
Using Fault Slippage Measurement for Monitoring 
Software Process Quality during Development

Lars-Ola Damm1, Lars Lundberg

                                                                 
1 Is also an employee at Ericsson, lars-ola.damm@ericsson.com 

School of Engineering, 
Blekinge Institute of Technology 

Box 520, SE-372 25 Ronneby, Sweden 

{lars-ola.damm, lars.lundberg}@bth.se
 
ABSTRACT 
In a competitive environment where time-to-market is crucial for 
success, software development companies initiate process 
improvement programs that can shorten the development time. 
They especially seek improvements in the verification activities 
since rework commonly constitutes a significant part of the 
development cost. However, the success of process improvement 
initiatives is dependent on early and observable results since a 
lack of feedback on the effect of improvements is a common 
cause of failure. This paper investigates how to monitor the 
verification process as input to decisions such as improvement 
actions. The suggested approach was applied on three industrial 
software products at Ericsson and the results determined that the 
approach can be used for quantitative monitoring of process 
quality and as decision support to do rapid improvement actions. 

Categories and Subject Descriptors 
D.2.8 [Software Engineering]: Metrics – Process metrics. 

General Terms 
Management, Measurement, Verification. 

Keywords 
In-process quality, process compliance, test metrics, software 
process improvement, fault slippage measurement. 

1. INTRODUCTION 
Significant research efforts have been invested in how to define 
processes that produce quality products in an efficient way. While 
this remains very important, implementing identified process 
improvements has emerged as a large challenge. In fact, the 
failure rate of process improvement implementation is reported to 
be about 70 percent [16]. Therefore, practitioners request more 
guidance on how, not just what to improve [15][18].  According 
to related research, a lack of attention to feedback in the process  
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, 
or republish, to post on servers or to redistribute to lists, requires prior 
specific permission and/or a fee. 
WOSQ’06, May 21, 2006, Shanghai, China. 
Copyright 2006 ACM 1-59593-085-X/06/0005...$5.00. 

is a major cause of the failure of several improvement paradigms 
[11]. Further, the success of a process improvement initiative is 
dependent on early and observable results [14]. One important 
process related improvement area is to reduce the amount of 
avoidable rework during development due to introduced faults in 
products. The reason for this is because avoidable rework is 
commonly a large part of a development project [19][21]. Central 
to keeping the amount of avoidable rework low is to ensure that 
verification responsibilities are distributed in an efficient way. 
That is, larger systems commonly have several verification levels 
with different verification responsibilities, e.g. in the telecom 
industry it could be component, product, solution and network 
level testing. In such systems, process quality during development 
is not primarily about the number of faults that are found at 
different test levels. Process quality is to fulfill responsibilities as 
defined so that the faults that should have been found at a certain 
verification level do not slip through to subsequent levels. These 
responsibilities are commonly stated as verification strategies, i.e. 
they define the long-term goal of what is the most efficient way of 
working including what should be verified at which test level. The 
primary consequence of not working according to such a 
verification strategy is higher rework costs because more faults 
slip through to later test levels where they are extra expensive 
because they tend to halt the test process until the fault has been 
fixed. For example, a functional fault that should have been 
covered at an early test level can when found during a later 
performance test make it impossible to continue the performance 
tests until the functional fault has been fixed. 
A department at Ericsson had put a lot of efforts on defining a 
verification strategy for the development projects to follow, i.e. 
what should be covered at each verification level. A previous 
study, i.e. [6], however showed that the adherence to this test 
strategy could be improved significantly. The department 
conducted regular assessments to identify improvement actions to 
take. To be able to cope with improvement work as a part of the 
constant customer pressure, organizational measurement goals, 
e.g. through balanced scorecards [13], were also set to increase 
visibility and thereby stress the importance of the improvement 
work. However, the improvement progress was slow because the 
assessments were only made as post-analysis upon project 
completion, i.e. there was a lack of early progress feedback. This 
was not enough because the projects were commonly rather long, 
i.e. 12-18 months. Thereby, the department wanted early and 
quantitative indications on the process quality that can be used for 
goal tracking and that can provide input to improvement actions. 

