
360 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 35, NO. 3, MAY 2005

Using Feedback in Collaborative Reinforcement
Learning to Adaptively Optimize MANET Routing

Jim Dowling, Eoin Curran, Raymond Cunningham, and Vinny Cahill

Abstract—Designers face many system optimization problems
when building distributed systems. Traditionally, designers have
relied on optimization techniques that require either prior knowl-
edge or centrally managed runtime knowledge of the system’s
environment, but such techniques are not viable in dynamic
networks where topology, resource, and node availability are
subject to frequent and unpredictable change. To address this
problem, we propose collaborative reinforcement learning (CRL)
as a technique that enables groups of reinforcement learning
agents to solve system optimization problems online in dynamic,
decentralized networks. We evaluate an implementation of CRL
in a routing protocol for mobile ad hoc networks, called SAMPLE.
Simulation results show how feedback in the selection of links
by routing agents enables SAMPLE to adapt and optimize its
routing behavior to varying network conditions and properties,
resulting in optimization of network throughput. In the experi-
ments, SAMPLE displays emergent properties such as traffic flows
that exploit stable routes and reroute around areas of wireless
interference or congestion. SAMPLE is an example of a complex
adaptive distributed system.

Index Terms—Feedback, learning systems, mobile ad hoc net-
work routing.

I. INTRODUCTION

T
HE USE of self-organizing techniques to engineer dis-

tributed systems has recently been driven by the need

to build systems with improved performance and scalability

characteristics in dynamic, decentralized environments, such

as mobile ad hoc networks (MANETs) [1], [2]. In decentral-

ized environments, designers cannot make prior assumptions

about the system’s environment, such as an expected network

topology, and hierarchical control techniques are not viable

due to network dynamism [1], [2]. In MANETs, distributed

systems designers overcome the lack of prior or centrally man-

aged system knowledge by making few assumptions about the

system’s environment. This leads to the design of inefficient

mechanisms to support services, such as network flooding for

route discovery, that cannot adapt to a changing environment

to improve system performance.

Inspired by complex adaptive systems from nature [3]–[5],

there have been recent advances in using self-organizing tech-

niques to build complex adaptive distributed systems (CADS)

Manuscript received May 29, 2004; revised October 10, 2004 and November
16, 2004. This work was supported in part by the TRIP project funded under the
Programme for Research in Third Level Institutions (PRTLI) administered by
the Higher Education Authority (HEA) of Ireland and in part by the European
Union funded “Digital Business Ecosystem” Project IST-507953. This paper
was recommended by the Guest Editors.

The authors are with the Department of Computer Science, Trinity College,
Dublin, Ireland (e-mail: jpdowling@cs.tcd.ie).

Digital Object Identifier 10.1109/TSMCA.2005.846390

that operate in dynamic, decentralized environments [6]–[8]. In

CADS, system behavior or structure emerges from the local in-

teractions between the different components or agents without

any explicit representation of system behavior or structure on

the level of the individual component or agent. A common fea-

ture of CADS is their ability to perform complex collective tasks

and to collaboratively adapt their system behavior or structure to

changes in their environment using relatively simple agent-level

behaviors. Positive and negative feedback between agents have

been identified as key mechanisms in realizing complex adap-

tive system behavior [3], [4].

This paper introduces and evaluates collaborative reinforce-

ment learning (CRL) as a self-organizing technique for building

a MANET routing protocol, called SAMPLE, as a CADS that

can adapt and optimize system routing behavior to a changing

environment using positive and negative feedback. CRL models

the desired system routing properties as system optimization

problems that are solved by decentralized, collaborating routing

agents that learn routing policies using reinforcement learning

(RL) [9], [10]. RL is an unsupervised learning technique that

allows an autonomous agent to monitor the state of its environ-

ment and take actions that affect its environment in order to learn

an optimal policy. RL can be used to solve optimization prob-

lems for an individual agent [9], but the application of RL to

adaptively solve system optimization problems in dynamic, de-

centralized environments is an open research problem.

CRL extends RL with different feedback models, including

a negative feedback model that decays an agent’s local view of

its neighborhood and a collaborative feedback model that allows

agents to exchange the effectiveness of actions they have learned

with one another. In a system of homogeneous agents that have

common system optimization goals and where agents concur-

rently search for more optimal actions in different states using

RL, collaborative feedback enables agents to share more op-

timal policies, increasing the probability of neighboring agents

taking the same or related actions. When CRL is applied to

SAMPLE, this process can produce positive feedback in route

selection for a group of routing agents in a network. The positive

feedback mechanism in SAMPLE reinforces changes in agent

routing behavior to favor the use of stable routes in a MANET.

In SAMPLE, the positive feedback in route selection process

causes convergence between the routing policies of agents and

continues until negative feedback, produced either by routing

congestion or our decay model, causes agents to adapt their

routing policies.

Typically, the goal of system optimization for routing pro-

tocols is to have the routing agents’ policies converge to pro-

duce collective routing behavior that meets the system routing

1083-4427/$20.00 © 2005 IEEE

DOWLING et al.: USING FEEDBACK IN COLLABORATIVE REINFORCEMENT LEARNING 361

optimization criteria. However, in open dynamic distributed

systems, such as MANETs, the environment is nonstationary

and we require agents than can collectively adapt their routing

behavior to a changing environment to continue to meet the

system routing optimization criteria. In general, we believe

that the adaptability of system behavior to changes in its en-

vironment is as important an evaluation criterion for CADS

as the more traditional criterion for static environments of

convergence and stabilization on optimal system behavior.

The remainder of this paper is structured as follows. Sec-

tion II introduces the CRL model, Section III presents SAMPLE

as both a CRL system and an on-demand routing protocol for

ad hoc networks. Section IV compares simulation results for

SAMPLE with two widely used on-demand MANET routing

protocols in different scenarios and explains the differing

abilities of the protocols to adapt and optimize to a changing

MANET environment. Finally the paper concludes with related

work and a summary of how positive and negative feedback in

CRL can be used to build CADS.

II. COLLABORATIVE REINFORCEMENT LEARNING

In reinforcement learning, an autonomous agent associates

actions with system states, in a trial-and-error manner, and the

outcome of an action is observed as a reinforcement that, in

turn, causes an update to the agent’s optimal policy using a rein-

forcement learning strategy [9], [10]. The goal of reinforcement

learning is to maximize the total reward (reinforcements) an

agent receives over a time horizon by selecting optimal actions.

Agents may take actions that give a poor payoff in the short-term

in the anticipation of higher payoff in the medium/longer term.

In general, actions may be any decisions that an agent wants to

learn how to make, while states can be anything that may be

useful in making those decisions.

Reinforcement-learning problems are usually modeled

as Markov decision processes (MDPs) [9], [10]. An MDP

consists of a set of states, , a set of

actions, , a reinforcement function

, and a state transition distribution function:

, where is the set of probability

distributions over the set .

A. Decomposing System Optimization Problems

In CRL, system optimization problems are decomposed into a

set of discrete optimization problems (DOPs) [6] that are solved

by collaborating RL agents. There are many system optimiza-

tion problems in distributed systems that can be naturally dis-

cretized into DOPs that can be distributed amongst agents in a

distributed system, such as load balancing of computation over a

group of servers and locating replicated resources in a network.

