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Abstract

 The spinning of polymeric fibers, the processing of numerous foodstuffs and the
peel & tack characteristics of adhesives is associated with the formation, stability and,
ultimately, the longevity of thin fluid ‘strands’. This tendency to form strands is usually
described in terms of the tackiness of the fluid or by heuristic concepts such as
‘stringiness’ [Lakrout et al., J. Adhesion 69, 307 (1999)]. The dynamics of such processes
are complicated due to spatially and temporally non-homogeneous growth of extensional
stresses, the action of capillary forces and the evaporation of volatile solvents. We
describe the development and application of a simple instrument referred to as a
microfilament rheometer (MFR) that can be used to readily differentiate between the
dynamical response of different pressure-sensitive adhesive fluid formulations. The
device relies on a quantitative observation of the rate of extensional thinning or ‘necking’
of a thin viscous or viscoelastic fluid filament in which the solvent is free to evaporate
across the free surface. This high-resolution measurement of the radial profile provides a
direct indication of the ultimate time to break-up of the fluid filament.  This critical time
is a sensitive function of the rheological properties of the fluid and the mass transfer
characteristics of the solvent, and can be conveniently reported in terms of a new
dimensionless quantity we refer to as a Processability parameter P.  We demonstrate the
usefulness of this technique by presenting our results in the form of a case study in which
we measure the visco-elasto-capillary thinning of slender liquid filaments for a number of
different commercial polymer/solvent formulations and relate this to the reported
processing performance of the materials.  We also compare the MFR observations with
the prediction of a simple 1D theory derived from the governing equations that model the
capillary thinning of an adhesive filament.

Keywords: Capillary thinning, Filament stretching, Giesekus Model, Micro-filament
Rheometer, Pressure Sensitive Adhesives, Processability, Spinnability, Stringiness.
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1. Introduction

Many important industrial processes involve the formation, elongation and ultimate

breakage of thin liquid filaments or threads.  Examples include the spinning of polymeric

fibers (Ziabicki, 1976; Larson, 1983; Pearson, 1985), the processing of numerous

foodstuffs (Padmanabhan, 1995) and the peel & tack characteristics of adhesives (Gupta,

1991; Benyahia et al., 1997).  For fluids exhibiting a complex rheological response such

as polymer solutions & melts, emulsions, suspensions of rigid rods or micellar fluids it is

recognized that the rheological quantity of interest in understanding the dynamical

characteristics of these processes is the extensional viscosity (Tanner, 1985). In particular,

the transient extensional viscosity η ε+ & ,0 tb g  is a material function that characterizes the

dynamical growth of the tensile stresses within the bulk of the fluid thread which resist

the action of capillary forces and gravitational drainage attempting to break the filament.

For simple Newtonian fluids, Trouton (1906) was first to show that the

extensional viscosity is simply a constant, equal in magnitude to three times the zero

shear rate viscosity, such that η ε η+ =& ,0 03tb g  (Tanner, 1985). Consequently no new

material properties need to be measured, and the experimental and theoretical

understanding of the visco-capillary break-up process in a number of different regimes is

now well understood (see the recent review of Eggers, 1997).  For non-Newtonian fluids

with an underlying microstructure, however, constitutive modeling shows that the

extensional viscosity is a nonlinear function of both the constant imposed elongation rate,

&ε 0 , and the elapsed time or, equivalently, the total elapsed Hencky strain ε ε= &
0t  of the

deformation. Measurements of this material function can be performed in specially

constructed devices (see for example Gupta & Sridhar, 1988; James and Walters, 1993)

and the resulting data can be used to extract values of the nonlinear model parameters

that arise in the appropriate constitutive equation. The resulting model can then be used

to predict the response of the non-Newtonian fluid in a more complex flow of processing

interest.  Connelly et al. (1983), Derail et al. (1997) and Piau et al. (1997) and, more

recently, Christensen (1998) have shown how such measurements of the transient

extensional viscosity in model pressure sensitive adhesives can be used to predict the peel

force subsequently measured in a standard peeling experiment.
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In realistic commercial processes such as roll-coating of viscoelastic films, peel

tests of adhesive strips, or the break-up of fluid filaments, the deformation experienced

by a fluid element is neither spatially nor temporally homogeneous and hence the

deformation rate & ,ε x ta f becomes a function of position and time. To further complicate

the issue, the presence or creation of a free surface may result in either mass transfer (e.g.

the evaporation of a volatile solvent) or heat transfer (e.g. cooling of the fluid) which

further change the rheological properties of the material being processed. These two

physical phenomena are strongly coupled as a result of the highly nonlinear nature of the

conservation equations describing the flow and deformation of the polymeric material

being processed. For example, the evaporation of a volatile solvent from a polymer

solution will result in an increase in the viscosity and relaxation time and thus modify

critical processing characteristics such as the rate of thinning of a thread or leveling of a

film. This change in the rate of creation (or elimination) of surface area can, in turn,

further modify the mass transfer from the fluid sample. Several commercial examples of

such processes are depicted schematically in figure 1.

The performance characteristics of such processes can be strongly dependent on

the thickness uniformity of the final coating or related to the nature of instability that

arise during the coating process. Several studies (Acrivos et al. (1960), Lawrence & Zhou

(1991), Britten & Thomas (1992)) show how dramatically the non-Newtonian behavior

of fluids (such as paints or photoresists) can lead to radially varying thicknesses in the

final coatings. Recently, Eres et al. (1999) and Howison et al. (1997) presented

mathematical models of a drying paint film on a two-dimensional, horizontal substrate

using classical lubrication theory. On the experimental side, Birnie and Manley (1997)

performed laser interferometry of solvent thinning behavior on spinning silicon wafers to

yield plots of solvent thickness evolution, whilst the extensional and adhesion

characteristics of a pressure sensitive adhesive have been measured by Ferguson et al.

(1997) and Piau et al. (1997). Experiments described by Overdiep (1986) show that some

solvent based high-gloss alkyd paints can exhibit more unusual behavior as they dry.

Recent experiments by Kojima et al. (1995) show the same behavior in waterborne

coatings with a high volatility co-solvent. Very few experimental studies have focused on

quantifying the interaction of the non-Newtonian extensional viscosity and associated
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mass (or heat) transfer indicated in figure 1. However, all the aforementioned works

support the general observation that liquid coating processes are rather complex and there

is no simple theoretical or experimental way to predict the processability of adhesives or

their tendency to exhibit flow instability (Coyle et al. (1990)).

