
 Open access Proceedings Article DOI:10.1145/289444.289509

Using filtering agents to improve prediction quality in the GroupLens research
collaborative filtering system — Source link

Badrul Sarwar, Joseph A. Konstan, Albert T. Borchers, Jon Herlocker ...+2 more authors

Institutions: University of Minnesota

Published on: 01 Nov 1998 - Conference on Computer Supported Cooperative Work

Topics: Recommender system, Collaborative filtering and Information filtering system

Related papers:

 Empirical analysis of predictive algorithms for collaborative filtering

 GroupLens: an open architecture for collaborative filtering of netnews

 Social information filtering: algorithms for automating “word of mouth”

 Fab: content-based, collaborative recommendation

 GroupLens: applying collaborative filtering to Usenet news

Share this paper:

View more about this paper here: https://typeset.io/papers/using-filtering-agents-to-improve-prediction-quality-in-the-
7qcvmg7mr6

https://typeset.io/
https://www.doi.org/10.1145/289444.289509
https://typeset.io/papers/using-filtering-agents-to-improve-prediction-quality-in-the-7qcvmg7mr6
https://typeset.io/authors/badrul-sarwar-3aib20oco8
https://typeset.io/authors/joseph-a-konstan-rkeybmj93m
https://typeset.io/authors/albert-t-borchers-41tijyvqid
https://typeset.io/authors/jon-herlocker-5c5sg2thgk
https://typeset.io/institutions/university-of-minnesota-2bv8nbl3
https://typeset.io/conferences/conference-on-computer-supported-cooperative-work-lol0ql4e
https://typeset.io/topics/recommender-system-3179d5wg
https://typeset.io/topics/collaborative-filtering-287u9x00
https://typeset.io/topics/information-filtering-system-38knutmw
https://typeset.io/papers/empirical-analysis-of-predictive-algorithms-for-3jrz6gtgdv
https://typeset.io/papers/grouplens-an-open-architecture-for-collaborative-filtering-yhrs8bxq7y
https://typeset.io/papers/social-information-filtering-algorithms-for-automating-word-48mb5n9mtz
https://typeset.io/papers/fab-content-based-collaborative-recommendation-49eb388s38
https://typeset.io/papers/grouplens-applying-collaborative-filtering-to-usenet-news-11ejsbobr3
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/using-filtering-agents-to-improve-prediction-quality-in-the-7qcvmg7mr6
https://twitter.com/intent/tweet?text=Using%20filtering%20agents%20to%20improve%20prediction%20quality%20in%20the%20GroupLens%20research%20collaborative%20filtering%20system&url=https://typeset.io/papers/using-filtering-agents-to-improve-prediction-quality-in-the-7qcvmg7mr6
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/using-filtering-agents-to-improve-prediction-quality-in-the-7qcvmg7mr6
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/using-filtering-agents-to-improve-prediction-quality-in-the-7qcvmg7mr6
https://typeset.io/papers/using-filtering-agents-to-improve-prediction-quality-in-the-7qcvmg7mr6

Using Filtering Agents to Improve Prediction Quality in GroupLens Research Collaborative Filtering System

Technical Report

Department of Computer Science

and Engineering

University of Minnesota

4-192 EECS Building

200 Union Street SE

Minneapolis, MN 55455-0159 USA

TR 98-013

Using Filtering Agents to Improve Prediction Quality in GroupLens

Research Collaborative Filtering System

Badrul Sarwar, Joseph Konstan, Al Borchers, Jon Herlocker, Brad

Miller, and John Riedl

March 01, 1998

1

Using Filtering Agents to Improve Prediction Quality in the
GroupLens Research Collaborative Filtering System

Badrul M. Sarwar
*
, Joseph A. Konstan

*†
, Al Borchers

*
, Jon Herlocker

*
, Brad Miller

†
, and John Riedl

*†

*
GroupLens Research Project

Dept. of Computer Science and Engineering

University of Minnesota

Minneapolis, MN 55455

†
Net Perceptions, Inc

11200 West 78th Street

Suite 300

Minneapolis, MN 55344-3814

{sarwar,konstan,borchers,herlocker,riedl}@cs.umn.edu; bmiller@netperceptions.com

ABSTRACT
Collaborative filtering systems help address information

overload by using the opinions of users in a community to

make personal recommendations for documents to each

user. Many collaborative filtering systems have few user

opinions relative to the large number of documents

available. This sparsity problem can reduce the utility of

the filtering system by reducing the number of documents

for which the system can make recommendations and

adversely affecting the quality of recommendations.

This paper defines and implements a model for integrating

content-based ratings into a collaborative filtering system.

The filterbot model allows collaborative filtering systems to

address sparsity by tapping the strength of content filtering

techniques. We identify and evaluate metrics for assessing

the effectiveness of filterbots specifically, and filtering

system enhancements in general. Finally, we

experimentally validate the filterbot approach by showing

that even simple filterbots such as spell checking can

increase the utility for users of sparsely populated

collaborative filtering systems.

Keywords
Collaborative filtering, information filtering, content

analysis, recommendation systems, social filtering,

GroupLens Research, information filtering agents.

INTRODUCTION
Each day, more books, research papers, television

programs, Internet discussion postings, and web pages are

published than any individual human can hope to review, let

alone read and understand. To cope with information

overload, we try different approaches to separate the

interesting and valuable information from the rest.

Historically, this process was placed in the hands of editors

and publishers—people given the responsibility for

reviewing many documents and selecting the ones worthy

of publication. Even today, we rely heavily on newspaper

editors, moderators of discussion lists, journal editors and

review boards. We also often read the opinions of movie,

restaurant, and television critics to decide how to spend our

finite time and money.

Professional human reviewers do not solve all problems,

however. Often, individuals’ information needs and tastes

differ enough to make a small number of editors ineffective.