The solution to each DOP is initiated at some starting agent in

the network and terminated at some (potentially remote) agent

in the network. Each agent uses its own policy to decide prob-

abilistically on which action to take to attempt to solve a DOP.

In CRL the set of available actions that an agent can execute

include DOP actions, , that try to solve the DOP locally,

delegation actions, , that delegate the solution of the DOP

to a neighbor and a discovery action that any agent can execute

Fig. 1. Causally connected states between the MDPs in agents A, B, and C.

in any state to attempt to find new neighbors. An agent is more

likely to delegate a DOP to a neighbor when it either cannot

solve the problem locally or when the estimated cost of solving

it locally is higher than the estimated cost of a neighbor solving

it.

B. Heterogeneous Environments

In heterogeneous distributed systems, agents typically pos-

sess different capabilities for solving a given DOP. To model

the differing capabilities of agents, CRL allows newly discov-

ered agents to negotiate the establishment of causally connected

states with their neighbors by exchanging device capability in-

formation. Causally connected states represent the contractual

agreement between neighboring agents to support the delega-

tion of DOPs from one to the other. Causally connected states

map an internal state on one agent to an external state on at least

one neighboring agent. An internal state on one agent can be

causally connected to external states on many different neigh-

boring agents, see Fig. 1. An agent’s set of causally connected

neighbors represents its partial view of the system.

In CRL, for every neighbor, , with whom agent shares

a causally connected state, there exists a delegation action

that represents an attempt by to delegate a DOP to . If

the delegation action is successful, makes a state transition to

its causally connected state , terminating the MDP at , and

initiates a new MDP to handle the DOP. Apart from an agent’s

capabilities, runtime factors, such as the agent’s available re-

sources and the quality of its network connections, also affect

the ability of agents to solve a given DOP. These are modeled in

the agent’s reward model.

C. Model-Based Reinforcement Learning

RL strategies can be either model-free, such as Q-learning

[11], or model-based [10], [12], [13]. Model-based learning

methods build an internal model of the environment and

calculate the optimal policy based on this model, whereas

model-free methods do not use an explicit model and learn

directly from experience. Model-based methods are known to

learn in many settings much faster than model-free methods,

since they can reuse information stored in their internal models

[14]. In general, model-based methods have been less popular

in RL because of their slower execution times and greater

storage costs, especially as the state size grows. However, in

distributed systems where acquiring real-world experience is

362 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 35, NO. 3, MAY 2005

expensive, the model based approach has a distinct advantage

over model-free methods as much more use can be made of

each experience. Model-based learning requires that the state

transition model and possibly the reward model are updated

throughout the execution of the CRL algorithm.

D. Distributed Model-Based Reinforcement Learning

In distributed systems, when estimating the cost of the state

transition to a remote state on a neighboring agent we also

have to take into consideration the network connection cost

to the neighboring agent. For this reason, we use a distributed

model-based reinforcement learning algorithm that includes

both the estimated optimal value function for the next state

at agent , and the connection cost,

where , to the next state when computing the estimated

optimal state-action policy as at agent , see (5).

In the distributed model-based RL algorithm, our reward

model consists of two parts. Firstly, a MDP termination cost,

, provides agents with evaluative feedback on

either the performance of a local solution to the DOP or the per-

formance of a neighbor solving the delegated DOP. Secondly,

a connection cost model, , provides the estimated

network cost of the attempted delegation of the DOP from a

local agent to a neighboring agent. The connection cost for a

transition to a state on a neighboring agent should reflect the

underlying network cost of delegating the DOP to a neighboring

agent, while the connection cost for a transition to a local state

after a delegation action should reflect the cost of the failed

delegation of the DOP. The connection cost model requires

that the environment supplies agents with information about

the cost of distributed systems connections as rewards. Ideally

a middleware will provide support for monitoring connection

quality, such as in [15].

E. Advertisement

In CRL, neighbors are informed of changes to of a

causally connected external state, , at agent using an ad-

vertisement (Fig. 2). Each agent maintains a local view of its

neighbors by storing values for causally connected states to

neighbors in a local cache, . The cache consists of a table

of -values, for all delegation actions, , at agent , and the

last advertised for sucessful transition to the causally con-

nected state. A entry is a pair , where is

the cached value. When the agent receives a ad-

vertisement from neighboring agent for a causally connected

state , it updates in .

F. Dynamic Environments and Decay

Similar to RL, CRL models are based on MDP learning

methods that require complete observability [10], however at

any given agent in a decentralised system the set of system-wide

states are only partially observable. To overcome problems

related to partially observable environments, state transition

and connection cost models can be built to favor more recent

observations using a finite-history-window [10], and cached

values become stale using a decay model [6]. In CRL, we decay

cached information in the absence of new advertisements

Fig. 2. In CRL, an agent, n , takes an action at time t, a (t), and makes in
a transition to state s (t + 1), that produces a reward, r (t + 1). Agents can
advertise updated V values to neighbors, and delegate a DOP to a neighboring
agent. Cached V values are decayed over time.

of values by a neighbor as well as after every recalculation

of values. The absence of advertisements amounts to

negative feedback and allows us to use a cleanup updater to

remove cache entries, actions, and agents with stale values in

the system. The rate of decay is configurable, with higher rates

more appropriate for more dynamic network topologies.

G. CRL Algorithm

The CRL algorithm can be used to solve system optimization

problems in a multiagent system, where the system optimization

problem can be discretized into a set of DOPs and modeled as

absorbing MDPs [9] in the following schema.

1) A dynamic set of agents , often

corresponding to nodes in a distributed system.

2) Each agent has a dynamic set, , of neighbors where

and .

3) Each agent has a fixed set of states , where

and is the system-wide set of states.

4) Agents have both internal and external states.

is the function that maps from the set

of agents to a nonempty set of internal states that are not

visible to neighboring agents.

is the function that maps from the

set of agents to a set of externally visible states. The

relationship between internal and external states is the

following:

(1)

5) We define a set of causally connected states between

agents and as

where (2)

is a causally connected state where an internal

state at corresponds to an external state at .

6) Each agent has a dynamic set of actions

discovery (3)

where are the set of delegation actions,

are the set of DOP actions. The discovery action

DOWLING et al.: USING FEEDBACK IN COLLABORATIVE REINFORCEMENT LEARNING 363

updates the set of neighbors for agent and queries

if discovered neighboring agent provides the capabil-

ities to accept a delegated MDP from . If it does,

is updated to include a new delegation action that can re-

sult in a state transition to and the delegation

of a MDP from to .

7) There are a fixed set of state transition models,

, that model the probabilities of making

a state transition from state to state under action .

8) is the connection cost function

that observes the cost for the attempted use of a connec-

tion in a distributed system. is the connec-

tion cost model at agent that describes the estimated

cost of making a transition from state to state under

delegation action .

9) We define a cache at as Cache

. The value in the pair

corresponds to the last advertised

received by agent from agent . For each

Cache is updated by a advertisement for

a causally connected state. The update replaces the

element of the pair in Cache with the

newly advertised value.