15



1.1 Related Work 
There is a vast amount of related work in the area of process 
assessment and improvement, e.g. audit-centered frameworks 
such as SPICE [7] and CMM[17]. Similar frameworks tailored for 
test processes have also been developed, e.g. TPI and TMM [21]. 
Such approaches are however not suitable when requiring 
frequent and quantified assessments. The most common approach 
to monitor quality is through the faults that are found, e.g. [3]. 
However, since the number of found faults is dependent on the 
amount of tests performed, there is not a correlation between the 
number of faults found and quality [19]. Further, reported faults 
state that something has been tested but not if that was what was 
supposed to be tested according to the test strategy. 
Another common process assessment approach is to do fault 
profiling by classifying faults into categories related to activities 
in the process, e.g. Orthogonal Defect Classification (ODC) and 
the HP defect classification scheme [4][10]. Fault profiling 
techniques such as ODC trigger classification can provide 
quantification on fault distributions in relation to sub-processes 
but does not provide values that can be used as goal measures. 
Another common technique that also can be considered in process 
quality assessments is code coverage analysis [21], which can 
indicate how well-tested a piece of software is. However, code 
coverage analysis does not state if the responsibilities stated in the 
test strategy were covered. That is, an efficient test process does 
not test as much as possible, it only test the parts that according to 
the test strategy should be covered. 

1.2 Research Question and Outline 
The hypothesis of this paper was that an existing measurement 
concept that already had been widely implemented at Ericsson 
could be used to monitor the quality of the verification process. 
The concept is based on a measure called ‘Faults-Slip-Through’ 
(FST) [5], [6]. The idea with the measure is to count the faults 
that according to the test strategy should have been found in an 
earlier phase [6].  Thus, FST determines the quality of the process 
in form of compliance to the test strategy. The measure has been 
successfully introduced in the fault reporting process and has been 
used in post-analysis to assess process quality. However, its 
possible usefulness during development had not been determined. 
That is, pilot attempts to use FST during development were made 
at the studied department, but did not succeed due to a lack of 
proper method support, e.g. measuring FST during development 
is rather trivial but interpretation of the obtained data is not. Thus, 
the research question of this paper is as follows:  
How can FST be used for assessing and improving the process 
quality during development? 
This paper utilizes FST measurement in a way that it can provide 
information about early and comparable trends on the process 
quality (described in Section 2). Further, it provides guidance on 
how to interpret the trends. That is, applying the method on three 
products (described in sections 3 and 4) determined that the FST 
data can soon after faults start to be reported assess the quality of 
the verification process and provide input to improvement actions 
that can improve the quality of the process. 

2. METHOD 
This section describes the method used in the case study reported 
in this paper. Section 2.1 describes the basic measurement method 

and Section 2.2 describes how this method was applied to address 
the research question stated in the introduction (see Section 1.2). 

2.1 Overview of FST Measurement 
As stated in the introduction, FST is the basic measure used by 
the method suggested in this paper.  FST is similar to phase 
containment measurements where faults should be found in the 
same phase as they were introduced  [12]. The essence of such 
approaches is to analyze when faults are inserted and found and 
from that determine which faults are in-phase and out-of-phase 
[12]. The time between when the fault was inserted and found is 
commonly referred to as ‘fault latency’.  

 
Figure 1.  Fault latency versus FST 

Since most faults are inserted during early development phases, 
e.g. requirements elicitation, design, and implementation, the fault 
latency measure is not good at evaluating the quality of the 
verification process. Further, if for example a test activity is 
improved, it is not possible to use measurements based on when 
faults were inserted to evaluate the result since only later phases 
are affected by the improvement. Instead, the FST concept was, 
for the context of this study, considered more appropriate because 
the primary purpose of measuring FST is to make sure that the 
test process finds the right faults in the right phase, i.e. in most 
cases early. Figure 1 visualizes the difference between fault 
latency and FST. When measuring FST, the norm for what is 
considered ‘right’ is the test strategy of the organization. That is, 
if the test strategy states that certain types of tests are to be 
performed at certain levels, the FST measure determines to what 
extent the test process adheres to this test strategy. This means 
that all faults that are found later than when supposed are 
considered slips [6]. One of the most common ways that Ericsson 
uses FST data is for evaluating the degree of FST to a verification 
phase, i.e. as described in Equation 1.  Details about how to 
define and measure FST are described in  [6]. 