Also, the number of documents in the web, in research

libraries, and in archives of discussions has grown so large

as to defy systematic editing by individual editors.

Accordingly, researchers have developed a wide range of

systems that bring the power of computation to the problem

of selecting, for each individual, the information he or she

considers valuable from the enormous amount of available

information.

Information retrieval (IR) systems allow users to express

queries to select documents that match a topic of interest.

IR systems may index a database of documents using the

full text of the document or only document abstracts.

Sophisticated systems rank query results using a variety of

heuristics including the relative frequency with which the

query terms occur in each document, the adjacency of query

terms, and the position of query terms. IR systems also may

employ techniques such as term stemming to match words

such as “retrieve,” “retrieval,” and “retrieving.” [18] IR

systems are generally optimized for ephemeral interest

queries, such as looking up a topic in the library. [3] In the

Internet domain, popular IR systems include AltaVista

(www.altavista.digital.com) for web pages and DejaNews

(www.dejanews.com) for discussion list postings.

Information filtering (IF) systems use many of the same

techniques as IR systems, but are optimized for long-term

information needs from a stream of incoming documents.

Accordingly, IF systems build user profiles to describe the

documents that should (or should not) be presented to users.

Simple examples of IF systems include “kill files” that are

used to filter out advertising or flames (i.e., attack

messages) and e-mail filtering software that sorts e-mail

into priority categories based on the sender, the subject, and

whether the message is personal or sent to a list. More

complex IF systems provide periodic personalized digests

of material from sources such as news wires, discussion

lists, and web pages [4, 21]

2

One embodiment of IF techniques is software agents.

These programs exhibit a degree of autonomous behavior,

and attempt to act intelligently on behalf of the user for

whom they are working. Agents maintain user interest

profiles by updating them based on feedback on whether the

user likes the items selected by the current profile.

Research has been conducted in various feedback

generation techniques, including probabilistic models,

genetic algorithms and neural network based learning

algorithms [2, 14]. NewT is a filtering agent for Usenet

news based on genetic algorithm learning techniques [10].

It performs full text analysis of articles using vector-space

technique. Amalthaea is a multi-agent system for

personalized filtering, discovery and monitoring of

information sources in the World Wide Web domain [13].

IR and IF systems can be extremely effective at identifying

documents that match a topic of interest, and at finding

documents that match particular patterns (e.g., discarding e-

mail with the phrase “Make Money Fast” in the title).

Unlike human editors, however, these systems cannot

distinguish between high-quality and low-quality documents

on the same topic. As the number of documents on each

topic continues to grow, even the set of relevant documents

will become too large to review (e.g., who has time to read

every technical report with CSCW in the keyword list?).

For some domains, therefore, the most effective filters must

incorporate human judgements of quality.

Collaborative filtering (CF) systems recommend documents

to a user based on the opinions of other users. In their

purest form, CF systems do not consider the content of the

documents at all, relying exclusively on the judgement of

humans as to whether the document is valuable. In this

way, collaborative filtering attempts to recapture the cross-

topic recommendations that are common in communities of

people.

Tapestry [6], one of the first computer-based collaborative

filtering systems, was designed to support a small, close-

knit community of users. Users could filter all incoming

information streams, including e-mail and Usenet news

articles. When users evaluated a document, they could

annotate it with text, with numeric ratings, and with boolean

ratings. Other users could form queries such as “show me

the documents that Mary annotated with ‘excellent’ and

Jack annotated with ‘Sam should read.’” A similar

approach is used in Maltz and Ehrlich’s active

collaborative filtering [11], which provides an easy way for

users to direct recommendations to their friends and

colleagues through a Lotus Notes database.

Collaborative filtering for large communities cannot depend

on each person knowing the others. Several systems use

statistical techniques to provide personal recommendations

of documents by finding a group of other users, known as

neighbors, that have a history of agreeing with the target

user. Once a neighborhood of users is found, particular

documents can be evaluated by forming a weighted

composite of the neighbors’ opinions of that document.

Similarly, a user can request recommendations for a set of

documents to read and the system can return a set of

documents that is popular within the neighborhood. These

statistical approaches, known as automated collaborative

filtering, typically rely upon ratings as numerical

expressions of user preference.

Several ratings-based automated collaborative filtering

systems have been developed. The GroupLens Research
1

system [8,16] provides an pseudonymous collaborative

filtering solution for Usenet news and movies. Ringo [19]

and Video Recommender [7] are email and web systems

that generate recommendations on music and movies

respectively, suggesting collaborative filtering to be

applicable to many different types of media. Indeed,

commercial applications of ratings-based collaborative

filtering now exist in a variety of domains including books,

music, grocery products, dry goods, and information.

While collaborative filtering has been a substantial success,

there are several problems that researchers and commercial

applications have identified:

The early-rater problem. A collaborative filtering system

provides little or no value when a user is the first one in his

neighborhood to enter a rating for an item. Current

collaborative filtering systems depend on the altruism of a

set of users who are willing to rate many items without

receiving many recommendations. Economists have

speculated that even if rating required no effort at all, many

users would choose to delay considering items to wait for

their neighbors to provide them with recommendations [1].

Without altruists, it might be necessary to institute payment

mechanisms to encourage early ratings.

The sparsity problem. The goal of collaborative filtering

systems is to help people focus on reading documents (or

consuming items) of interest. In high-quantity, low-quality

environments, such as Usenet news, users may cover only a

tiny percentage of documents available (Usenet studies

have shown a rating rate of about 1% in some areas; we can

estimate that few people will have read and formed an

opinion on even 1/10 of 1% of the over two million books

available through the largest bookstores). On the one hand,

this sparsity is the motivation behind filtering: most people

do not want to read most available information. On the

other hand sparsity poses a computational challenge as it

becomes harder to find neighbors and harder to recommend

documents since few people have rated most of them.