 In the present work we focus on one particular aspect of the final process

depicted in figure 1(d); that is the formation and stability of thin fluid ‘strands’ during a

process such as forward roll-coating of a liquid adhesive film.  This tendency to form

strands is poorly quantified at present and is usually described in terms of the tackiness of

the fluid or by heuristic concepts such as ‘stringiness’ (Lakrout et al., 1999; Zosel, 1998;

Wang et al., 1996; Taneya et al., 1992; Urahama, 1989). In the present paper, we describe

a simple instrument referred to as a microfilament rheometer (MFR) that can be used to

readily differentiate between the response of different adhesive fluid formulations. The

device relies on a quantitative observation of the rate of extensional thinning of a

viscoelastic fluid filament in which solvent is free to evaporate across the free surface.

This measurement of the radial profile provides a direct indication of the ultimate time to

break-up of the fluid filament. We demonstrate the technique’s usefulness by presenting

our results in the form of a case study in which we measure the visco-elasto-capillary

thinning of slender liquid filaments for a number of different polymer/solvent

formulations, We contrast these observations in our microfilament rheometer with

conventional experimental studies that effectively isolate and measure individually either

the mass transfer characteristics (e.g. using thermogravimetric analysis, TGA) or the

nonlinear viscoelastic response (e.g. using steady shear rheometry).  As we show, such

data alone cannot successfully differentiate between the processing characteristics of the

different fluids.

In the next section, we describe our experimental approach and show how simple

filament stretching experiments can predict important processing features of adhesives.

This leads to an explanation of our experimental technique and the results which were

obtained for a series of adhesives. We then outline a simple 1D theory derived from the

governing conservation equations for mass and momentum that models the visco-elasto-

capillary thinning of an adhesive filament. The final section is devoted to a brief

discussion of the technique’s applicability to other situations.
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2. Experiments

Table 1 lists 7 pressure sensitive adhesive formulations along with solvent

compositions. The samples were all clear adhesives available commercially which were

obtained by one of us (PW) for analysis. For convenience and confidentiality we refer to

these as adhesive samples A1-A7. As a result of proprietary concerns the specific

information regarding composition and solvent compatibility in these adhesives is not

publishable. However such information can be obtained upon request from the authors.

Such information is peripheral to our main objective of describing a new tool and method

of analysis for understanding the “processability” of complex materials.

The seven adhesives used in this work were test-processed in an actual roll-

coating device to investigate coating uniformity and effectiveness. It was found that the

adhesives A5 & A7 developed spatial instabilities (known as ribbing instabilities in the

literature) instantaneously and it was not possible to use roll-coating devices for film

production. These adhesives are referred to as exhibiting “bad” processability and this

propensity to exhibit “stringing” is indicative of a high extensional viscosity. On the other

hand, adhesives A2, A3 & A6 were processed without any air bubbles or instability and

thus exhibit “good” processability. Finally, it was found that certain adhesives such as A1

& A4 could be processed for a period of time but eventually developed instabilities.

These materials of intermediate properties to the two classes listed above were thus rated

as exhibiting “ok” adhesives.

Since all samples contained volatile solvents, thermogravimetric measurements

were performed first.

2.1 Drying tests

Samples of pressure sensitive adhesives consisted of a non-volatile resin/polymer

dissolved in a volatile solvent. All samples exhibited evaporation of the volatile solvent.

A thermogravimetric analyzer (DSC/TGA, Model 2970) was used to monitor the solvent

loss as a function of time. All TGA experiments were performed at 24oC. The drying was

assumed to be isothermal and one-dimensional with negligible forced convection. Figure

2 shows a portion of the drying profiles of the adhesives. During the first 15 minutes of
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the thermogravimetric analysis, the drying process was extremely fast, and approximately

50% of the solvent evaporated. The sample denoted A6 dried fastest, whilst sample A5

exhibited the slowest rate of solvent loss. After about an hour, A6 and A7 had dried

completely but samples such as A2 and A1 retained about 10% of the solvent.

The evaporation of a solvent from a pressure sensitive adhesive is governed by

internal diffusion and by the interfacial mass transport between the adhesive and

surrounding medium. If diffusion of solvent from the bulk of an adhesive to the surface is

fast, then the process is mass transfer limited and the solvent concentration c ta f  in the

adhesive can be estimated by

dc
dt

h A
V

c
c
V

dV
dt

m= − − (1)

where A  andV  are the surface area and volume of the TGA sample, respectively, and hm

is the mass transfer coefficient (with units of m/s) of the solvent at the sample surface.

The third term −c d V dtln  can be shown to be an order of magnitude smaller than the

other two terms, hence it is ignored in further analysis. By integrating equation (1) it can

be seen that the mass fraction of solvent decreases exponentially in time with a time

constant ~ V h Amb g . The solid lines in figure 2 are the fits of an exponential decay in

solvent concentration described by equation (1). A nonlinear regression method based on

the Levenberg-Marquardt algorithm was used to extract the mass transfer coefficients,

hm , for the adhesives. For the sake of clarity, we only show three (A1, A2 & A6) of the

fitted exponential curves. The initial solvent mass fractions along with the mass transfer

coefficients of all the adhesive samples are listed in Table 1. With the exception of A5

and A1, simple exponential curves fit the experimental data well. The maximum error in

mass transfer coefficients was found to be about 3%. The initial stages of the evaporation

can be modeled even more accurately if the initial solvent concentration, c0 , is treated as

an additional fitting parameter rather than a constant value as specified by supplier,

however we have not explored this further in the present work.

2.2 Rheological characterization and model fits

A TA Instruments AR1000N controlled stress rheometer with normal force

measurement capability was used to perform measurements of the viscoelastic properties
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of the materials in steady shear and small amplitude oscillatory shear flow. Since all

samples showed a tendency to dry out in the rheometer, a 4cm cone-and-plate fixture

with an integral solvent trap and cover was used together with the appropriate solvent.

Figures 3 and 4 present the steady shear viscosity, η γ&a f , and first normal stress

coefficient, Ψ1
&γa f, of all adhesive samples at 24oC. Figure 3 shows that most of the

adhesive samples exhibit shear thinning in the viscosity η γ&a f  beyond applied shear rates

of 10s-1. The adhesives are viscoelastic and the first normal stress coefficient Ψ1
&γa f shear

thins monotonically throughout the entire range over which data can be obtained.

Nonlinear rheological parameters were determined by fitting the steady shear

viscosity and first normal stress coefficient data to a single mode Giesekus model. All of

the pressure sensitive adhesive formations considered here are concentrated polymer

systems in organic solvents and we may expect a nonlinear network model such as the

Giesekus model to predict an accurate description of the rheological properties (Yao et al.

1998, Li et al. 1998). We select the Giesekus model over other nonlinear differential

constitutive equations such as the Phan-Thien-Tanner model since it contains only one

nonlinear parameter which may be fully determined from shear flow experiments. Having

determined all of the model parameters in linear viscoelastic and steady shear tests, it is

then possible to use this model in a predictive capacity to see how well it describes a

spatially and temporally nonhomogeneous flow such as elasto-capillary breakup.