10) Decay is the decay model that updates the

element in Cache

Decay (4)

where is the amount of time elapsed since the last

received advertisement for from agent and is a

scaling factor that sets the rate of decay.

11) A cleanup updater is available at each agent to re-

move stale elements from its set of neighbors delega-

tion actions , connected states , and its Cache .

When a entry in the cache drops below

a specified threshold, the cleanup updater removes the

delegation action from , the stale connected state

from , and the pair from Cache .

If after removing for some neighbor of

, then is removed from .

12) The distributed model-based reinforcement learning al-

gorithm is

(5)

where . If , this defaults to the stan-

dard model-based reinforcement learning algorithm [10]

with no connection costs or decay function. is

the MDP termination cost, is the state tran-

sition model that computes the probability of the action

resulting in a state transition to state is

the estimated connection cost and is

if , and otherwise. Note that rewards that

are received in the future are not discounted since agents

do not learn about state transitions after successful del-

egation to a neighboring agent.

13) The value function at agent , can be calculated

using the Bellman optimality equation [16]

H. Adaptation and Feedback in Distributed Model-Based

Reinforcement Learning

Adaptation of system behavior in CRL is a feedback process

in which a change in the optimal policy of any RL agent, or

a change in the system’s environment as well as the passing

of time causes an update to the optimal policy of one or more

RL agents, see (5). This is in contrast to model-free Q-learning,

where agents only adapt their behavior after executing actions

[11]. In CRL, changes in an agent’s environment provide feed-

back into the agent’s state transition model and connection cost

model, while changes in an agent’s optimal policy provides col-

laborative feedback to the cached values of its neighboring

agents using advertisement. Time also provides (negative) feed-

back to an agent’s cached values. As a result of the different

feedback models in CRL, agents can utilize more information

when learning an optimal policy in a distributed system. Collab-

orative feedback also enables agents to learn from their neigh-

bors to solve collective system problems.

III. SAMPLE: MANET ROUTING USING CRL

A. Routing and System Optimization

The CRL model was evaluated by using it to build a MANET

routing protocol called SAMPLE. Routing algorithms are de-

signed to meet multiple, often conflicting system optimization

criteria [17]. In SAMPLE, we attempt to maximize overall

network throughput, maximize the ratio of delivered packets

to undelivered packets and minimize the number of transmis-

sions required per packet sent. Ad hoc routing is a challenging

problem as it exhibits properties such as the lack of global

network state and frequently changing network topology due

to node mobility. This ensures that system properties of the

protocol only emerge from local routing decisions and that

routing agent’s behavior has to frequently adapt to a changing

environment.

In Section IV, we compare experimentally SAMPLE with the

two most widely deployed MANET routing protocols, ad hoc

on-demand distance vector routing (AODV) [18] and dynamic

source routing (DSR) [19]. Both protocols make several static

assumptions about the MANET environment to avoid prob-

lems typically encountered by proactive routing protocols in

MANETs.

The main assumptions made by AODV and DSR [20] are,

first, that network links are either working or not working. This

discrete model for links is essentially based on an assumption of

perfect radio links, ignores the effects of interference and net-

work contention, and is generally based on the last measurement

of a link’s status. The second assumption is that MANETs have

a random network topology. AODV and DSR use on-demand

routing where routes to destinations are only discovered when

needed using flooding [18], [19]. On-demand routing is essen-

tially based on the assumption of a random network topology,

364 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 35, NO. 3, MAY 2005

although both DSR and AODV attempt to improve routing per-

formance using route maintenance [19] and link maintenance

techniques, such as hello messages in AODV.

The SAMPLE routing protocol seeks to experimentally test

the following hypotheses about AODV and DSR.

1) Due to their discrete model of network links, AODV and

DSR will not be able to adapt to use different quality

links, which is important when link quality deteriorates.

2) AODV and DSR will not be able to adapt to favorable

changes in network topology, as they make the prior as-

sumption of a random network topology.

Our aim is to compare how effective AODV, DSR, and

SAMPLE are in adapting their routing behavior to a changing

network environment in order to meet the system optimiza-

tion criteria idenitifed above.1 In order to meet the system

optimization criteria for SAMPLE, we identify link quality

as an important metric in maximizing network throughput

and minimizing the number of transmissions in the network.

In Section III-C, we define a more optimal network link in

a MANET as a stable link that has a higher probability of

successful packet transmission. A stable route is a path that

contains a set of network links that each has high probability of

successful packet transmission, generally due to nodes having

low mobility and high network up-time characteristics. In

MANETs, stable routes are preferable to less reliable routes

with fewer hops [22].

B. SAMPLE Routing Protocol

SAMPLE is an on-demand ad hoc routing protocol based on

CRL [20]. Routing information is captured as a route cost (

value) and is advertised in the network by attaching it to data

packets. Each agent has routing tables to store route cost infor-

mation to its neighboring nodes and the last advertised value

from those neighbors for each destination or source node in use.

Each packet sent by the routing protocol will contain the infor-

mation shown in Table I. Any node receiving a packet will store

the values for its neighboring node, and also update the local

state transition model, see Section III-C, for that node. SAMPLE

uses the distributed model-based RL algorithm, defined by (5),

to calculate a routing agent’s values that are attached to any

packet that it transmits.

1) Routing Action Selection in SAMPLE: In SAMPLE, for

each of the possible routing (delegation) actions by an agent to

one of its neighbors, the decision of which action to take for

a packet from node is chosen probabilistically between the

set of possible next hops on the route using Boltzmann-action

selection [9]:

(6)

The parameter is the temperature and it determines the

likelihood of choosing suboptimal routing actions. The higher

the temperature, the more likely a suboptimal action is likely

1We do not provide a formal treatment of routing as a multiobjective opti-
mization problem as in [21].

TABLE I
SAMPLE PACKET FORMAT. PACKETS HAVE ORIGIN AND DESTINATION

ADDRESSES, AS WELL AS SEQUENCE NUMBERS TO IDENTIFY DUPLICATES.
V (B) IS THE ESTIMATED ROUTE COST FOR SENDING A PACKET FROM THE

CURRENT NODE i TO NODE src, WHILE V (B) IS ESTIMATED ROUTE COST

FOR SENDING A PACKET FROM THE CURRENT NODE i TO NODE dest

to be chosen. Varying the temperature controls the amount

of exploration that will be taken. An increase in increases

the possibility of a packet finding a more optimal route but

also increases the possibility of a packet arriving later and out

of order. In general, networks with more dynamic topologies

and few stable routes should have a higher temperature than

more stable network topologies, such as the metropolitan area

MANET introduced in Section IV-B. We carried out a series of

experiments, tuning the value , to optimize the performance

of SAMPLE for different network scenarios [23]. In the ex-

periments in Section IV, we chose a low temperature

to reduce the amount of exploratory packets and increase the

exploitation of the stable links in the network. SAMPLE also

uses a simple greedy heuristic in order to restrict exploration to

useful areas of the network: we only allow node to forward

to those neighboring nodes with a value that is less than that

of .