Efforts have been made to overcome these problems in

collaborative filtering system:

1
 GroupLens™ is a trademark of Net Perceptions, Inc., which

holds exclusive rights to commercialize the results of the

GroupLens Research project. Net Perceptions allows the

University of Minnesota to use the name GroupLens Research

to avoid name discontinuity in the project.

3

• partitioning. The GroupLens Research project

showed that partitioning the ratings database by

Usenet newsgroup resulted in somewhat higher

accuracy and density, since not all users

subscribed to all newsgroups. Even with

partitioning, however, sparsity was still a problem.

• dimensionality reduction. Several researchers

have been examining statistical techniques for

compressing the dimensionality of the database.

These techniques, which include general

clustering, singular value decomposition, factor

analysis, and others appear promising, but none

has yet been demonstrated to solve the sparsity

problem.

• implicit ratings. Several systems attempt to

increase the number of ratings entered by

observing user behavior. The GroupLens

Research system determined that time spent

reading a Usenet news article was an effective

rating measure [12]. PHOAKS found that URLs

mentioned in Usenet postings could be filtered to

detect recommendations [20]. Other systems have

examined user history or watch user

behavior[17,15]. At the extreme, the MovieLens

system was able to reduce start-up sparsity

somewhat by incorporating several million pre-

existing ratings [5].

We should point out that content-based approaches used in

IF and agent systems are less directly affected by these

problems because they use content analysis techniques that

apply across all documents. For example, a filter that gives

high scores to articles with the word “baseball” in them, can

give a score to a new article before anyone has rated it. To

exploit the advantages of content analysis, Fab implements

a hybrid content-based collaborative system for

recommending Web pages [2]. In Fab user profiles are

maintained by using content analysis. The profiles are

directly compared to determine similarity between users to

support collaborative recommendation.

In this paper, we investigate another hybrid approach to

addressing the rating sparsity and early rater problems.

This approach incorporates semi-intelligent filtering agents

called filterbots into a ratings-based collaborative filtering

system.

RESEARCH APPROACH: THE FILTERBOT CONCEPT
Our approach to addressing the ratings sparsity and early

rater problems is to incorporate non-collaborative

information filtering techniques into a collaborative

filtering system. We introduce these techniques through the

creation of filterbots—automated rating robots that evaluate

new documents as soon as they are published and enter

ratings for those documents. We chose this model because

we found that it is appealingly simple from both the

collaborating filtering system’s and the filterbot author’s

point of view.

The collaborative filtering system treats a filterbot as

another ordinary user, albeit a prolific and generous one

that enters many ratings but doesn’t request predictions.
2

The collaborative filtering engine need not even know

whether users are filterbots or humans.

The filterbot author writes a filterbot just like an

information filtering agent. This agent is called whenever

new documents arrive, and it returns a numeric rating (1

through 5 in our system). The filterbot author need not be

concerned with the use of the filterbot in a collaborative

filtering system.

There are other approaches to merging content filtering

with collaborative filtering, including the “communicating

agents” model proposed by Maes [10] and the correlating

profiles model in Fab [2]. We found the filterbot model

more appealing than alternative models of integrating

information filtering techniques with collaborative filtering

ones because the collaborative filtering engine already

includes a filter to personalize the weight assigned to each

filterbot. If a user agrees consistently with a filterbot, that

filterbot is accorded a high weight for the user. If a user’s

ratings do not correlate well with a filterbot’s, that filterbot

is not used in generating recommendations and predictions

for that specific user.

An implication of this design is that we can employ a wide

range of algorithms in filterbots without concern that an

algorithm would have a detrimental effect on individual

users. By comparison, a system that employs a filter across

all users (e.g., system-level advertisement detection and kill

files) indiscriminately filters out content for both those who

are annoyed by advertising and those interested in learning

about new products.

In this work, we report on a set of filterbots using very

simple algorithms such as spelling correctness and article

length. By demonstrating the value of the filterbot concept

on simple algorithms, we hope to encourage people who

have insight into factors related to user preferences in

collaborative filtering systems to build their own filterbots.

Authors don’t need know anything about collaborative

filtering; they just need an idea for a strategy to

automatically rate items. Write it; throw it in; and watch

people benefit!

We also recognize, but have not yet implemented, the

potential for incorporating learning agents as filterbots in a

collaborative filtering system. The collaborative filtering

system might receive ratings from one or several filterbots

per user, and the users would benefit from having access to

2
 Indeed, a sophisticated filterbot may request predictions or

recommendations as part of a feedback process. We have not

yet, however, designed or implemented filterbots with that

property.

4

the learned preferences of each agent, again relying upon

only those filterbots with whom they have agreed

individually over time. Agents researchers can further this

process by creating a community of agents under natural

selection rules, so agents that are ineffective are eliminated

to create resources for variants of effective ones.

The rest of this paper presents our research design for

assessing the value of filterbots in a collaborative filtering

system, presents the results of the experiment, and discusses

the limitations of our work and the implications for other

researchers in collaborative filtering and information

filtering.

RESEARCH DESIGN
Architecture
The basic idea of collaborative filtering system is to help

people collaborate to find items of interest from a large

collection of items. In this section, we describe the

architectural framework of a collaborative filtering system

that can support the incorporation of filterbots. This

architecture is based on using the GroupLens Research

Recommendation Engine, but a similar architecture would

work with any collaborative filtering engine that works

using ratings. An overview of this architecture is shown in

figure 1.

In general, collaborative filtering systems employ a client-

server architecture. CF clients are programs that present

the user with an interface for browsing documents.

Example clients include news readers and web browsers.