In a single-mode formulation of this model, the solvent contribution ττ s  and the

polymeric contribution ττ p  to the extra stress are defined as (Bird et.al, 1987)

ττ ττ ττ= +s p (2)

ττ s s

T== ∇∇ ++ ∇∇η v vb ge j (3)

ττ
ττ

ττ ττ ττ ττ ττp
p

p

T

p p
p

p p p

T

t
++

∂∂

∂∂
++ ⋅⋅ ∇∇ −− ∇∇ ⋅⋅ −− ⋅⋅ ∇∇

F
HG

I
KJ ++ ⋅⋅ == ∇∇ ++ ∇∇λ

αλ
η

ηv vb g n s b ge jv v v (4)

where ηs  is the solvent contribution to viscosity. There are three additional independent

physical parameters in equation (4): the polymer contribution to the viscosity, η p; the

polymer relaxation time λ ; and the dimensionless mobility factor α  associated with

anisotropic effects. In the limit α → 0, the model reduces to the Oldroyd–B constitutive
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model. Equations (2)-(4) can be solved analytically for steady simple shear flow (see, e.g.

Bird et. al (1987)) and the resulting predictions for the material functions η γ&a f , Ψ1
&γa f

can be fitted to the experimental data by adjusting the values of α , η p and λ  using an

error minimization routine in the MATLAB numerical package. The solid lines in Figure

3 and 4 show model fits to the steady shear viscosity and normal stress coefficient data.

For the sake of clarity, we have again shown representative fits for only three (A1, A2

and A6) of the adhesive formulations. The resulting parameter values for the single mode

optimal fits of the single-mode Giesekus model to the experimental data are given in

Table 2. Additional measurements of small amplitude oscillatory data were also found to

be in fair agreement with the model fits, within the obvious inherent limitations of a

single value for the relaxation time λ . Using a multiple relaxation time spectrum

improves the description of the linear viscoelastic data but does not significantly improve

the fit to the steady shear data. Furthermore the introduction of additional degrees of

freedom increases the complexity of our analysis in §3, without enhancing our

understanding of the physical processes involved. We therefore proceed with a single

mode analysis although this can be extended in a straightforward manner if so desired.

Once the model parameters α , η p, and λ  are determined, the transient extensional

rheological response predicted by the single mode Giesekus constitutive equations is

fixed.

From the viscosity and normal force data alone it would seem that the four

samples with the highest viscosity might well be the ones that process poorly, but the

results from actual testing under coating conditions ranked the samples as seen in the

Table 1.  It is clear then that the “processability” of a sample cannot be predicted by

steady and oscillatory shear flow data. Specifically, shear rheology fails to predict under

what conditions samples were likely to perform well and which were likely to fail. Hence

it is likely that some other parameter such as surface tension (interfacial energy) or

elasticity might discriminate more effectively.

To express the relative importance of surface tension (listed in Table 2), the

viscometric data can be converted to a dimensionless Capillary number,

Ca R R= =ηγ σ τ γ σ& &a f  and plotted as a function of shear rate (figure 5). Here, the

characteristic length scale R  is taken to be the cone radius and σ  is the surface tension of
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the adhesive sample. Even though the surface tension is a function of solvent

concentration, its dependence is rather weak compared to the dependence of viscosity on

solvent concentration. The surface tension of these concentrated polymer/solvent systems

is assumed to be a linear function of resin concentration (Ober et al. (1983)). The surface

tension is then given by σ σ σ= − +r sx x1a f , where σ r  and σ s are the surface tension of

pure resin and pure solvent, respectively. Typical values of surface tension for pure

organic solvents are 24 dynes/cm and for the pure polymeric resins are 30 dynes/cm.

Given the close proximity of these values, it is reasonable to approximate surface tension

as a constant throughout the process. When expressed as a capillary number, the

viscometeric data orders the samples in the same arrangement as the viscosity alone and

it is clear that the processability of a sample can not be predicted in this way.

The relative importance of elastic effects in the adhesive liquids can be expressed

in terms of a stress ratio or Weissenberg numberWi N= 1 122& &γ τ γa f a f . This dimensionless

ratio of the first normal stress difference to the shear stress generated by the viscoelastic

adhesive under steady shearing deformation is shown in figure 6. As can be seen in

figure 6 the material responses are now separated into distinct curves and the samples that

consistently fail in the processing tests have the highest Weissenberg numbers at a given

shear rate indicating that the elasticity of the PSA is very important. However, since all of

the curves increase monotonically with &γ , there is no way to estimate a dimensionless

criterion such as a critical Weissenberg number Wecrit beyond which processing of any

chosen fluid formulation will become unstable.

In addition to governing the shear rheology of the test fluids, the values of the

viscoelastic model parameters η λ αp , ,n s given in Table 2 also control the material

response to extensional flows such as imposed stretching and localized necking (Yao et

al. 1998; Hassager et al. 1998). In particular, for Weissenberg numbers Wi = >>λε& .0 5

the steady state extensional viscosity is η ε η η α&b g ≅≅ ++3 2s p and is thus appreciably

different for each fluid. Furthermore, theoretical studies of filament breakup (Renardy

1995, Entov and Hinch 1997) and numerical simulations (Bousfield et al. 1986, Yao et al.

1998) show that the rate of necking in a strongly strain-hardening material with α << 1 is

proportional to 3
1λb g−−
. Hence, at this point we proceed to examine the hypothesis that
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extensional flow properties might be important in understanding the processability of

adhesive materials.

2.3 Filament Stretching experiments

We analyze the capillary thinning of filaments of adhesive samples using a

modified microfilament rheometer, sketched in figure 7. The original design for a Liquid

Filament Rheometer (LFR) was discussed by Bazilevsky et al. (1990) and has been

modified to allow convenient sample injection, control of the surrounding atmospheric

environment and video imaging of the evolving filament profile. Liang and Mackley

(1994) used a liquid filament rheometer to test several solutions of polyisobutylene in

decalin and their data was further analyzed by Entov & Hinch (1997). Recently, Kolte &

Szabo (1999) performed experiments in a new variant of the filament rheometer using a

viscoelastic polymer solution with a non-volatile solvent and showed a good agreement

with numerical simulations of the elastocapillary thinning process. To our knowledge, no

studies investigating the combined effects of capillary thinning and mass transfer have

been published.