%
(X) TF 

 (X) SF  
 X) phase (to FST

2

1
=       (1) 

1SF=No. faults found in phase X that slipped from earlier phases 
2TF= Total no. faults found in phase X 

2.2 In-Process FST Measurement 
As described in the previous section, the approach suggested in 
this paper utilized the FST measure defined in the formula in 
Equation 1.  However, to create trend lines from the FST data, the 
registration date of each fault report needs to be added to the 

16



formula of each measurement point to be included in the trend 
graph. This is most easily done in a spread sheet tool such as MS 
Excel. Another alternative is to use a web based solution which is 
more expensive to develop but makes it possible to get real-time 
updated results, i.e. assuming that it is able to fetch the 
measurement data from the fault database. The appropriate 
frequency of measurement points, e.g. weekly or monthly, 
depends on the length of the monitored projects. In our 
experience, at least 10 measurement points should be included to 
be able to see the trends clearly (distributed with the same time-
interval between each point). The result of plotting graphs from 
such measurement points can be seen in Figure 2 in Section 4. 
There are two necessary prerequisites to apply this method: 
1. The fault reports should include a field stating which phase 

each fault should have been found in, so that the statistics can 
be fetched from the fault database regularly. If this for any 
reason is not possible, an alternative is to have regular follow-
up meetings, e.g. weekly, where the FST value of each 
reported fault is determined. Nevertheless, the more automated 
the measurement collection is, the better since manual 
overhead causes reported metrics not to be used [9]. 

2. If regular follow-up of the FST trends are going to be useful, 
goals that the trends can be compared against should be set. In 
our experience, the preferred input for such a goal is a baseline 
value obtained from a previously finished project.  The 
baseline value should in that case be obtained from the 
previous projects of the same product since the percent FST in 
a project depends on the product complexity and how the 
verification strategy is defined [6]. Based on this value, the 
goal should be set after what differences are expected in the 
project to study, e.g. if a planned process improvement aims at 
reducing the FST to a certain degree, the goal value should be 
specified accordingly. It is also possible to set a goal without 
the baseline value. However, it will then be hard to know what 
an appropriate goal is.  That is, since there is also a cost of 
reducing the degree of FST, it is important to set reasonable 
goals and then monitor them, i.e. the optimal FST level is in 
relation to minimized lead-time often not zero. 

With these overall prerequisites met, it is then possible to monitor 
the process quality during the verification stages of projects. To 
make sure that the method becomes a part of continuous 
improvement work, we suggest that it is incorporated into 
established measurement processes such as QIP [1] or Six Sigma 
[2]. This also implies that in order to implement a measurement 
approach such as the one described in this paper, the organization 
need to be mature enough to be able to handle such measurement 
processes, e.g. in CMM, such measurements are part of level four 
and five on the maturity ladder [17]. 

3. Case Study Setting 
The case study was conducted at a software development 
department at Ericsson, which develops some software products 
on its main site and one partly at an offshore location. The 
projects develop software to be included in new releases of 
existing products that are in full operation as parts of operators’ 
mobile networks. A typical project such as the one studied in this 
paper lasts about 1-1.5 year and has on average about 50 
participants. The projects are performed according to an in-house 
developed incremental development process. Besides inspections 