These client applications communicate with document

servers to retrieve documents for the user (e.g., news

servers, web servers, databases). The clients use a well-

known document server API to request these items (e.g.,

NNTP, HTTP). Clients also communicate with a

recommendation engine server through its API. Calls are

provided to enter ratings for particular documents, to

request recommendations for documents to request, or to

evaluate a set of useful documents.

In the original GroupLens Research trial, the clients were

Usenet news readers that had been specially modified to

connect to the GroupLens Research server. The readers,

which included gnus, xrn, and tin, were adapted to request

predicted values from the GroupLens Research server

before displaying article subjects to each user. As the user

read a newsgroup, she could enter ratings. Those ratings

were stored by the reader and sent to the server at the end of

the newsgroup.

The GroupLens Research engine stored two sets of data:

user ratings of news articles and user-user correlation

information. From the correlation table, the

recommendation engine can quickly identify the

neighborhood of similar users for prediction purposes. A

prediction is calculated by returning a weighted average of

normalized ratings, as reported in [16].

Filterbots are incorporated into this framework as follows:

• They request (or subscribe to) new items from the

document source.

• They apply the rating algorithm to each document

that arrives.

• When the algorithm returns a rating, they submit

that rating to the recommendation engine.

As we implemented them, the filterbots poll the Usenet

news server to request new items. News clients already

have mechanisms for detecting which articles are new (a

file that stores the range of read items for each newsgroup).

The ratings algorithms, which are described below, perform

simple content analysis and produce ratings for all articles.

Hypothesis
Because of the ratings sparsity and early rater problems,

collaborative filtering systems are often only able to offer

users predictions and recommendations for a small subset

of the documents available. The filterbot framework

provides an augmentation that should improve the value of

collaborative filtering systems. By integrating content

filtering into collaborative filtering, filterbots should

increase the utility of the system for users who agree with

rating

algorithm

new

docs

document

source

correlations

filterbot

docs &

headers

recom-

mendation

engine

ratings

reco
m

m
en

d
atio

n
s

ratin
g

s, req
u

ests

ratings

useru
ser

docu
ser

Figure 1. System architecture for a collaborative

filtering system with live users and filterbots.

5

the filterbots while not affecting other users. Accordingly,

we propose the following hypothesis:

H1: Adding content-based filterbots into a collaborative

filtering system improves utility for human users.

We should clearly state that we are not evaluating the value

of filterbots without human ratings, for the simple reason

that human ratings are necessary for computing the

agreement among the users and between users and

filterbots.

Experiment Design
We implemented three different filterbots: Spell-

CheckerBot, IncludedMsgBot and LengthBot. We

conducted our experiments by incorporating these filterbots

individually into the GroupLens Research collaborative

filtering system. The filterbots fetch and analyze articles

from the Usenet news server and send the ratings directly to

the GroupLens recommendation engine using the

GroupLens client library API. Our filterbots were applied

to five different newsgroups. These are, rec.humor,

rec.food.recipes ,mn.general, comp.lang.perl.misc and

comp.os.linux.announce. We describe the design of each

filterbot:

SpellCheckerBot rates articles based on the proportion of

spelling errors present in the article text. It uses the spell

utility of the unix system as its spell-checking engine. Spell

uses its own dictionary to check the words in a document

and dumps the words not found the dictionary as

misspelled words. As a result, any correctly spelled word

that is not present in spell’s dictionary will be taken as a

misspelled word. Such words include widely used

colloquial expressions, word abbreviations, acronyms,

technical terms, proper nouns and so on. Using spell’s

internal dictionary will incorrectly count these words as

spelling errors. The addition of an auxiliary dictionary

solves this problem. This auxiliary dictionary contains a

list of known correct words and is used by spell in addition

to its own dictionary. Since Usenet newsgroups carry

discussions on different topics, an auxiliary dictionary

intended for a particular newsgroup will not, in general, be

applicable to another newsgroup. For example, the word

gzipped is added to the auxiliary dictionary for

comp.lang.perl.misc newsgroup but is not a suitable entry

into the auxiliary dictionary for the rec.food.recipes

newsgroup, where the word canola would be suitable.

We created the auxiliary dictionary for each newsgroup by

running the spell program on the message bodies of each

article, collecting the set of words that spell did not

recognize. We then hand-reviewed all of the terms that

were frequently misspelled to determine whether they

should be added to the dictionary, or were instead simply

common misspellings (the word “receive” was commonly

misspelled, for example). For real-world use, this start-up

phase would be performed once, with an incremental

process that could add new words to the dictionary as they

come into use in a newsgroup.

Once the dictionary was created, the filterbot processed

each message by:

1. stripping off headers, signatures, and included text

from prior messages ,

2. running the spell program to count the number of

misspelled words,

3. counting the number of words in the message body,

4. converting the percentage of misspelled words into a

rating on a scale of 1 through 5, and

5. submitting the rating to the recommendation engine.

To avoid confounding variables in the experiment, we

chose to establish a mapping between misspelling

percentage and rating that would result in a ratings

distribution that closely approximated the human ratings

distribution for that newsgroup. Prior experience suggests

that correlation-based collaborative filtering algorithms are

not very sensitive to individual differences in rating

distribution, but keeping the distribution the same allowed

us to avoid depending on those experiences. The same

mapping strategy is used in the other filterbots.

IncludedMsgBot rates each article based on the percentage

of text quoted from other articles. Replies to discussion

threads often include some or all of the message being

replied to. In some cases, as a thread continues the amount

of included text grows substantially. Our experience and

discussion with users suggested that many users dislike long

messages with little new content.

IncludedMsgBot searches for this type of message, giving

low ratings to articles with large amounts of included text

and high ratings to articles with little included text. The

filterbot:

1. separates out lines with a prefix of “>” -- most news

posting software uses this convention to mark included

text, and a hand inspection of the text confirmed that it

was a useful heuristic for these newsgroups;

2. counts lines of new text and lines of included text;

3. computes the ratio of included text lines to total lines,

and coverts that ratio to a rating on the scale of 1

through 5; and

4. submits the rating to the recommendation engine.