The experimental operation of the MFR is rather simple. Initially, a cylindrical

sample is loaded between two circular plates of radii R0 2 97== . mm with initial plate

separation L0 2 06== . mm (such that the initial aspect ratio Λ0 0 0 0 693≡ =L R . ). These

plates are then rapidly separated (£ 0.1 s) to a preset final displacement corresponding to

Λ = 2 358.  by a spring mechanism. The rapid axial separation of the plates thus imparts a

step extensional strain analogous to the step-shear strain experiment in a rheometer. The

precise rate of separation and total time is not important provided that it is fast compared

to any capillary break-up process.  The sample is thereby stretched into an axisymmetric

liquid bridge. The radial profile of the fluid column free surface, R z( ), is not axially

uniform due to the no-slip boundary condition at either plate and is instead “necked” in

the middle. Surface tension subsequently induces a thinning of the filament due to the

non-uniform interfacial curvature, and, provided the filament is sufficiently long, it will

break into two separate domains, one attached to each plate (Gillette and Dyson, 1971;

Slobozhanin and Perales, 1993; Gaudet et al., 1996). The evolution in the mid-filament

diameter can be measured using a CCD laser micrometer until very close to the ultimate
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breakup event. In our experiments, the global behavior of the liquid filament was also

recorded on videotape. The video images were then analyzed on a computer to determine

the mid-filament diameter and the axial profile.

Samples of the pressure sensitive adhesives were loaded through a small hole on

the center of the top plate using a pressurized syringe system. During the loading

procedure, the surrounding air space next to the plates of the MFR was saturated using

the corresponding solvent in the sample. This ensures minimum evaporation of the

solvent prior to the experimental measurement. Only one stretch was performed in each

sample.  Repeatability was verified using freshly loaded samples of each fluid

formulation.

A representative series of images for two samples (A2 & A5) undergoing elasto-

capillary thinning is shown in Figure 8. It is clear that the less viscous and less volatile

sample A2 behaves entirely differently from sample A5 during the filament stretching

process. While the A2 filament breaks in approximately 1.66 sec, the A5 filament does

not break even after 20 minutes. The elasto-capillary breakup process for this material

thus proceeds much more slowly than for the A2 filament.  We also notice that the radial

profiles of the necked regions of the filaments are almost symmetrical about the axial

mid-plane. We can thus safely neglect the effect of gravity (as quantified by the

dimensionless Bond number Bo gR= <ρ σ0
2 1) in the present study, except in the quasi-

static regions near the upper and lower plates whose shapes are determined by a balance

between gravity and capillarity. Figure 9 shows the transient midpoint diameter profiles

for each fluid formulation measured in the micro-filament rheometer. It is clear that the

samples A7 and A5 thin much more slowly compared to other samples. It is interesting to

note that these profiles correspond directly to those fluids which were reported to exhibit

bad processability by the suppliers (see Table 2).  The samples A1 and A4 thin noticeably

faster than A5 and A7 but slower than samples A6, A2 & A3, and were denoted by the

supplier as exhibiting “O.K.” processability. Finally, adhesives A6, A2 and A3 undergo

very rapid visco-elastic thinning and break into two within 1.6 sec. These materials are

the ones rated by supplier as exhibiting “good” processability. The zero shear-rate

viscosity of the adhesive A7 is seven times larger that of A2 or A3 and the typical

capillary time scale t Rcap ~ η σ0 0  for evolution of the filament is thus increased
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accordingly. However, the breakup time for A7 is not seven times longer than A2 or A3.

In fact, filaments of sample A7 never break. Although the shear viscosity may influence

the prediction of “processability” (Chang, 1991), it is clear that a simple viscosity scaling

alone fails in predicting actual breakup time of the filament.

It is apparent clear that the MFR technique can readily demarcate the adhesives in

terms of their processability and this is reflected directly in the lifetime of thinning

viscoelastic filaments. In order to understand the mechanism of this elastocapillary

phenomenon in more detail, we present below a simple theoretical model capable of

capturing the essential physics of visco-elasto-capillary thinning with combined mass

transfer.

3. Theoretical Predictions

3.1 Newtonian model

Here we outline development of a simple 1D Newtonian model for predicting the

thinning of adhesive fluid filaments due to capillary forces in the presence of a volatile

solvent component.

Following Renardy (1995) and Yao et al. (1998), we consider the evolution of an

axisymmetric viscoelastic filament constrained between circular plates. Since the

filament is long and slender, it is assumed that fluid stresses and deformations can be

regarded as uniform across any axial cross section. Furthermore, we neglect inertia and

gravity. The tensile force acting on any cross section of the filament is then

F R T T Rzz rr= − +π π σ2 b g (5)

where σ  is the surface tension coefficient, R z t,a f  is the radius of the filament at axial

position z  and time t , and Tzz  and Trr  denote the (radially averaged) axial and radial

components of the extra stress tensor resulting from fluid motion. Here higher order

terms resulting from the axial curvature of the free surface have been neglected (i.e. we

assume ∂ ∂ <<R z 1). Equation (5) can be re-formulated in a Lagrangian representation

where initial fluid labels Z0  (at time t0 ) are followed as a function of time. The

deformation in the fluid filament is represented by the dimensionless stretch S Z t0 ,b g of

each element which is defined in a 1D deformation by
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∂ ∂ ≡ =z Z S Z t R R z t
t0 0 0

2 2b g b g a f, , (Renardy, 1995). The deformation rate within the

filament is given by

& ,ε z t
S

S
t R

R
t

a f =
∂
∂

= −
∂
∂

1 2
(6)

Substituting for the Newtonian constitutive relationship T Tzz rr s− =b g 3η ε&  in equation (5)

and non-dimensionalizing leads to

f t t
S

S
t Sra f a f=

∂
∂

+3
1 1

2η (7)

where f t F Ra f = σπ 0 is the scaled force, and η η ηr t t= a f b g0 0  is the relative viscosity of

the adhesive at time t  to the initial viscosity at t0 . Here, time is nondimensionlized with

the characteristic capillary time scale t Rcap = η σ0 0 . Since the end plates are not moving

and the global or total stretch of the entire filament is constant, the force can be found

from an integral constraint (Renardy, 1995) as

f t

S dZ

S dZ

r

r

a f =
z
z

3
2

0

0

0

0

2

0

0

η

η

Λ

Λ (8)

where the relative viscosity is a function of time as well as axial position.