of documents during design, the products are verified in four 
steps: Basic Test, Integration Test, Function Test, and System 
Test. According to the test strategy of the organization, the faults 
that belong to different phases are in the case study in this paper 
divided as follows (the complete strategy is not included due to 
space limitations). 
Basic Test (BT): Faults found during unit tests of a component. 
Integration Test (IT): Faults found during primary component 
integration, e.g. installation and component interaction faults. 
Function Test (FT): Faults found when testing the features of the 
system, e.g. faults in user interfaces and protocols. 
System Test (ST): Faults found when integrating with external 
systems and when testing non-functional requirements. 
The faults that were reported and used in this paper originated 
from FT and ST, i.e. faults found earlier than FT were not 
reported in a written form that could be post-analyzed. Further, 
during the analysis, some of the reported faults were excluded 
because they turned out not to be real faults. Additionally, 
requirements faults were not reported in the fault reporting 
system. Instead, they were handled separately as change requests. 
Each test level verifies a varying number of deliveries from the 
design department depending on the number of feature increments 
and the number of required bug-fix deliveries. Further, to save 
lead-time, the verification levels of the increments are performed 
partly in parallel, e.g. FT is not completed when ST starts. This 
introduces a risk for more fault slippages but if ST knows what in 
the delivery is tested and not in FT, the ability to start ST early on 
the parts of a feature that have been function tested saves more 
lead-time than what the additional cost of FST is worth.  This is a 
major reason why the optimal FST goal rarely is zero.  

4. CASE STUDY RESULTS 
This section describes the results from applying the suggested 
method on projects from three products at Ericsson, i.e. two 
projects developed onsite (referred to as ‘G’ and ‘S’) and one 
partly developed at an offshore location (referred to as ‘E’). As 
described in Section 3, fault data could be retrieved from the test 
phases Function Test (FT) and System Test (ST). However, in the 
partly offshore-developed project, data was only available from 
ST because FT was managed at the offshore location.  
Section 4.1 describes the FST trends of the studied projects. After 
that, Section 4.2 analyzes observed common patterns of the data, 
i.e. by relating to when the faults were found. As mentioned in 
Section 2.2, the time scale in the trend graphs was for comparison 
reasons normalized to get the same amount of measurement 
points, i.e. 15. The result of this is that the time between each 
measurement point became between about 1.5-3 weeks. 

4.1 Application of the Method on the Three 
Case Study Projects  
Figure 2 presents the overall FST distributions over time with the 
percent FST to each test level at each measurement point included 
as a data table below. The graph provides two major findings:  
a) The degree of FST during the first weeks of the projects varied 
a lot. However, a common trend was that except for ST of project 
E, the first three measurement points were higher than the final 
result. The identified reason for this is that the beginning of a test 
phase tends to find most of the stopping faults that prevent 
planned test activities to start. 

17



 
Figure 2.  FST Trends for all Projects 

b) In all studied projects, the percent FST after the first half of the 
monitoring period were similar to the final results, i.e. the largest 
difference is project E with about 10% difference. There are one 
positive and one negative implication of this trend. The positive 
implication is that it is early possible to see if the target value is 
likely to be reached or not. The negative implication is that the 
process quality does not improve during the project despite 
correction deliveries that should have higher quality than the first 
less tested ones. This confirms that it is hard to test quality into 
software [19]. When investigating the verification activities 
performed at different measurement points, it was possible to 
relate the curve changes to certain events during verification. In 
the studied projects, the following findings were made:  

Project G -- FT: The project had some configuration problems in 
the beginning followed by quite many protocol faults belonging to 
BT (Basic Test). Since BT is only supposed to cover the 
fundamental protocol flow, it is likely that most of these faults 
were stopping and thereby caused re-deliveries and thereby 
prolonged the verification time. Further, already after a third of 
the time there were clear indications that the project was not 
likely to reach the goal of this test level (which was 50 percent). 

Project G – ST: From an FST perspective, the start of this test 
level turned out to be catastrophic. In a post-analysis of the 
project, it was concluded that the major reasons for this were due 
a new complex database that caused some slippages and due to a 
new automated test tool in FT. That is, the new tool caused some 
test areas to be neglected because it caused too much focus to be 
put on the areas that the tool covered whereas some other 
responsibilities of FT were inadequately tested. If this data would 
have been available directly, it would have been possible to save 
time by taking corrective actions before the next delivery, i.e. 
through improved quality assurance in earlier phases. The project 
could already after a few weeks have known that the goal (49%) 
would not be met without improvements. 