LengthBot rates articles based on the hypothesis that

Usenet readers value brevity. After stripping off headers,

signatures, and included text, LengthBot counts the number

of words in the article body and converts the length into a

rating on the scale of 1 to 5. Shorter articles receive higher

ratings and longer ones receive lower ratings.

Analysis of Metrics
In our hypothesis, we use the concept of “improved utility.”

Given the goal of collaborative filtering systems—helping

6

users more effectively identify the content they want—we

define utility to include two dimensions: coverage and

accuracy.

Coverage is a measure of the percentage of items for which

a recommendation system can provide recommendations.

A low coverage value indicates that the user must either

forego a large number of items, or evaluate them based on

criteria other than recommendations. A high coverage

value indicates that the recommendation system provides

assistance in selecting among most of the items.

A basic coverage metric is the percentage of items for

which predictions are available. This metric is not well-

defined, however, since it may vary per user, depending on

the user’s ratings and neighborhoods. Also, it does not

specify when a recommendation should be available. To

address these problems, we use a usage-centric coverage

measure that asks the question: “Of the items evaluated by

the user, what percentage of the time did the

recommendation system contribute to the evaluation

process?” More formally, for every rating entered by each

user, was the system able to make a recommendation for

that item immediately prior to it being rated? We compute

the percentage of recommendation-informed ratings over

total ratings as our coverage metric.

Accuracy has been measured in many different ways in

prior research. The two general approaches used are

statistical recommendation accuracy and decision-support

accuracy. [19]

Statistical recommendation accuracy measures the

closeness between the numerical recommendations

provided by the system and the numerical ratings entered by

the user for the same items. Three common metrics used

are Correlation, Mean Absolute Error (MAE), and Root

Mean Squared Error (RMSE). Each of these metrics starts

with two vectors: a vector U of user-entered ratings and a

vector R of recommendation scores produced by the

system. Only items that have both recommendations and

user ratings are included in the vectors.

Correlation is a statistical measure of agreement between

two vectors of data. We use the standard Pearson

correlation coefficient as a measure of linear agreement

between the two vectors. A higher correlation value

indicates more accurate recommendations.

MAE is a measure of the deviation of recommendations

from their true user-specified values. If we denote the error

vector E = R – U, then we can compute the metric as:

The lower the MAE, the more accurately the

recommendation engine predicts user ratings.

RMSE is a measure of error that is biased to weigh large

errors disproportionately more heavily than small errors.

The intuition behind RMSE is that many recommendations

that are off by .25 on a scale of 5 are better than a few ones

off by 3 or 4. Using the same error vector E, we compute

the metric as:

Like MAE, lower RMSE also indicates better accuracy.

Decision-support accuracy measures how effectively

recommendations help a user select high-quality items.

They are based on the observation that for many users,

filtering is a binary process. The user either will or will not

read the document or consume the article. In the Usenet

news case, users make rapid decisions about whether to

read an article, and the difference between a

recommendation score of 4.0 and 4.5 is irrelevant if the

user reads everything rated 4 and above. Similarly, the

difference between 1 and 2 is irrelevant if either article will

be skipped. Three measures of decision-support accuracy

are reversal rate, ROC sensitivity, and PRC sensitivity.

Reversal rate is a measure of how often the system makes

big mistakes that might undermine the confidence that a

user has in the recommendation system. Low reversals

refer to cases where the user strongly dislikes an item (i.e.,

gives a rating lower than a threshold L) and the system

strongly recommends it with a high recommendation score

(i.e., above a threshold H). High reversals are cases where

the user strongly likes the item, but the system

recommendation is poor (i.e., user rating > H, system

recommendation < L). The thresholds are generally based

on observed user ratings distributions, and reversal rates

can either be reported as the percentage of all

recommendation-informed ratings that are reversals, or the

percentage of all recommendation-informed high and low

ratings that are reversals (i.e., number of high reversals /

number of cases where user rating > H; similarly for low).

ROC sensitivity is a measure of the diagnostic power of a

filtering system. Operationally, it is the area under the

receiver operating characteristic (ROC) curve—a curve that

plots the sensitivity and specificity of the test [9].

Sensitivity refers to the probability of a randomly selected

good item being accepted by the filter. Specificity is the

probability of a randomly selected bad item being rejected

by the filter. The ROC curve plots sensitivity (from 0 to 1)

and 1 – specificity (from 0 to 1), obtaining a set of points by

varying the recommendation score threshold above which

the article is accepted. The area under the curve increases

as the filter is able to retain more good items while

accepting fewer bad items.

For use as a metric, we must determine which items are

“good” and which are “bad.” For that task, we use the

user’s own ratings. A rating of 4 or 5 is deemed to be a

good item (signal), a rating of 1, 2, or 3 is deemed to be a

bad item (noise). The ROC sensitivity measure therefore is

an indication of how effectively the system can steer people

towards highly-rated items and away from low-rated ones.

n

e

n

i

i

MAE
∑

= =1

n

e
n

i i

RMSE
∑= =1

2

7

Particularly important values are 1.0, the perfect filter, and

0.5, a random filter.

PRC sensitivity is a measure of the degree to which the

system presents relevant information. Operationally, it is

the area under the precision-recall curve. Precision

measures the percentage of selected documents that are

relevant; recall measures the percentage of relevant

documents that are selected. Hence, precision indicates

how selective the system is, and recall indicates how

thorough it is in finding valuable information. [18] Again,

we use as the domain of our metric the set of articles on

which the user has recommendation-informed ratings. We

plot a curve of different precision-recall pairs for different

recommendation score thresholds, and take the area under

that curve as a metric of decision-support accuracy. Again,

a higher value is more accurate, and a lower value is less

accurate.