It remains to estimate the variation in the viscosity of the adhesive liquid due to

evaporation effects by using mass transfer principles. We expect that the extensional

viscosity of the polymeric fluid and the increase in the viscoelastic properties of the fluid

due to solvent evaporation both affect the overall rate of capillary thinning during the

necking of the fluid filament. The coating materials studied in this work are modeled as

simple binary liquids composed of “resin” or polymer and a volatile “solvent.” Only the

solvent evaporates and, as it does, the concentration of polymer in the bulk adhesive

increases. As a result of the axial slenderness of the filament, we assume that the solvent

diffusion process within the bulk of polymer is much faster than its evaporation from the

interface and radial gradients in the concentration can be neglected so that

c t c z tx, ,a f a f→ .  This approximation will become increasingly good as the necking

progresses and the filament becomes increasingly slender, since the surface/volume ratio

increases monotonically. The solvent concentration c  in any axial slice of an adhesive
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filament is thus governed by equation (1). The mass balance for each Lagrangian element

Z0  can be written as

∂
∂

F
HG

I
KJ = −

c
t

h c z t
R z tZ

m

0

2 ,
,
a f

a f (9)

Finally, for algebraic simplicity, we assume that the density of polymer and the solvent

are equal at all times so that the density of the adhesive fluid remains unchanged during

the evaporation. Non-dimensionalizing equation (9) using the (constant) density, the

stretch S  and the characteristic time scale t Rcap = η σ0 0  leads to

∂
∂

F
HG

I
KJ = −FH

I
K

x
t

h
x S

Z

m

0

2 0η
σ

(10)

where x z t c,a f = ρ  is the mass fraction of solvent in the filament at each axial slice. The

important point to note from equation (10) is that as the filament of adhesive fluid thins

under capillary pressure, the interfacial area and axial stretch increase and thus the rate of

mass transfer across the surface also increases. As we show below, this positive feedback

mechanism leads to very rapid formation of thin strands and is manifested in processing

operations as “stringiness”.

The dimensionless group characterizing the rate of increase in mass transfer in

equation (10) may be interpreted as a ratio of the two time scales in the problem. The

characteristic time scale for solvent evaporation is t R hevap m~ 0  and the time scale for

capillary thinning is t Rcap ~ η σ0 0  (for a Newtonian filament). We have not been able to

identify this dimensionless group in the existing literature and thus define it a

processability parameter P. Note, however, that the parameter P can be written in terms

of other well-known dimensionless groups as

h
P

Sh Ca
Sc

St Cam
m

η
σ

0 ≡ = =
Re

(11)

where Sh h R Dm= 0  is the Sherwood number with D the mass diffusivity of the solvent,

Ca R= η ε σ0 0 0
&  is the capillary number, Re &= ρε η0 0

2
0R is the Reynolds number and

Sc D= η ρ0  is the Schmidt number. The grouping Sh ScRe  is sometimes identified as

the mass transfer Stanton number (Bird et al.,1960). Table 3 lists the processability

parameter P for all the samples. It is clear that the samples A7, A5, A1 and A4 all have



15

the largest values of this processability parameter P. Furthermore these were the samples

which exhibited the slowest rates of capillary thinning and also exhibiting instabilities

during roll-coating. Hence, the magnitude of the parameter P can be assessed as a

measure of “stringiness” or “processability”. Also listed in Table 3 are values of the

elastocapillary number Γ = De Ca  measuring the relative importance of viscoelasticity to

surface tension which we discuss further in §3.2 below.

Although we have not directly measured the variation of adhesive viscosity with

solvent concentration, we relate the solvent composition to the bulk viscosity using a

simple mixture rule of the form (Irving, 1977, Gambill, 1959)

1 1

1η η η
=

−
+

x x

s

(12)

where η1  and ηs  are the zero-shear rate viscosities of the pure polymer and pure solvent

respectively. We note parenthetically that alternate expressions for viscosity have been

proposed by several authors (Irving, 1977), but the results to be presented below are not

significantly affected if one expression is chosen over the other and the simple from of

eq.(12) permits some analytical insight into the physical processes as we show below.

Combining equations (10) and (12) allows us to find the variation in viscosity

with time during the capillary thinning process. If η ηs 1 1<< , and the mass fraction of

solvent monotonically decreases with time (i.e. 0 0≤ ≤x t x( ) ) then equations (10) and

(12) can be combined and simplified to give

η
η
ηr

tt
t

P S dt= =
RST

UVWz0

0 0

1
2

0

2
a f
b g exp (13)

Clearly incorporating the mass transfer of the solvent (P ≠ 0) results in the viscosity of

the adhesive fluid increasing exponentially with the degree of stretch in the filament.

Given an initial filament profile R Z t0 0,b g, Eqs. (7), (8) and (13) can be integrated

in time to compute the evolution in the filament profile. If the filament breaks in finite

time, then the Lagrangian stretch of the adhesive material element at the mid-point

diverges at a critical time, tc. In the microfilament rheometer first developed by Entov

and coworkers (Bazilevsky et al., 1990), the initial profile of the filament at time t0  is a

cylindrical liquid bridge of aspect ratio Λ0 0 0= L R which is rapidly deformed in a short
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time δ t  to yield an initial “necked” filament profile R Z1 0b g and aspect ratio Λ1 1 0= L R  at

time t t t1 0= + δ . This liquid bridge subsequently evolves due to capillarity.

This “necked” profile is the initial condition required for integrating equations (7),

(8) and (13) and can be obtained from digitized video images of the initial filament

profile R Z t1 0 1,b g. Alternatively, for analytic simplicity, we generate initial conditions

using the lubrication solution for reverse squeeze flow provided by Spiegelberg et al.

(1996) for a given initial stretching of a viscous fluid sample from height L0  to L1. The

partial differential equations are converted to a set of ordinary differential equations

(ODE’s) for a finite number of initial particle labels Z i
0 , i N= 1K  and the filament

profiles for different values of the processability parameter P are obtained using a 4th

order Runge-Kutta integrator for stiff ODE’s available in MATLAB. In the results shown

here we use N=201 points to describe the initial necked profile R Z t1 0 1,b g. We estimate

values of the processability parameter P for each of the adhesive samples from the mass

transfer coefficients in Table 1, the initial viscosity η0  in Table 2 and the surface tension,

σ . These values are given in Table 3.

In figure 10 we show representative transient profiles of the mid plane radius

R tmid a f obtained numerically from equations (7), (8) and (13) for different Newtonian

fluid formulations for parameters P =  0, 0.005, 0.01 and 0.05. These predictions show a

remarkable similarity with the experimentally observed profiles presented in figure 9. It

appears clear that the combination of effects resulting from evaporation of the volatile

solvent component and visco-capillary thinning contributes to the experimentally

observed “stranding” or “stringiness” of adhesive filaments and directly correlates the

prediction of adhesive processability.

It is also possible to obtain a closed form solution for combined evaporation and

Newtonian capillary thinning by assuming the filament shapes shown in figure 8 can be

approximated as axially uniform cylindrical threads held between large quasi-static or

stagnant drops (or “blobs”) and then following the analysis of Entov & Hinch (1997).