In the case that no routing information is available, such as

before the network has been bootstrapped with traffic or the

routing information has gone stale, the routing protocol must

still be able to function correctly. A broadcast action, that rep-

resents the discovery action in CRL, is provided to bootstrap the

network with routing information. We also allow this action to

be chosen during normal operation, with a certain (albeit low)

probability in order to discover new routes.

C. State Transition Model for Network Links

In contrast to the discrete model of network links favored

by DSR and AODV, SAMPLE uses a state transition model,

where , to represent the probability of suc-

cessful transmission over a given network link in our ad hoc

network. The state transition model is a statistical model that

acquires information about the estimated number of packets re-

quired for a successful unicast. In order to build the state tran-

sition model, we sample the number of different system events

within a small time window into the past.2 The events that we

monitor are:

1) attempted unicast transmissions ;

2) successful unicast transmissions ;

3) received unicast transmissions ;

4) received broadcast transmissions, ;

5) promiscuously received (overheard) unicast transmis-

sions .

2For the experiments in this paper � = 10 s

DOWLING et al.: USING FEEDBACK IN COLLABORATIVE REINFORCEMENT LEARNING 365

The rate of these events is used to estimate the probability of

an attempted unicast transmission being successful, i.e., we at-

tempt to estimate the future value of . Since a success-

fully received packet is indicative of a functioning network link,

we allow receive events to influence our estimation to a config-

urable extent

(7)

The parameter represents our belief about the probability of

successfully transmitting a packet in the case that we have re-

ceived but not attempted to transmit. The parameter controls

how much received packets are weighted compared to trans-

mitted packets. For the experiments carried out in this paper,

we used values of 0.5 and 0.2 for and , respectively. Sent

packets are weighted higher than received packets due to the

lower information content in received broadcast and promiscu-

ously received packets. Note that this is quite a simple estimate

of delivery ratio. More complicated measures of link quality

could be devised and other variables considered, as shown in

[24].

For a given network link between agent and agent in

the network we have

(8)

where represents the probability of a successful

unicast, given a state transition from state at node under

attempted delegation action to a causally connected

state . If represents the prob-

ability of an unsuccessful unicast.

The state transition model ensures that stable links are favored

in routes, as the total estimated route cost is a product of the

neighbor’s estimated route plus the connection cost and the es-

timated probability of successful transmission over the link to

the neighbor. Route costs increase rapidly with degradation of

link quality, thus favoring routes that use links with more suc-

cessful transmission ratios.

D. Connection Costs for Network Links

SAMPLE uses a reward model for the estimated connection

cost, , that is designed to approximate the

number of transmissions3 needed to transmit a packet along that

link. The reward model is a simple static model of connection

cost based on the relative cost differential between a successful

unicast over a connection versus an unsuccessful unicast over

the connection.4 In an 802.11, network unicasts are retried up

to seven times [25] before a packet transmission failure event.

We use static costs and to model the reward

when transmission succeeds under a delegation action and fails,

respectively. The rewards are set at values and , respec-

tively, to reflect the cost of unicast failures in an 802.11 network.

Depending on the distributed system, more complex connection

cost models could be devised based on parameters such as link

latency, throughput, or some quality of service metric.

3transmissions made by the 802.11 protocol, i.e., including the number of
retransmissions that are made until the packet is acknowledged successfully

4Note we do not need to model broadcast as it is not included in the calculation
of the V values, see Section II-G.

Fig. 3. Routing information in SAMPLE is updated by routing actions, decay,
and advertisement.

E. Advertisement and Decay in SAMPLE

In SAMPLE, each agent stores the last advertised route cost

to a given destination from each of its neighbors in a routing

table, but considers this value to decay (i.e., grow steadily larger)

from the time it is advertised (see Fig. 3). In this way, routes

that are not advertised are gradually degraded and eliminated

from consideration for routing decisions. The rate of route decay

can be configured to match an estimated mobility model for a

MANET.

When a lower cost route to a destination is advertised to

neighbors, it increases the probability of that route being used

in the near future by neighbors. The more successful a route

is, the more it is advertised throughout the network, resulting

in a positive feedback mechanism whereby stable routes with

high traffic flows emerge in the network. However, as these

stable routes become more popular they can become congested

resulting in degradation of the state transition model for the

stable links. In this case negative feedback appears in the form

of the capacity constraints of the network links causing routing

agents to favor alternative routes to the destination. Negative

feedback enables routing agents to adapt their behavior to send

traffic flows around the congested links. An interesting emer-

gent property of SAMPLE is that the amount of effort used for

routing to a given destination is relative to the popularity of that

destination. Hence the quality of routing information is higher

for more popular traffic destinations, such as nodes providing

internet gateway services in metropolitan area MANETs.

F. SAMPLE as a CRL System

1) Each node has a set of states , where

indicates that a packet is in a buffer waiting to be for-

warded, indicates that a packet has been successfully

unicast to a neighbor, and indicates that a packet has

been delivered at node (see Fig. 4).

2) The external and internal states of are

and .

3) is the start state of the MDP at and the terminal

states are .

4) The total set of actions available at is

deliver broadcast . This includes a dynamic set

of delegation actions

where has reachable neighbors, to , and

the action represents an attempted unicast from

node to its neighbor . It also includes a set of DOP

actions deliver , where deliver represents an

attempt to deliver the packet to the current node . The

broadcast action is an 802.11b broadcast used by routing

366 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 35, NO. 3, MAY 2005

Fig. 4. SAMPLE MDP. Each agent’s MDP has three states: B (packet in
buffer), P (packet successfully unicast), andD (packet delivered at this agent).
The actions available at different states in the MDP are a packet delivery action,
a broadcast action and for each neighboring node, a delegation action (unicast).

agents to discover new neighbors, links, and routes in the

network.

5) For , there is a causally connected state

, where .

6) The family of advertisement updates in SAMPLE are

opportunistic functions that piggyback values in all

unicast and broadcast packets. A node promiscuously

listens for advertisements, updates in its Cache

and recalculates its value for the appropriate

destination.

7) and are the static connection costs when

transmission succeeds () under a delegation ac-

tion, , and fails , respectively.

8) The state transition models for the MDP are as follows.

a) The probability of a packet transmission over a link

succeeding is .

b) The probability of a packet transmission over a link

failing is .

c) The probability of the packet being delivered if the

current node is the destination is deliver

if .

d) For all other state transitions under all actions

.

9) The following are the connection cost models when both

delegation actions and other actions are attempted.

a) where .

b) where .

c) where .

10) The MDP termination cost model is . We

set its reward values to for the execution of a broad-

cast action in any state, 0 for a delegation action and to

0 for completion of the DOP. We would normally ex-

pect that the reward received for the local solution

to the routing DOP to be a high value relative to a del-

egation action to increase the probability that a deliver

action is executed when a packet arrives at its destina-

tion node. However, in the implementation of SAMPLE,

we optimized the solution to the problem by simply al-

ways choosing the deliver action when a packet reaches

its destination.

11) In the decay model, Decay , we set to 1.1

[20]. This value was obtained through experimentation,

with the goal being the optimization of the protocol for

the metropolitan area network scenario in Section IV-B.