Project S – FT: This project started with very high FST levels 
but soon went down to a level below the set goal (57%). The 
reason for this is explained in Section 4.2. Another positive aspect 
of this project is that the declining curve shows that the process 
quality goes up at the end of the verification stage. 

Project S – ST: As for FT of the same project, the FST level 
quickly goes down to a stable level, which indicates that there 
were no major surprises in the beginning. This project is different 
from the others in that it had a temporary low point (no. five). 
This indicates that the quality level differed between different 
deliveries.  Finally, due to relatively good quality of the input all 
the way through, the goal of 50% FST was met. 

Project E – ST: As can be seen in the figure, ST of project E 
started with a low FST level in relation to the final result. The 
reason for this was because a new fault-prone database was 
introduced and the initial database configuration tests were part of 
the ST level responsibility.  At measurement points four and five, 
the FST level increased significantly because the functional tests 
that used the database were also fault prone despite this was a part 
of the FT responsibility. At the end, the curve flattens out but the 
ambitious goal of 29 percent could no longer be reached because 
of the slipping database faults. 

4.2 Result Analysis 
Applying the proposed method on the case study projects 
identified some patterns on how the FST trend changes during a 
verification level. But why are the FST levels so different in the 
beginning and why do they even out when half of the time has 
passed? To answer these questions, the FST data was compared 
against when the faults where found to see if that affected the FST 
distribution. The fault data is due to confidentiality reasons only 
presented as percent of the total number of faults. 
Figure 3 presents when the faults were found in each project in 
relation to the same measurement points as in Figure 2. The first 
important observation is that the faults were distributed rather 
evenly over time. However, the most apparent exception is ST of 
project G where the percent faults after a third of the project 
(point five) still is only 13 percent. Relating this to the FST curve 
explained why the FST level could decrease from 100 to about 70 
percent so fast, i.e. too few faults were found in the beginning to 
have a reliable FST value. On the other hand, when a significant 
part of the faults were found early, the curve stabilized early as 
well, e.g. FT of project G. When cross-checking all projects, one 
can see that the FST trend reaches a stable level when about 20-
30 percent of the faults have been found. 

18



Figure 3.  Fault distribution Over Time (% of total) – All Projects 
The major implication of this is that as long as only a minor part 
of the faults have been found, the FST values might still change 
a lot. This implication however causes a problem since the total 
number of faults is not known until the monitored verification 
level is finished. This is further discussed in the next section. 

5. DISCUSSION 
This section provides a discussion on the value, validity and 
generalizability of the results described in the previous section. 
The case study results showed that it is possible to get good 
indications of the average input quality already in the first half 
of a verification stage. Such data makes it possible to implement 
process corrections early.  Further, by relating the FST status to 
parts that were verified at certain measurement points, causes of 
FST can also be revealed. However, when applying this in real-
time, the relationship with percent faults found is not possible to 
do since that is not known until the verification level is 
completed. Nevertheless, relating a FST value to the percent 
faults found does not require an exact science. That is, today, 
managers make decisions about software quality using best 
guesses; it seems like this will always be the case and the best 
that researchers can do is to recognize this fact and do what they 
can to improve the guessing process [8]. Some possible ways to 
replace the percent of total number of faults relationship are to:  
a) Estimate the final number of faults based on the outcome of 
previous projects and size relationships between the projects.  
b) Replace the percent of total number of faults relationship 
with for example percent of planned total number of test cases. 
Project managers commonly already estimate total number of 
faults, test cases, and test effort as a part of ordinary project 
planning (to be able to estimate delivery dates), so this should 
neither be perceived as hard or time-consuming to do.  
Regarding the basic FST measurement used, a basic assumption 
made is that the defined test strategy equals an efficient process. 
Generic advice cannot be made about what represents an 
efficient test strategy, i.e. organization and product dependent 
aspects affect this. Nevertheless, clear responsibilities and few 
surprises in form of stopping faults and minimal redundant 
testing should make the defined test strategy rather efficient no 

