.

4.3.3 Automatic versus manual landmarks

In the final experiment, we evaluated the performance
of our method with an ideal landmark detector. To
this end, we used the manually annotated landmarks

for the UND45LR and UND60LR databases described
in Section 4.2. The resulting CMC graphs are depicted
in Figure 15. As expected, there is an increase in the
rank-one recognition rate (given in Table 3) for both
databases (5.1 % and 9.2 % increase for UND45LR and
UND60LR, respectively). Interestingly, the percentage
of automatic landmarks with mean localization error
more than 10 mm (compared to manually annotated
landmarks) is on average 5.5 % and 9.2 % on UND45LR
and UND60LR, respectively (see last column of Table 1).
This indicates that the proposed method can tolerate
landmark mean localization errors up to 10 mm. If this
error is significantly above this threshold then the pose
estimation is probably invalid and the subsequent fitting
fails to extract meaningful geometrical information.

4.4 Computational Efficiency

For the evaluation of the proposed method’s computa-
tional efficiency an Intel Core 2 Duo 2.2 GHz with 2 GB
RAM and a NVIDIA 8600 GTS was used. Using this PC,
an average time of 18 secs is required to process a facial
scan: 9 secs to localize the facial landmarks plus 9 secs
to extract the biometric signature (geometry and normal
images). The procedures of determining the optimal
rotation for the alignment of the landmark shapes to
the FLMs require up to 8 iterations to converge. The
Simulated Annealing step may take up to 2,000 itera-
tions to converge, but the computation is very efficient
(requires 2 secs) as the z-buffers are created using the
GPU. The fitting step takes 64 iterations to converge (and
requires 7 secs). The creation of the signature from the
deformed AFM requires just a few milliseconds and can
be matched at a rate of 15,000 matches per second.

4.5 Discussion

Most of the face recognition methods that have been
previously proposed do not handle data with significant
pose variations along the yaw axis. On the contrary,
UR3D-S can handle extensive occlusions (that result
in missing data) caused by pose variations (such as
60o side scans). The only limitation of the proposed
method is that at least half of the face is visible (so that
facial symmetry can be used). The flexibility to handle
(seamlessly) left, right and frontal scans is important
in an unconstrained acquisition scenario. Therefore, we
consider that our focus on data with arbitrary pose
variations is a necessity for real-world applications.

For evaluation purposes we used the most challeng-
ing databases in terms of pose variations and missing
data. We demonstrated that UR3D-S can match frontal
and left or right side scans by using facial symmetry.
Unavoidably, the use of facial symmetry has an impact
on recognition rates, as human faces are not completely
symmetric. In the above experiments, the average rank-
one recognition rate was 83.7 %. We anticipate that the
average recognition rate can be increased by improving
certain steps of the proposed method (e.g., landmark



13

detection) before the limit imposed by facial asymmetry
is reached.

Compared to our previous work with the combined
UND databases [3], UR3D-S offers significantly better
results. When using automatically detected landmarks,
the rank-one recognition rates increased by 19 % and
17 %, for UND45LR and UND60LR, respectively. This
indicates that the landmark detector used in this work
(see [5]) is far more robust and accurate compared to the
detector proposed in [3]. When using manually selected
landmarks, the rank-one recognition rates increased by
9 % and 22 %, for UND45LR and UND60LR, respectively
(with respect to [3]). Thus, the improvements on the
other steps of the method also offer increased accu-
racy. Another important difference compared to previous
work [3] is that each frontal scan is now handled as a pair
of left and right side scans (it produces two independent
signatures). This is why the largest performance increase
was on a database with frontal scans in the gallery
set and side scans in the probe set (20 % increased
recognition rate on UND60LR compared to the average
recognition rate of DB60F and DB45F in [3]).

Regarding the computational efficiency of UR3D-S,
there are a number of independent tasks that can be
exploited to increase the computational efficiency of the
method (parallel processing techniques), but we have
not specifically addressed this issue. Nevertheless, the
combination of a signature creation step with a rea-
sonable computational cost (18 secs) and a signature
matching step with an extremely low computational cost
(15,000 matches per second) makes the proposed method
applicable to real-world scenarios.

5 CONCLUSION

A novel 3D face recognition method suitable for real-
world biometric applications was proposed. Unlike most
previously proposed methods that require frontal scans,
the proposed method can perform partial matching
among interpose facial scans, even when extensive data
are missing. By using facial symmetry it can handle
seamlessly frontal and side facial scans. Competitive
results were presented on databases with challenging
pose variations. Compared to our previous work, we
introduced a series of novelties that resulted approxi-
mately in a 20 % increased recognition rate. Future work
will be directed towards improving the robustness of the
landmark detector and evaluating the performance of
the proposed method on additional databases.
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