Using Faults for Buffer Overflow Effects
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ABSTRACT

Fault attacks have been developed in the cryptographic com-
munity to extract secret information on hardware implemen-
tations. They have also been used to bypass security checks
during authentication processes for example. Here, we show
that they can be exploited to make more damage, taking
the control of a machine as buffer overflow attacks do for
instance. In this short paper, we demonstrate by using one
example that countermeasures against buffer overflow must
also be used for software running on embedded processors.
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1. INTRODUCTION

This paper studies a security vulnerability for embedded
processors. Anderson and Kuhn in [1] describe a whole state-
of-art on fault attacks. They especially focus attacks on
software and list many types of attacks which could affect
software implementations like password checking or access
rights.

Related Work. Other consequences described for glitch
are to turn away unconditional jump to other program seg-
ment or an operation on variable into something else. The
attacks described in [1] only target systems in order to re-
cover a secret value, to bypass a simple assembly command
or to avoid a control test. Here, their goal is to bypass
several times a if condition to dump the whole memory.
Govindavajhala et al. in [3] present another fault attack
which targets soft memory error in Java virtual machines.
Only one bit error allows to take control of a host. As in our
attack, the code does not contain any bug. This attack pro-
vokes malfunction in address space in memory. Two differ-
ent kinds of pointers point toward the same place in the heap
to execute arbitrary code. Contrary to Govindavajhala’s ar-
ticle, we produce faults on the program instructions. Our
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faults disrupt element places, while Govindavajhala’s fault
disrupts element types. Even if the results are the same,
diverting a program, we target here the registers and not
the pointers. The program counter register usually seems as
a potential target. Corrupting its value allows attacker to
jump in another part of code. In state-of-the-art, attacks
on stack pointer register saved in memory exist, but they
only produce wrong branches into program execution. No
fault analysis on stack pointer during function call has been
already published. Here, our attack allows to branch into an-
other valid program. Consequently, we present attack that
allows to control the value of the program counter without
provoking a fault on it.

Our Results. This paper considers safe implementations
that do not use overflowable functions and we target em-
bedded software for which classical countermeasures against
buffer overflows are not always provided by the compilers.
We analyze the consequences of the faults on the scheduling
of program and we obtain similar results as buffer overflow
attacks using fault attacks. We have experimented this at-
tack and we show that it can be very efficient.

2. BACKGROUNDS

In this section, we recall buffer overflow and fault charac-
teristics.

Faults. Faults are generated by several external sources:
spike on power supply, glitch on the clock, variation on the
temperature, laser, electromagnetic radiations ... Each flip
flop has its own characteristic which depends on the tem-
perature or on the voltage. Due to a glitch, some flip flops
process their inputs before they have to [4]. Data have to
be treated too quickly and computations errors occur due to
the briefness of the glitch. On the instruction modifications,
fault attacks can also be used to avoid the storage of variable
in a register, such as the number of rounds for a symmetric
cryptographic protocol [1].

Buffer Overflow. Buffer overflow consists in writing data
into memory space at different places than the allocated and
expected place. This writing can erase useful information
on the process. A buffer overflow allows an adversary to
take control of a machine by modifying the schedule so that
the next executed instruction will not be the expected one.
Another instruction located either forward in the program
or in another program can be executed instead. If this last
one is malicious, the executed code can make damage or can
take advantage of the attacked program privileges.



3. A NEW KIND OF FAULT ATTACK

After profiling fault effects, we mount our attack. In this
attack, we target a specific function whose goal is to verify
a password. Then, we explain its success rate and a gener-
alization of this attack that targets other functions, maybe
not security function such as control access.

3.1 Attack Context

The attack modifies the value of the return address regis-
ter at the end of a function call as in buffer overflow attack.
In our attack, the faults are used to change the stack pointer
so that it will point towards the input parameters. The at-
tack can be extended to any programs or functions with or
without security goals in any context. We have experiment
and simulate theoretic and practical results on embedded
development board with the microprocessor in using glitch
on clock.

3.2 Attack Schedule

This attack uses only one fault to avoid the execution of
only one instruction. We illustrate our purpose with a pass-
word verification example. Instead of using subfunction like
strcmp, the developer uses his own function, for illustration
my_strcmp (i.e. Function A), which realizes a comparison
between entered word and the right password, to avoid over-
flowable function. At each function call, the stack context
is saved by several assembly commands. One of this kind
of commands consists in an addition (addi) to the stack
pointer (sp) with a negative value. We inject a fault dur-
ing the execution of the addi instruction of the sp register at
the beginning of the function my_strcmp in our case study.
This precise and located fault avoids the modification of the
sp value at the beginning of the subfunction, my_strcmp.
Then we normally go back to the function named compar-
ison (i.e. Function B) in our example, as it is shown in
Figure 1.

1. We make a fault during the subtraction (addi sp, sp,
-160) instruction, so the sp pointer value is wrong.

2. At the end of the call of the function, comparison
in our case, the return address (ra) is retrieved by
the load instruction (1dw ra, 156 (sp)) (offset from
faulty sp). In case of our fault, return address will
point toward input parameters.

Figure 1: Faulty execution during attack

Input parameters contain address of any function after
the password check function. That is why at the end of the
function comparison, the return address register loads the
address of the continue function, as if the correct information
was entered. Now, the return address register contains a
faulty value. The final assembly ret command ends the fault

attack by jumping to execution without stopping due to false
password. This scenario needs only one fault and allows to
bypass security control. It is illustrated by Figure 1.

4. COUNTERMEASURES

To defeat these attacks, several countermeasures exist and
could be implemented. In this section, we present hardware
and software countermeasures. While ones prevent from
fault attacks, the others detect buffer overflow exploits.

4.1 Countermeasures Against Fault Attacks

Essentially, two different kinds of countermeasures can be
used against these attacks. The first category gathers to-
gether protections against clock glitch and the second one
protections against glitch effects like software redundancy.
In first type, hardware components filtering variations can
be used. For instance pll for phase locked loop, our glitch
attack scenario has been played without results. These tech-
niques are so specific for fault injection means. Other fault
injection provokes program diverting.

4.2 Countermeasures Against Buffer Overflow

First countermeasure consists in obfuscating addresses in
using randomized address. It prevents opponents from tar-
geting function address after the targeted function. Second
countermeasure duplicates stack pointer in a variable, in a
register, in other part of the stack or in another duplicated
stack like Stack Shield [2]. This technique protects from
unauthorized modification of stack pointer. The last coun-
termeasure that defends from executing malicious code is
non-executable stack, for the input parameters.

S. CONCLUSION

This fault attack represents a new real threat for embed-
ded software systems. It is the first time that this associa-
tion of two different attacks, fault attacks with buffer over-
flow techniques, is realized. Furthermore, only one fault
is needed. It reveals that it is important to adopt the same
countermeasures against buffer overflows in software embed-
ded system. The main rule consists of protecting stack mem-
ory and registers’ integrity during all program execution.
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