matter how the responsibilities are distributed. It is also 
important to be aware that a perfect test strategy is not the one 
that finds the most faults but rather one that reflects the most 
efficient way to assure the quality to a level that makes the 
customers satisfied. Therefore, the optimal FST goal is as earlier 
mentioned often not zero either. Instead, the purpose of 
measuring FST is to use it as a process improvement and project 
management tool to balance quality against lead-time and cost. 
The most common validity critique of FST measurements is that 
it is subjective, i.e. since the phases belonging of the faults are 
determined by the people in the projects [6]. However, our 
advice is to specify the test strategy well and regularly perform 
post validations of the reported measurements to increase the 
accuracy. Previous experiences with such validations discovered 
that although people do not always report correctly, the 
misclassifications tend to even each other out. Further, people 
taking part of a measured project should participate in the 
follow-up analysis of obtained data, i.e. because measures 
should never be decisive; they just serve as decision support.  
Finally, regarding the generalizability of the results, the reported 
FST levels are only generalizable within the organization, i.e. 
because they are dependent on test strategies and product 
complexity. Further, the commonality of the FST Trends should 
have some degree of generalizability, e.g. that they tend to not 
change during the second half of projects. However, this is 
dependent on the similarity of the development process applied. 
Nevertheless, the method presented is fully replicable in other 
contexts as long as a fault reporting process with sufficient tool 
support to collect the measurements is in place. 

6. CONCLUSIONS 
This paper suggests and validates a measurement-based 
approach for monitoring the quality of the verification process 
during development. The paper shows how the approach can 
provide useful information during development, e.g. early 
indications of process quality, status of performance goals 
related to the process quality, and input to improvement actions. 
The proposed approach determines the input quality between 

19



internal verification levels such as unit and function test. Since 
the actual process quality is not known until a verification level 
is finished, i.e. when all faults are found, the approach creates 
trend data from different measurement points to assess the status 
and predict the final quality. This status information is of 
interest to check regularly because it is not obvious that the 
quality always should be as high as possible; it is a trade-off 
against cost and lead-time. 

To investigate the usefulness of the suggested approach, it was 
applied on five verification levels in three products at Ericsson. 
The case study results showed that it is possible to obtain good 
indications of the quality of the verification process already 
when 20-30 percent of the faults have been found. Further, 
when 50 percent of the faults have been found, the quality level 
remains more or less constant. Such information makes it 
possible to predict the expected final outcome early and if that 
outcome is not satisfactory, it is at such an early stage not to late 
to implement improvements to improve the quality. For 
example, in one of the studied products, the trend data showed 
that the first deliveries had lower quality than expected. If this 
data would have been available in real-time, it would have been 
possible to save time by taking corrective actions before 
consecutive deliveries, i.e. through improved quality assurance 
in earlier phases. Further, the case studies demonstrated several 
examples of how to use the trend data to identify improvement 
actions. Further work involves replicating the method on more 
projects to further validate common trend patterns and to 
determine what the relationship is between the trend data and 
related factors such as percent of test cases executed.  

7. ACKNOWLEDGMENTS 
This work was funded jointly by Ericsson and The Knowledge 
Foundation in Sweden under a research grant for the project 
"Blekinge - Engineering Software Qualities (BESQ)" 
(http://www.bth.se/besq). 

8. REFERENCES 
[1] Basili, V. Software Modeling and Measurement: The Goal 

Question Metric Paradigm, Computer Science Technical 
Report Series, CS-TR-2956 UMIACS-TR-92-96, Technical 
report, University of Maryland, 1994. 

[2] Biehl R., Six Sigma for Software, IEEE Software, 21, 2 
(2004), 68-71. 