The dotted lines in Figure 10 show the results of this analytical solution which is derived

in the appendix.
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3.2 Giesekus model for viscoelastic-capillary drainage of adhesive filaments

It is clear from figures 3 and 4 that the concentrated polymer solutions used in

these experiments do not behave exactly like Newtonian fluids, but in fact are both shear

thinning and viscoelastic. In the present section we therefore investigate the visco-elasto-

capillary thinning of adhesive filaments using the Giesekus model (Yao et al. 1998) and

seek to understand the role of adhesive viscoelasticity on the thinning of adhesive

filaments and their processability or tendency to form “strands”.

We estimate the polymer contribution to the viscosity η p as the difference

between the total adhesive viscosity η ta f, given by equation (13), and the constant

solvent contribution to viscosity ηs . Hence, provided η ηs p ta f << 1 at all times, we

obtain

η
η

βp
t

s

t

t
P S dt

a f
b g0 0

1
2

0

2=
F
HG

I
KJ −zexp (14)

where β η ηs s= 0  is the dimensionless solvent contribution to the initial viscosity. The

change in the polymeric contribution to the viscosity arising from solvent evaporation

also affects the relaxation behavior of the polymer chains. Again we have not directly

measured the change in viscoelasticity with decreasing solvent concentration; however,

in principle, this can be done. For the purpose of the simulation a simple analytic

formulation consistent with the kinetic theory of polymer solutions can be obtained by

using the following relationship

η λp z t n z t kT z t, , ,a f a f a f= (15)

where kT  is the thermal energy and λ  is the relaxation time. The number density of

chains per unit volume, n , can be expressed in terms of the mass fraction of solvent as

n z t
x z t N

M
A

w

,
,a f a fb g

=
−1 ρ

(16)

where ρ , NA  and Mw are the density, Avagadro’s number and the molecular weight of

the polymer, respectively. Using equations (14), (15) and (16) we may evaluate the

dimensionless relaxation time (or Elasto-capillary number Γ = λ σ ηz t R,a f 0 0 ) as

Γ Γz t
x

x P y

P y s

s

,
exp

expa f a f
a f

=
−

− −
−

−0
0

0

1

1 2

2

1

β
β

(17)
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Here, y S dt
t

= z 1
2

0

 is a measure of the total stretch at time t. and, Γ0  and x0  are the initial

elasto-capillary number and solvent mass fraction, respectively. Note that the elasto-

capillary number Γ  is a measure of the relative importance of the capillary necking rate

to the stress relaxation rate in the filament. We can see from equation (17) that the

elasticity of the polymer plays an increasingly important role on the thinning of the

adhesive filament as the solvent evaporates. Also, in the limit Γ → 0  the equations

simplify to the Newtonian case discussed in the previous section. Table 3 presents

approximate values of the initial elasto-capillary numbers Γ0  for the various adhesive

formulations studied in the present work.

Following Yao et al. (1998) the governing equations given by equations (2-6), for

an adhesive filament described by the Giesekus model and undergoing elasto-capillary

thinning can be written as

3 2 3
2β s zz rr

S
t

f t S T T S S
∂
∂

= − − −a f b g (18)

Γ Γ
Γ

z t
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T z t
z t T
z t

zz
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r
r, , &
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&a f a f a f

a f
∂
∂

= − −
L
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O
QP +2 1 2ε
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η ε (19)
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η

η ε1 (20)

Here we have used the same dimensional scaling defined in the previous section, Tzz  and

Trr  are the 1D approximations of the polymeric stress, &ε = ∂ ∂1 S S ta f  is the deformation

rate of each slice, η η ηr p z t= ,a f 0 and Γ z t,a f  is given by equation (17).

Since the total length of the filament is not changing with time, the tensile force in

the filament can again be found from an integral constraint along the column as

f t
S T T S dZ

S dZ

zz rra f b g
=

− +z
z

3
2

0

0

0 0

2
0

0

Λ

Λ (21)

Given an initial filament profile R Z t1 0 1,b g and an initial distribution of the polymeric

stresses T Z tzz 0 1,b g and T Z trr 0 1,b g , eqs. (18-21) can be integrated in time to compute the
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evolution of the filament profile of a viscoelastic polymer solution undergoing visco-

elasto-capillary thinning in the microfilament rheometer.

Figure 11 shows filament profiles for samples A5 and A2 at selective values of

time. Initially, the filament profiles show remarkable similarity with the experimentally

recorded images shown in figure 8.  Close to break-up the theoretical predictions do not

exactly predict the experimentally observed axially uniform cylindrical threads held

between large quasi-static or stagnant drops (or “blobs”). These differences in the

evolution of the free surface profiles between the theory and experiments can be

attributed to the one-dimensional model’s inability to satisfy the no-slip boundary

conditions at the end plates and the neglect of higher order corrections to the axial

curvature. Hence, as the filament thins, some fluid slips radially outwards from the plate

rather than making a stagnant drop or “blob” with the characteristic convex free surface

profiles seen in figure 8. For viscoelastic filaments with non-volatile solvents and no

mass transfer, Yao et al. (1998) compared the predictions of this one-dimensional time

dependent finite element simulations. They found that in the necked region away from

the end plates the one-dimensional theory provides a very accurate description of the

viscoelastic-capillary necking process and the time to break up. Since the principal

quantitative measurement obtained in a microfilament rheometer is the midpoint radius

R tmid a f we should expect the equation set (17)-(21) to provide a good description of the

capillary thinning process in our adhesives without the need for a full numerical

simulation.

The numerically computed evolution of the mid-filament diameter versus time are

shown in figure 9 along with the experimentally measured data. Although the predictions

are not completely quantitative for some samples, the predicted thinning of the adhesives

samples shows almost the same trend as observed experimentally without any adjustment

in any of the material parameters listed in Tables 1-3. The most viscoelastic and volatile

samples A5 and A7 thin much more slowly compared to other samples, while the less

viscoelastic samples such as A3, A2 and A6 exhibiting “good” processability neck down

much faster than those samples exhibiting “O.K.” processability (A4 and A1). Our

inability to match exactly the theoretical predictions with the experimental observation

profile is due to the number of simplifying assumptions made in developing the 1-D
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theory, however it is clear that we have captured the essential physical phenomena

probed in the microfilament experiments. The principal experimental unknown is the

precise value of the fluid interfacial tension which directly enters the capillary time scale

tcap used in non-dimensionalizing equations (18)-(21). The surface tension is assumed to

be constant and equal to the solvent value. In reality, σ  will be a weakly time-varying

function of the pure resin and solvent surface tension values, plus the mass fraction x ta f
of the solvent. Such an expression for the compositional variation in surface tension of

the fluid can easily be incorporated in our model if values of the surface tension

coefficients for mixtures of pure resin and solvent are known. Similarly, it is

straightforward to perform multi-mode simulations, if desired, by duplicating the

equations (19) – (20) for each additional viscoelastic mode with relaxation time λ i z t,a f
and viscosity ηi z t,a f. The total polymeric stress obtained by summing the modes then

appears in eq.(18).