For these experiments, we use ROC sensitivity and PRC

sensitivity as our primary accuracy metrics because they

most closely match the goals of our experiments. We are

more interested in whether adding filterbots to the

GroupLens Research system helps users decide whether to

read articles than in minimizing errors in areas that do not

affect user decisions. Large reversals, the other decision-

support metric, were too infrequent in this data set to use

with confidence. As a sanity check, we did analyze our

results using MAE and RMSE; results were similar, which

is in line with the finding of prior work that accuracy

improvements tend to be reflected across the spectrum of

metrics.

EXPERIMENTS WITH FILTERBOTS
Data
The data we used for these experiments is from the

GroupLens Research trial of Winter 1996. During that

seven-week trial, described in [12], we collected 47,569

ratings from over 250 users across many newsgroups. The

newsgroups used for these experiments are a cross section

of technical and recreational, moderated and unmoderated.

Procedure
To test our hypothesis H1 we need to get predictions from

the GroupLens server both with and without filterbot

ratings. For each newsgroup we created four files of data:

one with user ratings only, and one each with the ratings of

the three filterbots. Each record contained a user ID,

newsgroup, message ID, and rating. To obtain base

statistics for user-only recommendations, we followed this

procedure:

1. Create an empty GroupLens database.

2. For each rating in the ratings file:

a. request a recommendation for that

user/newsgroup/message;

b. record the returned recommendation or lack

thereof; and

c. submit the rating.

3. Compute coverage and accuracy statistics.

For the filterbot experiments, after step #1, we loaded all

filterbot ratings into the database, and then proceeded with

steps #2 and #3.

The experimental configuration uses Net Perceptions’

commercial GroupLens Recommendation Engine version

2.2.2.5 configured to use a neighborhood size of 50 and no

neighbor correlation threshold.

RESULTS
H1 hypothesizes that that adding filterbots into a

collaborative filtering system will improve utility for users.

To test this hypothesis, we look at experiments with several

different Usenet newsgroups and several different filterbots.

Since utility is a function of both item coverage and

accuracy, we examine coverage, ROC sensitivity, and PRC

sensitivity metrics in each newsgroup with each filterbot

and without filterbots. If the coverage and accuracy both

increase, then we can accept H1. If coverage increases and

accuracy is unchanged, or accuracy increases with no

change in coverage, we can also accept H1. However, if

either coverage or accuracy decreases, we will be unable to

accept H1. Because the effectiveness of filterbots may vary

by newsgroup, we present the results separately for each

newsgroup. Then we look at the value of each filterbot

overall, and evaluate the hypothesis in general.

Results by Newsgroup
mn.general
The newsgroup mn.general is a local unmoderated

Minnesota newsgroup with discussion and announcements

on all topics from local events to finding reliable or

inexpensive Internet service. We had 17 users who rated an

average of 65 of the 559 articles in the newsgroup (for an

average of 1.98 ratings per article). As table 1 shows,

coverage improved somewhat for the newsgroup with each

filterbot, but accuracy either decreased slightly or was

inconclusive. Accordingly, we were unable to accept H1

for mn.general.

Table 1 : Results for mn.general newsgroup

Filterbots Coverage

(%)

ROC

Sensitivity

PRC

Sensitivity

No filterbot 40.670 0.6937 0.2295

SpellChecker 43.155 0.6779 0.2075

IncludedMsg 46.056 0.7044 0.2180

Length 44.609 0.6719 0.2110

comp.lang.perl.misc
The newsgroup comp.lang.perl.misc is an unmoderated

technical discussion group focused on the scripting

language Perl. The .misc suffix indicates that this group

receives primarily articles that do not fit into one of the

other Perl newsgroups. We had 10 users who rated an

average of 70 of the 627 articles in the newsgroup (for an

8

average of 1.66 ratings per article). As table 2 shows,

coverage and accuracy improved dramatically for the spell

checking filterbot. Coverage increased by 85% for the

other filterbots, with the included message algorithm having

no significant effect on accuracy and the length algorithm

having a very small positive effect. Given the success of the

spell checking filterbot, we are able to accept H1 for

comp.lang.perl.misc.

Table 2 : Results for comp.lang.perl.misc newsgroup

Filterbots Coverage

(%)

ROC

Sensitivity

PRC

Sensitivity

No filterbot 7.010 0.6523 0.4698

SpellChecker 42.775 0.7448 0.6030

IncludedMsg 13.017 0.6400 0.4694

Length 13.180 0.6770 0.4981

comp.os.linux.announce
The newsgroup comp.os.linux.announce is a moderated

technical discussion group that is used to make

announcements to developers and users of the Linux

operating system. We had 23 users who rated an average of

24 of the 421 articles in the newsgroup (for an average of

1.33 ratings per article). As table 3 shows, the length and

spell checking filterbots both provided dramatic increases

in coverage with moderate increases in accuracy. The

included message filterbot increased coverage somewhat,

but decreased accuracy. Given the success of the spell

checking and length filterbots, we are able to accept H1 for

comp.os.linux.announce.

Table 3 : Results for comp.os.linux.announce group

Filterbots Coverage

(%)

ROC

Sensitivity

PRC

Sensitivity

No filterbot 14.874 0.6619 0.3234

SpellChecker 46.319 0.6822 0.3643

IncludedMsg 20.430 0.6117 0.3146

Length 48.745 0.7046 0.3686

rec.food.recipes
The newsgroup rec.food.recipes is a moderated recreational

group where contributors post recipes and occasional

requests for recipes. We had 7 users who rated an average

of 22 of the 92 articles in the newsgroup (for an average of

1.66 ratings per article). As table 4 shows, the spell

checking filterbot greatly increased coverage and accuracy,

with a particularly strong increase in PRC sensitivity. The

included message filterbot provided a much smaller

increase in coverage, but similarly impressive accuracy

improvements. The length filterbot provided inconclusive

accuracy results (worse ROC, better PRC) with an in-

between increase in coverage. Based on the strength of the

spell checking filterbot, we are able to accept H1 for

rec.food.recipes.