[3] Cangussu, J. W., DeCarlo, R. A., Mathur, A. P., 
Monitoring the Software Test Process using Statistical 
Process Control: A Logarithmic Approach, Proceedings of 
the 9th European software engineering conference held 
jointly with 11th ACM SIGSOFT Int. Symposium on 
Foundations of Software Eng., 28, 5 (2003), 158–167. 

[4] Chillarege R., Prasad K., Test and development process 
retrospective - a case study using ODC triggers, 
Proceedings of the International Conference on 
Dependable Systems and Networks, IEEE, 2002, 669-678 

[5] Damm, L-O, Lundberg, L., Results from Introducing 
Component-Level Test Automation and Test-Driven 
Development, In press: The Journal of Systems and 
Software, Elsevier, Dec. 2005. 

[6] Damm, L-O, Lundberg, L., Wohlin C., Faults-slip-through 
– A Concept for Measuring the Efficiency of the Test 
Process”, To be published in: Wiley Software Process: 
Improvement and Practice, Special Issue, 2006. 

[7] El Emam, K., Drouin, J-N., Melo, W., SPICE: The Theory 
and Practice of Software Process Improvement and 
Capability Determination, , IEEE, Los Alamitos, CA, 1998 

[8] Fenton, N., A Critique of Software Defect Prediction 
Models, IEEE Transactions on Software Eng., 25, 5 (1999) 

[9] Gopal, A., Krishnan, M.S., Mukhopadhyay, T., Goldenson, 
D.R., Measurement Programs in Software Development: 
Determinants of Success, IEEE Transactions on Software 
Engineering, 28, 2002, 863-875.  

[10] Grady, R., Practical Software Metrics for Project 
Management and Process Improvement, Prentice Hall, 
1992. 

[11] Gray, E., Smith, W., On the Limitations of Software 
Process Assessment and the Recognition of a Required Re-
orientation for Global Process Improvement, Software 
Quality Journal, 7, 1, Kluwer, 1998. 

[12] Hevner, A. R., Phase Containment for Software Quality 
Improvement, Information and Software Technology Vol. 
39, 13 (1997), 867-877 

[13] Kaplan R. S., Norton, D. P., The Balanced Scorecard, 
Harvard Business School Press, Boston, 1996.  

[14] Mathiassen, L., Pries-Heje J., Ngwenyama, O., Improving 
Software Organizations: From Principles to Practice, 
Addison-Wesley, 2002. 

[15] Niazi M., Wilson, D., Zowghi, D., A Maturity Model for 
the Implementation of Software Process Improvement: An 
Empirical Study, The Journal of Systems and Software, 74, 
2 (2005), Elsevier, 155-172. 

[16] Ngwenyama, O., Nielsen, P. A., Competing Values in 
Software Process Improvement: An Assumption Analysis 
of CMM from an Organizational Culture Perspective, IEEE 
Transactions on Eng. Management, 50, 1 (2003), 100-112. 

[17] Paulk, M. C., Weber, C. V., Curtis, B., and Chrissis, M. B., 
The Capability Maturity Model: Guidelines for Improving 
the Software Process, Addison Wesley, 1995. 

[18] Rainer, A., Hall, T., Key Success Factors for Implementing 
Software Process Improvement: A Maturity-Based 
Analysis, The Journal of Systems and Software, 62, 2 
(2002), 71-84. 

[19] Runeson, P., Holmstedt-Jönsson, M.,  and Scheja, F., Are 
Found Defects an Indicator of Software Correctness? An 
Investigation in a Controlled Case Study, Proceedings of 
the 15th International Symposium on Software Reliability 
Engineering, IEEE, 2004. 

[20] Shull, F., Basili V., Boehm B., Brown W., Costa, P., 
Lindwall, M., Port, D., Rus, I., Tesoriero, R., Zelkowitz, 
M., What We Have Learned About Fighting Defects, 
Proceedings of the Eight IEEE Symposium on Software 
Metrics, IEEE, 2002, 249-258 

[21] Veenendaal E., The Testing Practitioner, UTN Publishers., 
2002. 

20