4. Discussion

We have shown in the present work that the tendency of a pressure sensitive

adhesive solution to form strands or exhibit “stringiness” cannot be readily deduced by

conventional rheological tests that measure the viscometric properties of the polymer

solution. Consequently, the processing characteristics of the material can not be readily

correlated with familiar dimensionless groups such as the capillary number or

Weissenberg number. However, direct measurement of the evolution of a slender

filament in a microfilament rheometer indicates that the filament lifetime is a good

measure of the processing characteristics of the viscoelastic material.

The dynamics of the filament evolution can be accurately modeled by a slender

filament theory that incorporates the capillary driving force for breakup, the viscous (or

viscoelastic) resistance from the extensional flow in the filament and the mass transfer of

volatile components from the surface of the fluid. The material parameters characterizing

each of these processes can all be directly measured using interfacial tensiometry (σ ),

rheometry (η γ&a f ) and thermogravimetric analysis (hm ) respectively. The relative

magnitude of these parameters for different fluid formulations can be expressed

conveniently in terms of a single dimensionless group that quantifies the rate of mass
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transfer to the rate of capillary thinning and which we refer to as a Processability

parameter  P hm= η σ0 . For the polymeric fluids considered in the present study we find

that materials with P < × −3 10 4  exhibit good processability, whilst material formulations

with P > −10 3  show a strong tendency to form strands or exhibit “stringiness”.

The small numerical values of the parameter P reported here arise in part because

we use the initial scales η0 0, R  (and also λ σ0 0, ) in our analysis, whilst the actual

physically-relevant scales change rapidly during the break-up process. In fact, the limit

P = 0 is a singular limit and a non-zero final filament radius is predicted in our present

model for all P ≠ 0 , since the fluid viscosity η ta f diverges as x ta f→ 0. However, the

asymtotic value of the radius is given approximately by R R P∞ ≅ −1 0 0709 2exp .a f  as we

show in appendix A (see also figure 10) and becomes very small as P → 0 . For example,

with an initial filament of R1 1~  mm, the final thread radius becomes less than 1µm for

P ≤ −51 10 3. x . On such a scale, the presence of microscopic air bubbles, dust particles and

other inclusions may cause the necking fluid column to rupture in a manner not captured

by simple analysis of a homogeneous liquid thread. Furthermore the minimum object size

that is optically detectable with our present laser micrometer is 2Rmin ~ 4 µm and thus we

cannot observe the very final stages of the necking process.

The numerical simulations and experimental observations presented in this paper

both show that as the parameter P increases, the filament lifetime tlife  increases

monotonically beyond the simple direct estimate of viscocapillary thinning,

t Rcap ~ η σ0 0 . In a real commercial coating process, this filament lifetime must be

compared with a characteristic shear rate &γ  or a residence time, tres ~ &1 γ .  If the

residence time of a fluid element in the flow is of the same order as, or greater than, the

filament lifetime t Plife a f then the formation and growth of strands or “stringiness” is

likely. Physically, viscous and/or elastic forces retard the capillary necking and breakup

of the filament long enough for significant solvent evaporation to occur, this in turn

increases the viscous and elastic material properties which feed back to further retard the

necking and breakup of the thread. This simple argument (based on visco-capillary

thinning of a Newtonian filament) suggests that stranding can be avoided by simply

increasing the characteristic shear rate of the process. However, for a real pressure
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sensitive adhesive formulation consisting of a concentrated polymer solution in a volatile

solvent the filament lifetime is also a function of the initial elastic stress difference

T Tzz rr−b g0
 in the fluid and the elastocapillary number Γ = λ σ ηz t R,a f 0 0 . The simple one-

dimensional model presented here can be used to perform numerical simulations of

t P T Tlife zz rr, ,Γ0 0
−b gd i and the resulting values can be compared with the residence time

tres  to understand the processability characteristics of a viscoelastic fluid.

Finally, we note that the theoretical analysis and experimental method presented

in this paper can also be adapted readily to consider the case of combined heat transfer

and visco-elasto-capillary necking – a process commonly encountered during batch

filling operations in the food and consumer products industries. In this case, the rate of

mass transfer h Rm 0b g is replaced by the corresponding rate of heat transfer h c Rpρ 0c h
which can be obtained from an energy balance combined with Newton’s law of cooling

(i.e. the analogous equation to equation (1)). The non-isothermal analog of the

processability parameter P is then h cpη σρ0 (where h is the heat transfer coefficient and

cp is the specific heat). By analogy with equation (11), this dimensionless grouping can

also be expressed in terms of the Nusselt, Prandtl, Reynolds and capillary numbers. The

corresponding non-isothermal viscoelastic constitutive equation required for visco-elasto-

capillary breakup with combined heat transfer can be obtained using the ‘psuedotime

hypothesis’ (see for example Tanner, 1985). For a thermorheologically simple material,

the variation in the material properties η ta f and λ ta f , as the filament necks and cools, can

simply be expressed in terms of the standard rheological shift factor a T t Ta fb g, 0

determined using time-temperature superposition. For many materials the thermal

variation in surface tension d dTσ  is also known and can also be simply incorporated in

the model. We hope to explore the effect of heat transfer on capillary breakup and the

lifetime of necking filaments further in the future.
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Appendix A

In this appendix we show that a reasonable analytical approximation to the

equation set (7), (8) and (13) can be obtained by ignoring all axial free surface variations.

In this limit the slender fluid element becomes a viscous thread with R z t R t,a f a f≅  and

setting the tensile force F  in equation (5) to2X Rπ σ , we obtain (see Mckinley & Tripathi,

1999)

3
2

2 1η
σ

t
R t

dR t
dt R t

Xa f a f
a f

a f a f−
F
HG

I
KJ = − (A1)

where X is the correction factor to the tensile force arising from weak axial variation in

R ta f and its value is close to 0.7127 (Papageorgiou, 1995; McKinley & Tripathi, 1999).