Table 4 : Results for rec.food.recipes newsgroup

Filterbots Coverage

(%)

ROC

Sensitivity

PRC

Sensitivity

No filterbot 22.222 0.6181 0.3902

SpellChecker 71.710 0.6601 0.6254

IncludedMsg 27.451 0.6667 0.5937

Length 42.763 0.5687 0.4570

rec.humor
The newsgroup rec.humor is an unmoderated recreational

group where contributors are expected to post jokes and

other humorous material. It is a well-known high-noise

newsgroup that is commonly cited as an example of a group

where filtering is useful. We had 19 users who rated an

average of 92 of the 1367 articles in the newsgroup (for an

average of 1.27 ratings per article). As table 5 shows, all

three filterbots provided dramatic increases in accuracy,

and two of them also increased coverage by more than

200%. Accordingly, we are able to accept H1 for

rec.humor.

Table 5: Results for rec.humor newsgroup

Filterbots Coverage

(%)

ROC

Sensitivity

PRC

Sensitivity

No filterbot 15.384 0.4604 0.1253

SpellChecker 50.258 0.8081 0.3638

IncludedMsg 50.373 0.7228 0.3915

Length 16.657 0.7188 0.2487

Since rec.humor was the group with the largest combination

of effect size and number of users, we decided to look more

closely at the degree to which individual users agreed with

the filterbots. Figure 2 shows rating correlations between

the three filterbots and the twelve users who had rated

enough articles to have correlations. The extreme

correlations for five users reflect their small number of

ratings, rather than any systematic agreement. Several users

Figure 2: Correlations between users and filterbots

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

3 5 8 9 9 20 52 64 77 84 85 47
4

rec.humor users (numbers indicate rating count)

P
ea

rs
o

n
 r

 c
o

rr
el

at
io

n

CorrSpBot

CorrIncBot

CorrLenBot

9

with large numbers of ratings have fairly high correlations,

particularly with the spell checking filterbot. Of six users

with more than 50 ratings: four have correlations greater

than 0.2 with SpellCheckerBot (two at or above 0.4), two

have correlations above 0.3 with IncludedMsgBot, and

three have negative correlations stronger than –0.2 with

LengthBot. Even the least-correlated user (the one with 52

ratings) had a correlation of 0.19 with one of the filterbots.

Results by Filterbot
SpellCheckerBot shows very promising results. It

provided both improved coverage and improved accuracy

in four of the five newsgroups we tested. It appears that

Usenet readers prefer articles with correct spelling. This

does not necessarily imply that they care about spelling per

se, but that something that they care about correlates well

with spelling. For example, readers may value careful

writing, simple vocabularies, etc.

IncludedMsgBot shows mixed results, providing improved

coverage in all groups but accuracy improvements only in

the recreational groups. One interpretation is that the

nature of a group determines whether included content is

good, bad, or neutral. Technical groups (and mn.general)

often have discussions where readers appear to value the

context provided by included text. In these group, the best

amount of included text is neither “more” nor “less” but

simply “the right amount.” Neither the recipe nor the

humor group is supposed to have much included text at all.

Rec.food.recipes is not to be used for discussion of recipes

and rec.humor is not to be used for discussion of jokes.

Accordingly, results in these groups may mostly reflect

identifying and giving low ratings to out-of-place postings

(for rec.food.recipes, the periodic “request for recipes”

collection).

LengthBot showed benefits for rec.humor and

comp.lang.perl.misc, and showed the best results by all

measures in comp.os.linux.announce. Length was not

useful in mn.general or rec.food.recipes. As with included

text, this suggests that readers of different newsgroups

value different attributes. Indeed, much of LengthBot’s

value in rec.humor came from negative correlations—

people who apparently preferred longer articles.

Overall Results
Based on all of the results presented above, we accept the

hypothesis that content-analysis filterbots can improve user

utility. In four of the five newsgroups, we found at least

one filterbot that improved both coverage and accuracy,

measured both by ROC and PRC.

DISCUSSION
These experiments demonstrate that simple content-analysis

filterbots can help improve the coverage and accuracy of a

collaborative filtering system. We recognize that there are

several important limitations to this work, but also many

exciting applications of it. In this section, we discuss both,

along with some of our ideas for future work.

Limitations
Our results were based on a collaborative filtering dataset

from the GroupLens Research public trial. While this trial

is still one of the largest trials conducted on streams of

discussion data, the ratings density in the data is very low.

Newsgroups such as rec.humor would require hundreds or

thousands of users to achieve an average of even ten ratings

per article, in part because the newsgroup has so many

unfunny articles that there is substantial incentive to skip

any article that doesn’t have a strong recommendation.

Possible consequences of low rating density include:

• Less personalization within the recommendation

process, since there are too few ratings for the

algorithm to be “fussy” about matches.

• Lower accuracy and coverage in the “no filterbot”

case than would be the case otherwise.

At the same time, low rating density is a real-world

condition that presents the problem that filterbots are

intended to solve.

A related limitation is the small number of users studied.

We had 76 users who rated articles that overlapped the

filterbot ratings. Of these users, many rated only a few

articles and therefore contributed little to the analysis.

Even though this study should be replicated with a larger

user set, we believe it reflects the largest study of its type,

and therefore can serve as a basis for additional

experimentation.

Finally, we recognize that Usenet News is, in general, a

high-noise information stream. We selected two moderated

newsgroups to ameliorate that effect, but should caution

those trying to generalize the work to low-noise

environments that very simple filterbots may not add

enough value to be useful.