For wireless networks with different mobility models

and link stability characteristics, different values for

could be obtained through tuning and experimentation.

12) Given state at node and an attempted delegation

action , the values for that next state can be

calculated using distributed model-based reinforcement

learning

Decay

Decay

Decay

Since

we are seeking the solution of

Decay

Decay (9)

G. Adaptation and Feedback in SAMPLE

As we can see from (9), a routing agent’s behavior adapts

to feedback from the execution of routing actions, feedback

from the models of network link quality and , feed-

back from changes in the advertised route cost by a neighboring

agent , and negative feedback from the decay of adver-

tised route costs. The rate at which SAMPLE can adapt routing

behavior to a changing environment is a function of

1) the parameters of the state transtition model and the

network events .

2) the parameters of the decay model, and .

3) and the ratio of route exploration to exploitation .

In the following section, we show how for particular values of

the above parameters SAMPLE can adapt its routing behavior

to a changing environment. Our goal is to show how feedback

allows the behavior of routing agents to adapt to meet system

optimization goals, rather than to show the effect of tuning these

parameters. For further information on the effect of tuning these

parameters in the network scenarios presented in the next sec-

tion, see [23].

IV. EXPERIMENTAL RESULTS AND DISCUSSION

We have implemented the SAMPLE routing protocol de-

scribed in Section III in the NS-2 network simulator [26].

The simulation accuracy of NS-2 is discussed in [27]. We

compare the performance of the SAMPLE routing protocol

to that of two well-known on-demand routing protocols for

MANETs, AODV, and DSR, in two different scenarios. The

first scenario is a random network scenario that is designed

to test how SAMPLE compares with AODV and DSR when

the MANET environment reflects their design assumptions,

DOWLING et al.: USING FEEDBACK IN COLLABORATIVE REINFORCEMENT LEARNING 367

Fig. 5. Comparison of SAMPLE with AODV and DSR with no packet loss. This random network scenario represents idealized, unrealistic wireless network
conditions that favors the design assumptions of both AODV and DSR. Packet delivery ratio near-optimal, at over 95% for all three protocols, with DSR showing
the highest delivery ratio. The average number of transmissions per packet sent is lower is also very efficient, at lower than five transmissions/packet, for all three
protocols.

see Section III-A. The second scenario is a metropolitan area

MANET, where a subset of the links in the network are stable,

that is designed to test the ability of the protocols to adapt their

routing behavior to use the stable routes in the network. We also

introduce congestion into both scenarios to investigate the ef-

fectiveness of the protocols in adapting their routing behavior to

a changing MANET environment. Our goal here is to compare

the performance of the SAMPLE routing protocol in different,

changing environments with on-demand protocols that make

static assumptions about the MANET environment using the

system optimization criteria identified in Section III-A.

Since the SAMPLE routing protocol combines routing in-

formation with data packets, the metric of number of routing

packets is not a valid one for comparison with AODV and DSR.

For this reason, we use the number of transmissions (unicast or

broadcast) that each protocol makes per application packet sent

during the simulation run as a metric to compare the protocols.

This metric represents the cost to the network of routing each

data packet.

A. Adapting to Packet Loss in a Random Network

This scenario mimics that used in [28]. A simulation arena

of 1500 m 300 m is used, with the transmission power of the

radio interfaces set to 250 m. The random way-point mobility

model is used, with a maximum speed of 20 m/s and varying

pause times. Constant bit rate traffic of 64 byte packets, four

packets per second, with ten flows between random pairs of

nodes is used.

First, we compare the SAMPLE routing protocol to AODV

and DSR with no packet loss added to the simulation. Fig. 5

shows the packet delivery ratio and transmissions-per-packet

metrics as they vary with the level of mobility in the network.

In this scenario, both AODV and DSR have near-optimal packet

delivery ratios, while SAMPLE has between 1% and 4% worse

packet delivery ratios, and all protocols have a near-minimal

cost (in terms of network transmissions).

We introduce packet loss to the simulation in order to mea-

sure how well the different protocols adapt their operation to

a network with lossy links. Radio interference is simulated by

introducing random packet loss into the simulation. An NS-2

ErrorModel is used to drop packets both at the transmitter and

receiver (each with half the rate shown in the results). This is

a simplistic simulation of interference in the wireless network

as packet loss is not introduced as a function of signal strength.

However, it is indicative of the effect of lossy network links on

the routing protocols.

Fig. 6 shows the performance of the routing protocols as

the level of packet loss in the network increases. Data points

shown are the average of at least 30 simulation runs with varying

traffic and mobility scenarios. The SAMPLE routing protocol

manages to maintain more optimal performance for packet loss

levels at which AODV and DSR show significantly reduced per-

formance. For packet loss rates of up to 20%, SAMPLE has

packet delivery ratio above 85%, with only slight increase in the

number of transmissions made per packet. At a 20% packet loss

rate, however, AODV and DSR have packet delivery ratios of

60% and 10%, respectively, and produce more than double the

number of radio transmissions for each packet sent compared to

SAMPLE.

B. Adapting to Stable Links in a Metropolitan Area Manet

We have also evaluated the performance of SAMPLE against

that of AODV and DSR in a network scenario based on a

metropolitan ad hoc network. In this scenario, there is a subset

of nodes in the network that are not mobile. The network sce-

nario is motivated by the recent appearance of ad hoc networks

designed to supply internet access to mobile nodes.

In this scenario, we anticipate that certain nodes in the net-

work will be immobile for extended periods of time, resulting in

stable links between them, and that the traffic patterns in the net-

work will be concentrated on this subset of immobile nodes. In

the experiments presented here we use three server nodes. Each

client sends constant-bit-rate traffic to one of the servers at a rate

of four packets per second. The number of client nodes in the

network is varied in order to create congestion in the network.

Fig. 7 shows the layout of the simulation arena. There are 33

368 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 35, NO. 3, MAY 2005

Fig. 6. In this experiment, packet loss is introduced into the random network scenario and the ratio of delivered packets to dropped packets degrades quickly for
AODV and even more so for DSR. However, SAMPLE’s ability to adapt routing decisions to changing network link quality means that at a packet error rate 0.2,
it can still deliver 80% of the packets, while AODV and DSR can only deliver 55% and 9% of the packets, respectively.

Fig. 7. Simulation arena, showing fixed node positions (transmission range is 100 m). The presence of stable nodes in the environmental property to which
SAMPLE routing agents can adapt to improve routing performance.

fixed nodes in our simulations, and 50 mobile nodes. The three

server nodes, nodes 30–32, are the fixed nodes at the centre of

the simulation arena. The fixed nodes in the simulation provide

stable links in the network which the routing protocols could

exploit. SAMPLE’s configurable parameters, see Section III-G,

have been tuned to provide improved performance for this sce-

nario, see [23] for more details. Fig. 10 shows the variation in

performance of the three routing protocols as the number of

clients in the network is increased. For these figures the packet

size sent by clients was kept fixed at 64 bytes, sent three times

per second. Fig. 9 shows the same experiment, this time with

512 byte packets. Offered Throughput is used in both figures to

enable comparison of the results.