Note that X = 1 and η ηta f = 0  corresponds to the equation derived by Entov & Hinch

(1997). On substituting for the time-dependent viscosity function from equation (13) and

then non-dimensionalizing, equation (A1) can be expressed as a nonlinear second order

ODE given by

′′ = ′ −y y P y0 0709 22. expa f k p (A2)

where ′ =y R R t0 ( ). Equation (A2) can be readily integrated (Dr. Aaron Avagliano,

Personal Communication) using initial conditions at ′ = = = =y t R R y t0 0 00 1a f a f,  to

obtain the implicit solution

t
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P y dy
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0 0709
2

2 1exp
.

expa fb g  for P ≠ 0 (A3)

Note that for all P ≠ 0 this simple analytical model predicts a finite final thread radius

R R P∞ ≅ −1 0 0709 2exp .a f  since the viscosity diverges as the thread radius and solvent

mass fraction approach zero. This final thread radius is indicated by the asymptotic

values of the dotted lines in figure 10. In the limit P = 0, expansion of the integrand in

equation (A3) or direct integration of equation (A1) gives

R t
R

R
R R

t
a f
0

1

0 0 0

0 0709= − .
σ
η

, (A4)

so that the critical time to break up is t Rc = 14 104 0 1. η σ , in agreement with experimental

observations.
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Captions

Figure 1: Representative geometries for important commercial processes in which both

the Non-Newtonian rheology of the bulk fluid and mass transfer of a volatile solvent

from the free surface are important: (a) leveling, drainage and sagging of paint films; (b)

spin coating of resists over non-uniform surface topologies; (c) viscous withdrawal of

sheets and wires; (d) roll-coating of pressure sensitive adhesives.

Figure 2: Solvent evaporation as a function of time for seven adhesive formulations. The

experimental data was obtained using a thermogravimetric analyzer (TGA). The solid

lines show three (A1, A2 & A6) of the exponential fits obtained using equation (1).

 –––––––  A1; – – – – – A2; − ⋅− ⋅ − ⋅ A6. Values of the fitted mass transfer coefficient are

given in Table 1.

Figure 3: Steady shear viscosity as a function of shear rate, η γ&a f , and non-linear fits

using single-mode Giesekus model. The fits are shown for three (A1, A2 & A6) of the

adhesive samples. –––––––  A1; – – – – – A2; − ⋅− ⋅ − ⋅ A6.

Figure 4: First normal stress coefficient as a function of shear rate, Ψ1
&γa f, and non-linear

fits using single-mode Giesekus model. The fits are shown for three (A1, A2 & A6) of

the adhesive samples. –––––––  A1; – – – – – A2; − ⋅− ⋅ − ⋅ A6.

Figure 5: Capillary number Ca R= ηγ σ&
0  as a function of shear rate for various adhesive

samples. The solid lines correspond to the capillary number evaluated using the fitted

viscosity function obtained from the Giesekus model.  –––––––  A1; – – – – – A2;

− ⋅− ⋅ − ⋅ A6.

Figure 6: Variation of the Weissenberg number, Wi N= 1 122τ , as a function of shear rate

for various adhesive samples. The solid lines represent the estimated Weissenberg

number using model fitted values. –––––––  A1; – – – – – A2; − ⋅− ⋅ − ⋅ A6.

Figure 7: Schematic diagram of Micro-Filament Rheometer (MFR): (a) fixed lower

plate; (b) movable upper plate; (c) spring assembly; (d) solvent trap; (e) CCD camera; (f)

laser micrometer; (g) laser light (h) syringe injection system (i) background illumination.
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Figure 8: Two samples (A2 & A5) undergoing visco-elasto-capillary thinning at

temperature T C≅ 250 . Consecutive images are recorded by a CCD camera in the micro-

filament rhometer. The two sets of images show a clear visual distinction between fluids

exhibiting “BAD”(A5) and “GOOD”(A2) processing characteristics.

Figure 9: The transient midpoint filament diameter profiles for each fluid formulation

measured in the micro-filament rheometer. The experimental data is shown using filled

symbols and the predictions of the Giesekus model (equations (18-21)) are shown using

lines and the corresponding hollow symbols. Numerical values of the dimensionless

parameters characterizing the individual materials and employed in the simulations are

given in table 3. The experimental profiles clearly separate the materials exhibiting

“GOOD”, “BAD” and “O.K.” processing characteristics into different regions of the

graph.

Figure 10: The predictions of the transient mid-plane radius obtained numerically from

the Newtonian model for Processability parameters P = 0, 0.005, 0.01, 0.05. The plot also

includes the analytical solution obtained using a cylindrical thread theory described in

appendix A.

Figure 11: Numerically predicted filament profiles for samples A5 and A2 at selective

values of time. These profiles were computed using the Giesekus filament model with

parameter values given in table 3.
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Table 1: Solvent composition, mass transfer characteristics and “processability” of seven

adhesive formulations studied in this paper

Adhesive

sample

Solvent Processability(i) Initial solvent

mass fraction

x0

Mass transfer coefficient

h A V sm
−1   x 103

    A1

    A2

    A3

    A4

    A5

    A6

    A7

Heptane

Heptane

Heptane

Heptane

Hexane

Heptane

Hexane

        OK

       Good

       Good

        OK

        Bad

       Good

        Bad

        0.34

        0.63

        0.65

        0.37

        0.33

        0.33

        0.32

               0.467

               0.621

               0.824

               0.984

               1.338

               1.602

               1.879

(i) As indicated by the supplier; determined by the tendency of fluid sample to form

“strands” or appear stringy.
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Table 2: Rheological parameters of the seven adhesive samples obtained from steady

shear rheometry.

Adhesive

sample

Zero shear-rate

viscosity(i)

η0 [Pa.s]

Relaxation

time

λ [s]

Mobility

factor

α [-]

Solvent

viscosity

ηs [Pa.s]

Surface

tension

σ [N/m]

     A1

     A2

     A3

     A4

     A5

     A6

     A7

       17.0

        2.0

        2.0

       14.0

       19.0

        0.8

       15.0

1.88x10-1

5.70x10-2

3.02x10-2

2.07x10-1

5.73x10-1

2.85x10-3

4.09x10-1

   0.43

   0.48

   0.20

   0.45

   0.05

   0.46

   0.10

      1.50

      0.34

      0.16

      1.40

      1.90

      0.23

      0.90

2.03x10-2

2.03x10-2

2.03x10-2

2.03x10-2

1.79x10-2

2.03x10-2

1.79x10-2

(i) The zero shear-rate viscosity of the Giesekus model is η η η0 == ++s p .
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Table 3: The estimated values of the Processability parameter P and the Elasto-capillary

number for various adhesive formulations along with their “processability”.

Adhesive

sample

Processability Parameter

         P hm= η σ0

Elasto-capillary Number

   Γ0 0 0= λσ η R

    A6

    A2

    A3

    A1

    A4

    A5

    A7

       Good

       Good

       Good

        OK

        OK

        Bad

        Bad

           1.78 x 10-4

           1.83 x 10-4

           2.43 x 10-4

           1.17 x 10-3

           2.04 x 10-3

           4.26 x 10-3

           4.72 x 10-3

                0.03

                0.19

                0.10
                     0.07
                       0.10
                       0.18
                      0.16
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