Applications of this Work
There are several interesting applications of our

architecture and results. A number of real-world

collaborative filtering systems recommend objects from

immense sets (e.g., books in print, web pages) where

filterbots could help address ratings sparsity.

A particularly exciting idea is the use of the filterbot

framework as a mechanism for increasing the utility of

agent software. Few agents today are sufficiently powerful

and general to merit individual use, so integrating them into

a framework with collaborative filtering and other agents

can help them reach the threshold of utility. Also,

individual filtering agents aren’t inherently god or bad; they

are more useful to some users and less useful to others.

Integrating them into a collaborative filtering framework

helps match users to agents. It also helps address the case

where a particular agent has no information to

communicate—a feature that may have helped our

filterbots.

Future Work
Our results represent only a first step in understanding the

ways in which content filtering can be successfully

10

integrated into collaborative filtering. Among the issues we

would like to study in the future are:

• the interaction of sets of filterbots in the same system.

• the process of selecting proper filterbots for an

application domain; we clearly could not know in

advance which algorithms would work for the

newsgroups, and indeed certain cases resulted in a drop

in overall accuracy.

• the use of more complex filterbot algorithms, including

algorithms that learn.

• a “personal filterbot” system where each user has

“agent filterbots” attempting to learn her tastes.

• the value of filterbots for users with few ratings.

Should the engine only phase in filterbots after users

have a certain number of ratings and established

correlations?

In addition to these questions, we have a large number of

particular filterbots and applications that we’d like to

explore, including filterbots for movies and other non-

textual media.

CONCLUSIONS

This paper makes three contributions to the field of

collaborative filtering.

First, it defines and implements a model for integrating

content-based ratings into a collaborative filtering system.

This filterbot model allows collaborative filtering systems

to address sparsity and early-rater problems by tapping the

strength of content filtering techniques.

Second, it identifies and evaluates metrics for assessing the

effectiveness of filterbots specifically, and filtering system

enhancements in general.

Third, it experimentally validates the filterbot approach by

showing that even simple filterbots such as spell checking

can increase the utility for users of sparsely populated

collaborative filtering systems.

REFERENCES
1. Avery, C. and Zeckhauser, R. Recommender Systems

for Evaluating Computer Messages. Communications of

the ACM. 40(3), pp. 88-89, March 1997.

2. Balabanovic, M. and Shoham, Y. Fab: Content-Based,

Collaborative Recommendation. Communications of

the ACM. 40(3), pp. 66-72, March 1997.

3. Belkin, N. J. and Croft, B. W. Information Filtering and

Information Retrieval: Two Sides of the Same Coin?

Communications of the ACM. 35(2), December 1992.

4. Communications of the ACM. 35(2), December 1992.

5. Dahlen, B. J., Konstan, J. A., Herlocker, J, Good, N.,

Borchers, A. and Riedl, J. Jump-Starting MovieLens:

User Benefits of Sharing a Collaborative Filtering

System with “Dead Data”. (Submitted to CSCW ’98).

6. Goldberg, D., Nichols, D., Oki, B. M. and Terry, D.

Using Collaborative Filtering to Weave an Information

Tapestry. Communications of the ACM. Dec. 1992.

7. Hill, W., Stead, L., Rosenstein, M., Furnas, G.

Recommending and Evaluating Choices in a Virtual

Community of Use. Proceedings of CHI ’95.

8. Konstan, J. A., Miller, B. N., Maltz, D., Herlocker, J. L.,

Gordon, L. R. and Riedl, J. GroupLens: Applying

Collaborative Filtering to Usenet News. Commun. of the

ACM. 40(3), pp. 77-87, March 1997.

9. Le, C. T. and Lindgren, B. R. Construction and

Comparison of Two Receiver Operating Characteristics

Curves Derived from the Same Samples. Biom. J. 37(7),

pp. 869-877, July 1995.

10. Maes, P. Agents that Reduce Work and Information

Overload. Communications of the ACM. July 1994.

11. Maltz, D. and Ehrlich, K. Pointing the Way: Active

Collaborative Filtering. Proceedings of CHI ’95.

12. Miller, B., Riedl, J. and Konstan, J. Experiences with

GroupLens: Making Usenet Useful Again. Proceedings

of the 1997 Usenix Technical Conference.

13. Moukas, A. and Zacharia, G. Evolving a Multi-agent

Information Filtering Solution in Amalthaea. In

Proceedings of Autonomous Agents 97.

14. Pannu, A. S. and Sycara, K. Learning Text Filtering

Preferences. In Proceedings of AAAI 96 Conference.

15. Resnick, P. and Varian, H. R. Recommender Systems.

Commun. of the ACM. 40(3), pp. 56-58, March 1997.

16. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P. and

Riedl, J. GroupLens: An Open Architecture for

Collaborative Filtering of Netnews. Proceedings of

CSCW ‘94. Chapel Hill, NC. 1994.

17. Rucker, J. and Polano, M. J. Siteseer: Personalized

Navigation for the Web. Communications of the ACM.

40(3), pp.73-75, March 1997.

18. Salton, G. and McGill M. J. Introduction to Modern

Information Retrieval. McGraw-Hill, Inc. 1983.

19. Shardanand, U. and Maes, P. Social Information

Filtering: Algorithms for Automating "Word of Mouth".

In Proceedings of the CHI ‘95. Denver, CO. pp. 210-

217. May 1995.

20. Terveen, L., Hill, W., Amento, B., McDonald, D. and

Creter, J. PHOAKS: A System for Sharing Recommend-

ations. Communications of the ACM. 40(3), pp. 59-62,

March 1997.

21. Yan, T. W. and Garcia-Molina, H. SIFT – A Tool for

Wide-Area Information Dissemination. In Proceedings

of the 1995 USENIX Technical Conference. pp.177-86.