As the number of clients in the network is increased, the of-

fered throughput to the routing protocols is increased. This in

turn increases the level of packet loss and the amount of con-

tention that the media access control (MAC) protocol must deal

with. This increased congestion increases the number of failed

MAC unicasts in the network. Figs. 8 and 9 show that this in-

creased packet loss results in lower throughput and packet de-

livery ratios in AODV and DSR, but that SAMPLE is able to

maintain high throughput and packet delivery ratios with high

levels of packet loss.

In [29], it was demonstrated that for multihop 802.11 net-

works, the achievable throughput is significantly less than

the transmission rate of the radio interfaces. The maximum

achievable data throughput in an 802.11 ad hoc network is

approximately 0.25 Mb/s (which [29] achieved using 1500 byte

packets). Fig. 10 shows that SAMPLE manages to approach

this limit in this scenario. This shows experimentally that using

CRL, SAMPLE can meet the system optimization criteria

of maximizing network throughput in the metropolitan area

MANET scenario.

C. Discussion of Results

The results presented in the previous section show that AODV

and DSR can only meet our routing optimization criteria when

their assumptions of perfect radio links and a random network

topology hold, see Fig. 5. SAMPLE, however, can meet or ap-

proach many of its system optimization goals in a changing

DOWLING et al.: USING FEEDBACK IN COLLABORATIVE REINFORCEMENT LEARNING 369

Fig. 8. This experiment shows the performance of the protocols in the metropolitan area MANET scenario with varying load of 64 byte packets. AODV and DSR
cannot adapt their routing behavior to favor routes over stable links, instead preferring the shortest path from source to destination. In SAMPLE, positive feedback
in link selection by routing agents means that the routing behavior of agents converges on the stable network links in the environment. SAMPLE maintains a
near-optimal delivery ratio and using a minimal number of transmissions even at high offered throughput for 802.11 MANETs. (a) Delivery ratio, (b) Throughput.

Fig. 9. This experiment shows the performance of the protocols in the metropolitan area MANET scenario with varying load of 512 byte packets. As in Fig. 8,
routing agents in SAMPLE adapt their routing behavior to use stable routes, resulting in superior performance to AODV and DSR as the offered throughput is
increased. (a) Delivery ratio. (b) Throughput.

MANET environment, as can be seen in maximizing network

throughput in Fig. 10, minimizing the number of transmissions

per packet sent in Figs. 5, 6, 8, and 9 and maximizing the ratio

of delivered packets to dropped packets in Figs. 5 and 8.

We believe that the SAMPLE protocol performs better than

AODV and DSR under changing and adverse network condi-

tions for a number of reasons. First, in congested networks,

or when suffering from interference, all links will have less

than 100% reliability. In this situation, AODV and DSR gen-

erate increased routing traffic in response to dropped packets

(Fig. 8, for example, shows a clear increase in traffic as con-

gestion increases). By learning that not every dropped packet

is not necessarily a broken link, SAMPLE avoids generating

a large number of routing packets. Second, the retransmission

of failed unicast packets in 802.11 does not change route costs

for AODV and DSR, since their route costs are based on a

hop-count metric [20], but in SAMPLE a failed unicast updates

our state transition model for the network link. Nodes advertise

changes in route costs (values) to neighboring nodes, making

it less likely that the link will be chosen in the future. This col-

laborative feedback enables routing agents to adapt their routing

behavior to use more optimal routes to the destination. Third, in

the metropolitan area MANET environment, there are a subset

of the links in the network that are stable. In SAMPLE, the state

transition models help identify the stable links in the network.

Collaborative feedback adapts routing agent behavior to favor

paths with stable links, producing the emergent stable routes in

the network. A discrete model of network links, however, does

not allow differentiation between multiple available links in this

manner. Finally, in our experiments, the on-demand and oppor-

tunistic transfer of routing information (advertisement) is an

effective way to reduce the amount of control traffic generated

in the network. SAMPLE produces much fewer route discovery

and route maintenance packets than AODV and DSR.

370 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 35, NO. 3, MAY 2005

Fig. 10. At a varying load, 512 byte packets, SAMPLE delivers a data throughput of up to 200 Kb/s. This throughput approaches the theoretical limit of the
throughput achievable in a multihop 802.11 mobile ad hoc network scenario.

V. RELATED WORK

CRL was inspired by ideas from RL and swarm intelli-

gence algorithms. Ant colony optimization (ACO) [6] defines

a class of heuristic algorithms for solving DOPs and has a

feedback mechanism similar to CRL, where agents learn from

the successes of their neighbors. Positive feedback is provided

by stigmergic pheromone trails, where one ant choosing an

option increases the chance of other ants choosing that option

in the future. However, ACO algorithms can easily converge to

suboptimal solutions if the positive feedback is not carefully

controlled. Similar to the decay model in CRL, an ACO algo-

rithm can also include a pheromone decay procedure, in which

the intensity of the pheromone trails decreases automatically

over time.

There has also been some previous research in the use of

reinforcement learning for multiagent systems and network

routing, Barto’s Elevator Group Control example [30] shows

how multiple reinforcement learning agents can collaborate

on a task with shared objectives using a global reinforcement

signal, Q-Routing [31] for fixed networks showed how RL can

provide superior routing performance to shortest-hop count

protocols in congested fixed networks, Mariano presents a

Distributed Q-Learning Algorithm that has been extended for

multiobjective optimization problems [21] and team-partitioned

opaque-transition RL (TPOT-RL) [32] describes a decentral-

ized routing protocol. TPOT-RL’s aim to provide network

routing in decentralized environments most closely resembles

SAMPLE’s goals. It partitions value functions and introduces

the notion of action-dependent feature spaces to guide behavior

in uncertain environments, but similar to the other protocols,

the routing experiments performed were based on a simple

network topology.

VI. CONCLUSION AND FUTURE WORK

We have shown experimentally in this paper that CRL has

been used to build a complex adaptive distributed system,

SAMPLE, that can adapt agent behavior in a changing envi-

ronment to meet system optimization goals with agents using

only local state information. CRL provides feedback models

that map changes in an agent’s environment and neighbors

onto internal changes in the agent’s policy using distributed

model-based reinforcement learning. Positive and negative

feedback are the key mechanisms that adapt an agent’s be-

havior to both its neighbors and a changing environment. The

problem of convergence to suboptimal solutions occurs in

CRL and is an area that requires further research, however, we

believe that in a constantly changing environment the ability of

a distributed system to adapt its structure or behavior to more

optimal configuration in a timely manner is as important a

metric for evaluating the performance of the system as eventual

convergence on some transient, optimal behavior. One of the

limitations of CADS in general, compared with traditional

distributed systems design techniques, is that strong system

properties cannot be deterministically guaranteed using self-or-

ganizing techniques such as CRL. Also, given a top-down

system-level optimization requirement or a complex adaptive

behavior specification, there is no well defined process for the

discretization of system optimization problems and the con-

figuration of the models that will produce the required system

behavior.

Future work on the SAMPLE protocol will involve tuning its

configuration parameters in order to determine a set of reason-

able default values for common MANET environments. We will

also investigate whether improvements measured in tuning the

configuration parameters can be learned online by the routing

DOWLING et al.: USING FEEDBACK IN COLLABORATIVE REINFORCEMENT LEARNING 371

protocol. This is a difficult problem as the system optimiza-

tion criteria, such as offered throughput, that are used to eval-

uate changes in parameter tunings are not available to individual

nodes during system operation. Finally, an interesting property

of SAMPLE is that, as a result of the decay of routing infor-

mation, there is a requirement for a continual critical mass of

routing traffic to maintain knowledge of system structure, sim-

ilar to dissipative systems [5].

Future work on CRL will involve applying the model to other

optimization problems in distributed systems, such as load bal-

ancing in peer-to-peer networks. One challenging problem in

applying CRL to fixed network systems is the implementation

strategy for advertisement. Further research is required to un-

derstand how the increased cost of advertisement will negatively

impact the rate of collaborative learning and consequently the

rate at which positive feedback accelerates adaptive changes in

system structure or behavior.

Finally, we believe that engineering complex adaptive dis-

tributed systems represents a challenging new field of research

and that CRL provides useful feedback models that can be used

to build systems that adapt and optimize system behavior in dy-

namic, decentralized environments.

REFERENCES

[1] J. Dowling, E. Curran, R. Cunnhingham, and V. Cahill, “Collaborative
reinforcement learning of automatic behaviour,” in Proc. 2nd Int. Work-

shup Self-Adaptive Automatic Comput. Syst., 2004, pp. 700–703.
[2] A. Montresor, H. Meling, and O. Babaoglu, “Toward self-organizing,

self-repairing, and resilient distributed systems,” Future Directions Dis-

tributed Comput., vol. LNCS 2584, pp. 119–126, 2003.
[3] S. Camazine, J. Deneubourg, N. Franks, J. Sneyd, G. Theraulaz, and

E. Bonabeau, Self-Organization in Biological Systems. Princeton, NJ:
Princeton Univ. Press, 2003.

[4] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence: From

Natural to Artificial Systems. New York: Oxford Univ. Press, 1999.
[5] I. Prigogine and I. Stengers, Order Out of Chaos. New York: Bantam,

1984.
[6] M. Dorigo and G. Di Caro, “The ant colony optimization meta-

heuristic,” New Ideas Optim., pp. 11–32, 1999.
[7] A. Montresor, H. Meling, and O. Babaoglu, “Load-balancing through a

swarm of autonomous agents,” in Proc. 1st Workshop Agent Peer-to-Peer

Syst., 2002, pp. 125–137.
[8] G. W. Flake, The Computational Beauty of Nature. Cambridge, MA:

MIT Press, 2000.
[9] R. Sutton and A. Barto, Reinforcement Learning. Cambridge, MA:

MIT Press, 1998.
[10] L. Kaelbling, M. Littman, and A. Moore, “Reinforcement learning: A

survey,” J. Artif. Intell. Res., vol. 4, pp. 237–285, 1996.
[11] C. Watkins, “Learning from delayed rewards,” Ph.D. dissertation, King’s

College, Cambridge, U.K., 1989.
[12] A. Moore and C. Atkeson, “Prioritized sweeping: Reinforcement

learning with less data and less time,” Mach. Learning, vol. 13, pp.
103–130, 1993.

[13] K. Doya, K. Samejima, K. Katagiri, and K. Kawato, “Multiple
model-based reinforcement learning,” Neural Comput., vol. 14, no. 6,
pp. 1347–1369, 2002.

[14] M. Appl and W. Brauer, “Fuzzy model-based reinforcement learning,”
in Proc. 3rd Eur. Symp. Intell. Tech., 2000, pp. 211–223.

[15] M. Atighetchi, P. Partha, C. Jones, P. Rubel, R. Schantz, J. Loyall, and J.
Zinky, “Building auto-adaptive distributed applications: The quo-apod
experience,” in Proc. 23rd Int. Conf. Distributed Comput. Syst. Work-

shops, 2003, pp. 104–110.
[16] R. Bellman, Dynamic Programming. Princeton, NJ: Princeton Univ.

Press, 1957.
[17] A. Mikler, V. Honavar, and J. Wong, “Autonomous agents for coordi-

nated distributed parameterized heuristic routing in large dynamic com-
munication networks,” J. Syst. Software, vol. 56, no. 3, pp. 231–246,
2001.

[18] Ad Hoc on Demand Distance Vector (AODV) Routing, C. Perkins.
(1997, Nov.). [Online]. Available: http://citeseer.nj.nec.com/ar-
ticle/perkins99ad.html

[19] D. Johnson, D. Maltz, and J. Broch, “DSR: The dynamic source
routing protocol for multihop wireless ad hoc networks,” in Ad Hoc

Networking. Reading, MA: Addison-Wesley, 2001, pp. 139–172.
[20] E. Curran and J. Dowling, “SAMPLE: An on-demand probabilistic

routing protocol for ad hoc networks,” Tech. Rep., Dept. Comput. Sci.,
Trinity College, Dublin, Ireland, 2004.

[21] C. Mariano and E. Morales, “A new distributed reinforcement learning
algorithm for multiple objective optimization problems,” in Proc. Adv.

Artif. Intell., Int. Joint Conf., 7th Ibero-Amer. Conf. Artif. Intell., 15th

Brazilian Symp. AI, 2000, pp. 290–299.
[22] H. Lundgren, E. Nordstrom, and C. Tschudin, “The gray zone problem

in ieee 802.11b based ad hoc networks,” ACM SIGMOBILE Mobile

Comput. Commun. Rev., vol. 6, no. 3, pp. 104–105, 2002.
[23] E. Curran, “Swarm: Cooperative reinforcement learning for routing in

ad hoc networks,” M.Sc. thesis, Dept. Comput. Sci., Trinity College,
Dublin, Ireland, 2003.

[24] G. Gaertner and V. Cahill, “Understanding link quality in 802.11 mo-
bile ad hoc networks,” IEEE Internet Comput., vol. 8, no. 1, pp. 55–60,
Jan./Feb. 2004.

[25] IEEE Std. 802.11: Wireless LAN Media Access Control (MAC) and
Physical Layer (PHY) Specifications (1999). [Online]. Available:
http://standards.ieee.org/catalog/olis/lanman.html

[26] NS-2 Network Simulator, 2003. Information Sciences Institute, Software
Package.

[27] G. Flores-Lucio, M. Paredes-Ferrare, E. Jammeh, M. Fleury, and M.
Reed, “Opnet-modeler and ns-2: Comparing the accuracy of network
simulators for packet-level analysis using a network testbed,” in Proc.

Int. Conf. Simul., Model., Optim., vol. 2, 2003, pp. 700–707.
[28] J. Broch, D. Maltz, D. Johnson, J. Hu, and J. Jetcheva, “A performance

comparison of multihop wireless ad hoc network routing protocols,” Mo-

bile Comput. Netw., pp. 85–97, 1998.
[29] J. Li, C. Blake, D. De Couto, H. Lee, and R. Morris, “Capacity of ad hoc

wireless networks,” in Proc. 7th ACM Int. Conf. Mobile Comput. Netw.,
2001, pp. 61–69.

[30] R. Crites and A. Barto, “Elevator group control using multiple reinforce-
ment learning agents,” Mach. Learning, vol. 33, no. 2/3, pp. 235–262,
1998.

[31] M. Littman and J. Boyan, “A distributed reinforcement learning scheme
for network routing,” in Proc. Int. Workshop Applicat. Neural Netw.

Telecommun., 1993, pp. 45–51.
[32] P. Stone, “TPOT-RL applied to network routing,” in Proc. 17th Int. Conf.

Mach. Learning, 2000, pp. 935–942.

Jim Dowling received the B.A. and Ph.D. degrees
in computer science from Trinity College, Dublin,
Ireland.

He is a Lecturer in the Department of Computer
Science, Trinity College. He manages national
and international research projects, including the
Digital Business Ecosystem IST project and a
national project on software licensing for pervasive
computing applications. His research interests are
primarily in the areas of self-organizing distributed
systems, automatic computing, and pervasive

computing.

Eoin Curran received the B.A. degree in math-
ematics and the M.Sc. degree in networks and
distributed systems from Trinity College, Dublin,
Ireland, in 2002 and 2003, respectively.

He is currently a freelance Software Developer and
Consultant, based out of Trinity College.

372 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 35, NO. 3, MAY 2005

Raymond Cunningham received the B.A. degree
in mathematics and the M.Sc. and Ph.D. degrees
in computer science fdrom Trinity College, Dublin,
Ireland.

He is a Research Fellow in the Department of
Computer Science, Trinity College. He has published
a number of peer-reviewed papers in the distributed
systems area related to research carried out during
both his M.Sc. and Ph.D. degrees. Generally, his
research interests cover the area of mobile dis-
tributed systems, distributed systems optimization

techniques, and adaptive middleware.

Vinny Cahill received the B.A., M.Sc., and Ph.D. de-
grees from Trinity College, Dublin, Ireland.

He is an Associate Professor in the Department
of Computer Science, Trinity College, where his
research addresses middleware and programming
language support for distributed computing. He
has lectured at Trinity College since 1988 and
was elected a Fellow of the College in recognition
of research achievement in 1999. He is currently
investigating dependable sentient computing for
applications, ranging from intelligent vehicles to

outdoor smart spaces.

	toc
	Using Feedback in Collaborative Reinforcement Learning to Adapti
	Jim Dowling, Eoin Curran, Raymond Cunningham, and Vinny Cahill
	I. I NTRODUCTION
	II. C OLLABORATIVE R EINFORCEMENT L EARNING
	A. Decomposing System Optimization Problems

	Fig.€1. Causally connected states between the MDPs in agents A,
	B. Heterogeneous Environments
	C. Model-Based Reinforcement Learning
	D. Distributed Model-Based Reinforcement Learning
	E. Advertisement
	F. Dynamic Environments and Decay

	Fig. 2. In CRL, an agent, n_{i}, takes an action at time t,
	G. CRL Algorithm
	H. Adaptation and Feedback in Distributed Model-Based Reinforcem
	III. SAMPLE: MANET R OUTING U SING CRL
	A. Routing and System Optimization
	B. SAMPLE Routing Protocol
	1) Routing Action Selection in SAMPLE: In SAMPLE, for each of th

	TABLE I SAMPLE P ACKET F ORMAT . P ACKETS H AVE O RIGIN AND D ES
	C. State Transition Model for Network Links
	D. Connection Costs for Network Links

	Fig.€3. Routing information in SAMPLE is updated by routing acti
	E. Advertisement and Decay in SAMPLE
	F. SAMPLE as a CRL System

	Fig.€4. SAMPLE MDP. Each agent's MDP has three states: B (pack
	G. Adaptation and Feedback in SAMPLE
	IV. E XPERIMENTAL R ESULTS AND D ISCUSSION

	Fig.€5. Comparison of SAMPLE with AODV and DSR with no packet lo
	A. Adapting to Packet Loss in a Random Network
	B. Adapting to Stable Links in a Metropolitan Area Manet

	Fig.€6. In this experiment, packet loss is introduced into the r
	Fig.€7. Simulation arena, showing fixed node positions (transmis
	C. Discussion of Results

	Fig.€8. This experiment shows the performance of the protocols i
	Fig.€9. This experiment shows the performance of the protocols i
	Fig.€10. At a varying load, 512 byte packets, SAMPLE delivers a
	V. R ELATED W ORK
	VI. C ONCLUSION AND F UTURE W ORK
	J. Dowling, E. Curran, R. Cunnhingham, and V. Cahill, Collaborat
	A. Montresor, H. Meling, and O. Babaoglu, Toward self-organizing
	S. Camazine, J. Deneubourg, N. Franks, J. Sneyd, G. Theraulaz, a
	E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence: Fr
	I. Prigogine and I. Stengers, Order Out of Chaos . New York: Ban
	M. Dorigo and G. Di Caro, The ant colony optimization meta-heuri
	A. Montresor, H. Meling, and O. Babaoglu, Load-balancing through
	G. W. Flake, The Computational Beauty of Nature . Cambridge, MA:
	R. Sutton and A. Barto, Reinforcement Learning . Cambridge, MA:
	L. Kaelbling, M. Littman, and A. Moore, Reinforcement learning:
	C. Watkins, Learning from delayed rewards, Ph.D. dissertation, K
	A. Moore and C. Atkeson, Prioritized sweeping: Reinforcement lea
	K. Doya, K. Samejima, K. Katagiri, and K. Kawato, Multiple model
	M. Appl and W. Brauer, Fuzzy model-based reinforcement learning,
	M. Atighetchi, P. Partha, C. Jones, P. Rubel, R. Schantz, J. Loy
	R. Bellman, Dynamic Programming . Princeton, NJ: Princeton Univ.
	A. Mikler, V. Honavar, and J. Wong, Autonomous agents for coordi
	Ad Hoc on Demand Distance Vector (AODV) Routing, C. Perkins . (1
	D. Johnson, D. Maltz, and J. Broch, DSR: The dynamic source rout
	E. Curran and J. Dowling, SAMPLE: An on-demand probabilistic rou
	C. Mariano and E. Morales, A new distributed reinforcement learn
	H. Lundgren, E. Nordstrom, and C. Tschudin, The gray zone proble
	E. Curran, Swarm: Cooperative reinforcement learning for routing
	G. Gaertner and V. Cahill, Understanding link quality in 802.11

	IEEE Std. 802.11: Wireless LAN Media Access Control (MAC) and Ph
	NS-2 Network Simulator, 2003. Information Sciences Institute, So
	G. Flores-Lucio, M. Paredes-Ferrare, E. Jammeh, M. Fleury, and M
	J. Broch, D. Maltz, D. Johnson, J. Hu, and J. Jetcheva, A perfor
	J. Li, C. Blake, D. De Couto, H. Lee, and R. Morris, Capacity of
	R. Crites and A. Barto, Elevator group control using multiple re
	M. Littman and J. Boyan, A distributed reinforcement learning sc
	P. Stone, TPOT-RL applied to network routing, in Proc. 17th Int.

